2,697 research outputs found

    Combining behavioural types with security analysis

    Get PDF
    Today's software systems are highly distributed and interconnected, and they increasingly rely on communication to achieve their goals; due to their societal importance, security and trustworthiness are crucial aspects for the correctness of these systems. Behavioural types, which extend data types by describing also the structured behaviour of programs, are a widely studied approach to the enforcement of correctness properties in communicating systems. This paper offers a unified overview of proposals based on behavioural types which are aimed at the analysis of security properties

    Validating a Web Service Security Abstraction by Typing

    Get PDF
    An XML web service is, to a first approximation, an RPC service in which requests and responses are encoded in XML as SOAP envelopes, and transported over HTTP. We consider the problem of authenticating requests and responses at the SOAP-level, rather than relying on transport-level security. We propose a security abstraction, inspired by earlier work on secure RPC, in which the methods exported by a web service are annotated with one of three security levels: none, authenticated, or both authenticated and encrypted. We model our abstraction as an object calculus with primitives for defining and calling web services. We describe the semantics of our object calculus by translating to a lower-level language with primitives for message passing and cryptography. To validate our semantics, we embed correspondence assertions that specify the correct authentication of requests and responses. By appeal to the type theory for cryptographic protocols of Gordon and Jeffrey's Cryptyc, we verify the correspondence assertions simply by typing. Finally, we describe an implementation of our semantics via custom SOAP headers.Comment: 44 pages. A preliminary version appears in the Proceedings of the Workshop on XML Security 2002, pp. 18-29, November 200

    Dynamic Role Authorization in Multiparty Conversations

    Get PDF
    Protocol specifications often identify the roles involved in communications. In multiparty protocols that involve task delegation it is often useful to consider settings in which different sites may act on behalf of a single role. It is then crucial to control the roles that the different parties are authorized to represent, including the case in which role authorizations are determined only at runtime. Building on previous work on conversation types with flexible role assignment, here we report initial results on a typed framework for the analysis of multiparty communications with dynamic role authorization and delegation. In the underlying process model, communication prefixes are annotated with role authorizations and authorizations can be passed around. We extend the conversation type system so as to statically distinguish processes that never incur in authorization errors. The proposed static discipline guarantees that processes are always authorized to communicate on behalf of an intended role, also covering the case in which authorizations are dynamically passed around in messages.Comment: In Proceedings BEAT 2014, arXiv:1408.556

    Explicit connection actions in multiparty session types

    Get PDF
    This work extends asynchronous multiparty session types (MPST) with explicit connection actions to support protocols with op- tional and dynamic participants. The actions by which endpoints are connected and disconnected are a key element of real-world protocols that is not treated in existing MPST works. In addition, the use cases motivating explicit connections often require a more relaxed form of mul- tiparty choice: these extensions do not satisfy the conservative restric- tions used to ensure safety in standard syntactic MPST. Instead, we de- velop a modelling-based approach to validate MPST safety and progress for these enriched protocols. We present a toolchain implementation, for distributed programming based on our extended MPST in Java, and a core formalism, demonstrating the soundness of our approach. We discuss key implementation issues related to the proposed extensions: a practi- cal treatment of choice subtyping for MPST progress, and multiparty correlation of dynamic binary connections

    Correspondence assertions for process synchronization in concurrent communications

    Get PDF
    High-level specification of patterns of communications such as protocols can be modeled elegantly by means of session types. However, a number of examples suggest that session types fall short when finer precision on protocol specification is required. In order to increase the expressiveness of session types we appeal to the theory of correspondence assertions. The resulting type discipline augments the types of long term channels with effects and thus yields types which may depend on messages read or written earlier within the same session. We prove that evaluation preserves typability and that well-typed processes are safe. Also, we illustrate how the resulting theory allows us to address the shortcomings present in the pure theory of session types.Laboratorio de Investigación y Formación en Informática Avanzad

    Correspondence assertions for process synchronization in concurrent communications

    Get PDF
    High-level specification of patterns of communications such as protocols can be modeled elegantly by means of session types. However, a number of examples suggest that session types fall short when finer precision on protocol specification is required. In order to increase the expressiveness of session types we appeal to the theory of correspondence assertions. The resulting type discipline augments the types of long term channels with effects and thus yields types which may depend on messages read or written earlier within the same session. We prove that evaluation preserves typability and that well-typed processes are safe. Also, we illustrate how the resulting theory allows us to address the shortcomings present in the pure theory of session types.Laboratorio de Investigación y Formación en Informática Avanzad

    A Fully Abstract Symbolic Semantics for Psi-Calculi

    Full text link
    We present a symbolic transition system and bisimulation equivalence for psi-calculi, and show that it is fully abstract with respect to bisimulation congruence in the non-symbolic semantics. A psi-calculus is an extension of the pi-calculus with nominal data types for data structures and for logical assertions representing facts about data. These can be transmitted between processes and their names can be statically scoped using the standard pi-calculus mechanism to allow for scope migrations. Psi-calculi can be more general than other proposed extensions of the pi-calculus such as the applied pi-calculus, the spi-calculus, the fusion calculus, or the concurrent constraint pi-calculus. Symbolic semantics are necessary for an efficient implementation of the calculus in automated tools exploring state spaces, and the full abstraction property means the semantics of a process does not change from the original

    Context-Free Session Types for Applied Pi-Calculus

    Get PDF
    We present a binary session type system using context-free session types to a version of the applied pi-calculus of Abadi et. al. where only base terms, constants and channels can be sent. Session types resemble process terms from BPA and we use a version of bisimulation equivalence to characterize type equivalence. We present a quotiented type system defined on type equivalence classes for which type equivalence is built into the type system. Both type systems satisfy general soundness properties; this is established by an appeal to a generic session type system for psi-calculi.Comment: In Proceedings EXPRESS/SOS 2018, arXiv:1808.0807
    corecore