17 research outputs found

    Resource management in future mobile networks: from millimetre-wave backhauls to airborne access networks

    Get PDF
    The next generation of mobile networks will connect vast numbers of devices and support services with diverse requirements. Enabling technologies such as millimetre-wave (mm-wave) backhauling and network slicing allow for increased wireless capacities and logical partitioning of physical deployments, yet introduce a number of challenges. These include among others the precise and rapid allocation of network resources among applications, elucidating the interactions between new mobile networking technology and widely used protocols, and the agile control of mobile infrastructure, to provide users with reliable wireless connectivity in extreme scenarios. This thesis presents several original contributions that address these challenges. In particular, I will first describe the design and evaluation of an airtime allocation and scheduling mechanism devised specifically for mm-wave backhauls, explicitly addressing inter-flow fairness and capturing the unique characteristics of mm-wave communications. Simulation results will demonstrate 5x throughput gains and a 5-fold improvement in fairness over recent mm-wave scheduling solutions. Second, I will introduce a utility optimisation framework targeting virtually sliced mm-wave backhauls that are shared by a number of applications with distinct requirements. Based on this framework, I will present a deep learning solution that can be trained within minutes, following which it computes rate allocations that match those obtained with state-of-the-art global optimisation algorithms. The proposed solution outperforms a baseline greedy approach by up to 62%, in terms of network utility, while running orders of magnitude faster. Third, the thesis investigates the behaviour of the Transport Control Protocol (TCP) in Long-Term Evolution (LTE) networks and discusses the implications of employing Radio Link Control (RLC) acknowledgements under different link qualities, on the performance of transport protocols. Fourth, I will introduce a reinforcement learning approach to optimising the performance of airborne cellular networks serving users in emergency settings, demonstrating rapid convergence (approx. 2.5 hours on a desktop machine) and a 5dB improvement of the median Signal-to-Noise-plus-Interference-Ratio (SINR) perceived by users, over a heuristic based benchmark solution. Finally, the thesis discusses promising future research directions that follow from the results obtained throughout this PhD project

    5G wireless network support using umanned aerial vehicles for rural and low-Income areas

    Get PDF
    >Magister Scientiae - MScThe fifth-generation mobile network (5G) is a new global wireless standard that enables state-of-the-art mobile networks with enhanced cellular broadband services that support a diversity of devices. Even with the current worldwide advanced state of broadband connectivity, most rural and low-income settings lack minimum Internet connectivity because there are no economic incentives from telecommunication providers to deploy wireless communication systems in these areas. Using a team of Unmanned Aerial Vehicles (UAVs) to extend or solely supply the 5G coverage is a great opportunity for these zones to benefit from the advantages promised by this new communication technology. However, the deployment and applications of innovative technology in rural locations need extensive research

    Aerial-terrestrial communications: terrestrial cooperation and energy-efficient transmissions to aerial-base stations

    Get PDF
    Hybrid aerial-terrestrial communication networks based on low-altitude platforms are expected to meet optimally the urgent communication needs of emergency relief and recovery operations for tackling large-scale natural disasters. The energy-efficient operation of such networks is important given that the entire network infrastructure, including the battery-operated ground terminals, exhibits requirements to operate under power-constrained situations. In this paper, we discuss the design and evaluation of an adaptive cooperative scheme intended to extend the survivability of the battery-operated aerial-terrestrial communication links. We propose and evaluate a real-time adaptive cooperative transmission strategy for dynamic selection between direct and cooperative links based on the channel conditions for improved energy efficiency. We show that the cooperation between mobile terrestrial terminals on the ground could improve energy efficiency in the uplink, depending on the temporal behavior of the terrestrial and aerial uplink channels. The corresponding delay in having cooperative (relay-based) communications with relay selection is also addressed. The simulation analysis corroborates that the adaptive transmission technique improves overall energy efficiency of the network whilst maintaining low latency, enabling real-time applications

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA

    Radio Resource Management for Unmanned Aerial Vehicle Assisted Wireless Communications and Networking

    Get PDF
    In recent years, employing unmanned aerial vehicles (UAVs) as aerial communication platforms or users is envisioned as a promising solution to enhance the performance of the existing wireless communication systems. However, applying UAVs for information technology applications also introduces many new challenges. This thesis focuses on the UAV-assisted wireless communication and networking, and aims to address the challenges through exploiting and designing efficient radio resource management methods. Specifically, four research topics are studied in this thesis. Firstly, to address the constraint of network heterogeneity and leverage the benefits of diversity of UAVs, a hierarchical air-ground heterogeneous network architecture enabled by software defined networking is proposed, which integrates both high and low altitude platforms into conventional terrestrial networks to provide additional capacity enhancement and expand the coverage of current network systems. Secondly, to address the constraint of link disconnection and guarantee the reliable communications among UAVs as aerial user equipment to perform sensing tasks, a robust resource allocation scheme is designed while taking into account the dynamic features and different requirements for different UAV transmission connections. Thirdly, to address the constraint of privacy and security threat and motivate the spectrum sharing between cellular and UAV operators, a blockchain-based secure spectrum trading framework is constructed where mobile network operators and UAV operators can share spectrum in a distributed and trusted environment based on blockchain technology to protect users' privacy and data security. Fourthly, to address the constraint of low endurance of UAV and prolong its flight time as an aerial base station for delivering communication coverage in a disaster area, an energy efficiency maximization problem jointly optimizing user association, UAV's transmission power and trajectory is studied in which laser charging is exploited to supply sustainable energy to enable the UAV to operate in the sky for a long time

    Aerial Base Station Deployment for Post-Disaster Public Safety Applications

    Get PDF
    Earthquakes and floods are constant threats to most of the countries in the world. After such catastrophes, a rapid response is needed, which includes communications not only for first responders but also for local civilians. Even though there are technologies and specialized personnel for rapid deployment, it is common that external factors will hinder the arrival of help while communication requirements are urgently required. Such communication technologies would aid tasks regarding organization and information dissemination from authorities to the civilians and vice-versa. This necessity is due to protocols and applications to allocate the number of emergency resources per location and to locate missing people. In this thesis, we investigate the deployment problem of Mobile Aerial Base Stations (MABS). Our main objective is to ensure periodic wireless communication for geographically spread User Equipment (UE) based on LTE technology. First, we establish a precedent of emergency situations where MABS would be useful. We also provide an introduction to the study and work conducted in this thesis. Second, we provide a literature review of existing solutions was made to determine the advantages and disadvantages of certain technologies regarding the described necessity. Third, we determine how MABS, such as gliders or light tactical balloons that are assumed to be moving at an average speed of 50 km/h, will be deployed. These MABS would visit different cluster centroids determined by an Affinity Propagation Clustering algorithm. Additionally, a combination of graph theory and Genetic Algorithm (GA) is implemented through mutators and fitness functions to obtain best flyable paths through an evolution pool of 100. Additionally, Poisson, Normal, and Uniform distributions are utilized to determine the amount of Base Stations and UEs. Then, for every distribution combination, a set of simulations is conducted to obtain the best flyable paths. Serviced UE performance indicators of algorithm efficiency are analyzed to determine whether the applied algorithm is effective in providing a solution to the presented problem. Finally, in Chapter 5, we conclude our work by supporting that the proposed model would suffice the needs of mobile users given the proposed emergency scenario. Adviser: Yi Qia
    corecore