
Correspondence Assertions for Process

Synchronization in Concurrent

Communications

Eduardo Bonelli1 ,3

Stevens Institute of Technology and LIFIA6

Adriana Compagnoni1 ,4

Stevens Institute of Technology

Elsa Gunter1 ,2 ,5

New Jersey Institute of Technology

Abstract

High-level specification of patterns of communications such as protocols can be modeled elegantly
by means of session types [14]. However, a number of examples suggest that session types fall short
when finer precision on protocol specification is required. In order to increase the expressiveness
of session types we appeal to the theory of correspondence assertions [5,10]. The resulting type
discipline augments the types of long term channels with effects and thus yields types which may
depend on messages read or written earlier within the same session. We prove that evaluation
preserves typability and that well-typed processes are safe. Also, we illustrate how the resulting
theory allows us to address the shortcomings present in the pure theory of session types.

Keywords: Concurrent programming, pi-calculus, type systems, session types, correspondence
assertions.

Electronic Notes in Theoretical Computer Science 97 (2004) 175–195

1571-0661 © 2004 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.04.036
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SEDICI - Repositorio de la UNLP

https://core.ac.uk/display/296423807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

Distributed and concurrent programming paradigms are increasingly popular,
specially since the Internet entered the public domain. This has brought along
new challenges including the specification and implementation of these pro-
grams together with techniques for the formal verification of their properties.
One such specification method is that of protocol specification. This consists
of identifying the sequence of message interchanges that take place between
a number of parties in order to carry out some specific task. Recently, the
use of type systems to formalize protocols has interested many researchers,
in particular session types [13,14] has emerged as a promising approach. In-
teraction between a number of parties is achieved by specifying sequences of
reciprocal interchanges of messages through private channels. Such sequences
are modeled as types, the two parties at each end of the channel having dual
such types. These pair of dual types constitute a session type. Session types
are assigned to long term channels and are shared among processes. A long
term channel is a port whose communication protocol is pre-specified. An
example of a session type is:

(↓ Int; ↓ Int; ↑ Int , ↑ Int; ↑ Int; ↓ Int)

The first component, namely ↓ Int; ↓ Int; ↑ Int, indicates the expected be-
havior at one session point: the process must read an integer from the chan-
nel, then another one, and then write an integer to the channel (think of an
“adding” server that reads in two numbers and writes out their sum). In order
for the other party to interact correctly, it is assigned a dual type expression
(the second component of the pair).

Quite some effort is being invested in the study of session types, motivated
by the benefits that such a system provides for the analysis of protocols. Start-
ing from the work of Honda et al [13], a suitable notion of subtypes for session
types has been explored in [6], the benefits of session types in component
based software development was presented in [21], bounded polymorphism in
the presence of session types has been studied in [12], session types formulated
in a λ-calculus with input/output operations is considered in [7].

This paper addresses a strengthening of session types by incorporating a
theory of correspondence assertions (cf. Section 1.2). We shall address a

1 This work was supported in part by the NSF Grant No. CCR-0220286 ITR:Secure Elec-
tronic Transactions.
2 It was also supported in part by the ARO under Award No. DAAD-19-01-1-0473
3 Email:ebonelli@cs.stevens-tech.edu
4 Email:abc@cs.stevens-tech.edu
5 Email:elsa@cis.njit.edu
6 Faculty of Informatics, University of La Plata, La Plata, Argentina

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195176

mailto:ebonelli@cs.stevens-tech.edu
mailto:abc@cs.stevens-tech.edu
mailto:elsa@cis.njit.edu

Cl(id, amt, a) = request a(k) in k![id]; k� deposit; k![amt]; k?(bal) in stop

ATM(a, b) = accept a(k) in k?(idA) in
k� { deposit: request b(h) in k?(amtA) in

h� deposit; h![idA]; h![amtA]; h?[balA] in k![balA]; ATM[a, b]
� withdraw: request b(h) in k?(amtA) in

h� withdraw; h![idA]; h![amtA]; h?(OKedAmtA) in
k![OKedAmtA]; ATM[a, b] }

Bank(b) = accept b(h) in
h� { deposit: h?(idB) in h?(amtB) in updateData; h![balB]; Bank[b]

� withdraw: h?(idB) in h?(amtB) in
getOK AmtForIdB ; h![OKedAmtB]; Bank[b] }

Fig. 1. The ATM example

number of examples in which the shortcomings of session types are illustrated
and shall exhibit how correspondence assertions successfully overcome these
difficulties. The resulting type discipline is strictly richer than the pure theory
of session types. More precisely, a number of “unsafe” programs which are
well-typed in the theory of pure session types shall be rejected by our typing
rules. To the best of our knowledge, this is the first study of a theory of
correspondence assertions for long term channels.

1.1 Motivation

Consider the following example consisting of three parties: a Client, an ATM,
and a Bank [14], as illustrated in Figure 1, which we briefly describe below:

The Client. A session is requested (through the shared name a), and then
the Client sends its id number, selects a deposit operation, tells the amount
of the deposit, and then waits for the new account balance.

The ATM. First it listens on name a for a client to request a session, then
it reads in the client’s id number (idA) and waits for the client’s selection
of one of two available operations: deposit or withdraw. In the case of a
deposit operation, the ATM requests a session with the bank (on name b),
reads in the amount the client wishes to deposit (from a) and then selects
the deposit operation of the Bank. It then sends the Bank the client’s id
and the deposit amount, gets the new balance, reports it back to the client,
and returns to the starting point. The ATM’s withdraw operation is similar.

The Bank. It listens on name b (shared with the ATM) for requests for a
session, and then waits for the ATM to indicate the operation it wishes to
perform (either deposit or withdraw). If it is a deposit operation, it reads
in the id and the amount, updates its data, sends back the new balance,
and then returns to its starting point. In the case of withdraw it proceeds
accordingly.

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195 177

Let the expression ATM|Client|Bank denote the concurrent execution of
the indicated parties. The type system presented in [14] asserts that this
expression is well-typed. Indeed, assigning the following session types to a
and b (where σ(α) is an abbreviation for the pair consisting of α and its dual)
we may type ATM|Client|Bank.

a : σ(↓ Int; &{deposit :↓ Int; ↑ Int; 1,

� withdraw :↓ Int; ↑ Int; 1})

b : σ(&{deposit :↓ Int; ↓ Int; ↑ Int; 1,

� withdraw :↓ Int; ↓ Int; ↑ Int; 1})

The first type says that all communication sessions established on a must
abide by the communication pattern described by the argument of σ on one
endpoint and its dual on the other. The inner argument type may be read
as follows: after an integer is input, wait for one of two operations from the
opposite endpoint deposit or withdraw; if deposit is selected then input an
integer, output an integer and disallow further communication, and likewise
if the operation selected is withdraw.

Note that these types express how the long-term channels a and b behave
independently of each other, even though they both belong to a common spec-
ification, namely that of the protocol specifying how Client, ATM, and Bank

should interact in order to carry out a specific operation (a deposit or with-
drawal). This may be witnessed as follows. Consider the ATM ATM’ resulting
from ATM by replacing deposit with the following variant:

Example 1.1 [Deposit I]

deposit:

request b(h)in k?(amtA) in h� deposit; h![idA]; h![amtA − 1 .5]; (1)

h?(balA) in k![balA];

request b(h′) in h′
� deposit; h′![diffId]; h′![1 .5]; h′?(balA′) (2)

in ATM[a, b]

This version of the deposit operation deposits into the client’s account 1.5
units fewer than the amount told by the Client (1), and deposits the remaining
1.5 units in some account different from the client’s, by means of a new deposit
request (2) to the Bank, which was not present in the original ATM.

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195178

Unfortunately, this modified ATM is typable under the same type assump-
tions as the previous one. Likewise, if the deposit operation of the good ATM

were replaced by the same one, except that the bank was not notified, then
the resulting ATM also types under the same type assumptions as the good
one.

Example 1.2 [Deposit II] The following variant of deposit allows the ATM

to keep the deposit of the Client without depositing it in the account. If we
call the resulting system ATM”, then ATM”|Client|Bank is well-typed under
exactly the same type assumptions as ATM|Client|Bank.

deposit: k?(amtA) in k![1000]; ATM[a, b]

These examples suggest that although session types elegantly encode com-
munication patterns of message interchange, they lack expressiveness in order
to restrict interaction between sessions and also to enforce consistency of for-
warded values (those received and then sent again). This paper introduces a
type system based on correspondence assertions [22,10] in which ATM may be
distinguished from the variants depicted above.

1.2 Correspondence Assertions

Correspondence assertions originated in the context of model-checking [22].
In [9] a type system for correspondence assertions is presented for the spi-
calculus; a lucid account in the setting of an asynchronous π-calculus is pre-
sented by the same authors in [10]. Intuitively, correspondence assertions are
used to formalize the idea that some point of execution in some process P must
have been preceded by some other point of execution in some other process
Q, in all possible executions of P |Q. Assertions are used to mark execution
points in processes. As in [10], the assertions in this paper may have one of
two forms: begin L or end L where L is an assertion label. A process is said
to be safe if for every end L assertion reached in any execution, there is a cor-
responding begin L assertion which was reached sometime before, possibly in
some other process.

By inserting appropriate correspondence assertions in untrusted code (in-
cluding code communicating with the suspect code) and asking if the resulting
code is safe, we may test for unexpected or malicious behavior in the commu-
nicating parties. Safety may be determined by a type system, hence allowing
us to perform such checks statically.

Example 1.3 [Deposit I (continued)] Correspondence assertions allow us to
show that the variant of ATM in Example 1.1 is unsafe if we assert that the
amount to be deposited in the bank is the same as the amount given by the

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195 179

Client and appropriately augment the types of the sessions a and b. To show
this, first we replace the code of Client by code including a begin assertion to
obtain Client’:

request a(k) in begin 〈id , amt〉; k![id]; k� deposit; k![amt]; k?(bal) in
stop

Note that the label of the begin assertion contains an occurrence of the
expressions id and amt . These are values generated by the Client and passed
to the ATM. Next we add an end assertion to the deposit operation of Bank

(2) in Figure 1 obtaining Bank’:

deposit: h?(idB) in h?(amtB) in end 〈idB , amtB〉;
updateData; h![balB]; Bank[b]

Finally, the session types of a and b are augmented with appropriate effects
(see Figure 5 in Section 3) such that if the ATM requests a deposit operation
to the bank and sends off some values for idB and amtB , then the incurred
credit shall have to be paid off by a corresponding communication with the
client: the client must have supplied these values.

The system ATM|Client’|Bank’ shall be safe if every time the Bank’s deposit
operation is executed for an id number idB and amount amtB , the client re-
quested the same operation on ATM, and idB = id , the id entered by the
Client, and amtA = amtB , the amount entered by the Client.

We may address Example 1.2 similarly by forcing the ATM to engage in
communication with the bank and, moreover, requiring that the deposit op-
eration be selected. This is achieved by forcing the balance information sent
by the ATM to the client to be retrieved from the bank. In this case, the
begin assertion is inserted in the bank and the end assertion in the client.
See [2] for full details.

The type rules we present in Section 2 show that the system of Example 1.3
is unsafe for the given correspondence assertions. The question of how the
type system forces the end assertion in Bank’ to be executed only after the
corresponding begin assertion in Client’ has been executed is answered by
means of latent effects on channels. In order to “reach” the end assertion,
the Bank’ must have previously executed the read operations of deposit (i.e.
h?(idB) in h?(amtB)). Now, h is a channel which is shared between Bank’ and
ATM’|Client’ (via ATM’). Via the placement of latent effects on the channel
h, Bank’ may pass back to whomever tries to send values on that channel the
obligation of matching the end assertion. Similarly, ATM’ can use latent effects
on the channel it shares with the Client to further pass along the obligation.
In fact, since the ATM’ code has no assertions of its own, that is all it can do

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195180

with the obligation. As the obligation is passed back through latent effects,
it must be translated with respect to the substitution taking place as a result
of the message passing on the channel. As the obligation is passed back from
the Bank’ to the ATM’, it becomes 〈idA, amtA − 1 .5 〉, since these are the
amounts sent for idB and amtB . As we pass the obligation back to Client,
it is further transformed to 〈id , amt − 1 .5 〉, which does not match with the
assertion begin 〈id , amt〉. We may conclude, therefore, that the program
is not safe. It is worth noting that if we changed the begin assertion to
begin 〈id , amt − 1 .5 〉, then the program would type check and be declared
safe. We would, in effect, be acknowledging that ATM’ had a right to charge
a 1.5 unit fee for a deposit transaction.

Contribution. In this paper we introduce a type-based theory of corre-
spondence assertions for session types.

• In contrast to previous type systems for such assertions, session types allow
the effects of an input/output type to depend on messages which were inter-
changed prior in the same session. We also include the branching/selection
and delegation constructs from [14] in our analysis. The resulting type sys-
tem shall allow us to distinguish the three above-mentioned variants of the
ATM. This is achieved by introducing appropriate type directives (i.e. as-
sertions) in the code and assigning appropriate types to names and channels,
and then type checking using the type discipline presented in this paper.

• We define a new type system of dependent session types combining ses-
sion types and correspondence assertions. This combination introduces a
number of technical difficulties. For example, the usual representation of
environments as sequences of assumptions [1,10] fails to yield a calculus
satisfying some standard basic properties (cf. Remark 2.6).

• We show that evaluation preserves typability and that processes typable
under empty effects are safe.

Related work. This work may be included among others in which type
systems for the π-calculus are studied [18,16,17,20]. Subtyping is introduced
in the setting of session types in [6]; however, the concept of synchroniza-
tion between sessions is not explored. The works [23] and [19] do not explore
session types either: the first studies a typing scheme for processes based on
graph types and the second a type system for restricting communication in
concurrent objects; their relation to session types is discussed in [14]. While
[10] shares a fair amount in common with this work, there is a major differ-
ence. In [10] dependencies in types are “horizontal” in the sense that in a type
expression such as ↓ [x : T1, y : T2] the type of y may depend on the value of x,
this being fixed for all communications over a channel of this type. However,

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195 181

since our setting is that of session types we allow “vertical” dependencies of
the form ↓ [x : T1];↓ [y : T2];↓ [z : T3]. In this case, the type of the value
read for z may depend on either or both of the values read for x and y. These
latter values are read in the same channel, but prior in time to z. Thus, in the
present work, dependency spans whole sessions. Recently, type systems where
CCS-like processes are used for typing process expressions have appeared. The
generic type system of [15] is an example, although it does not incorporate
correspondence assertions (however see Section 4). Another approach is [4] in
which models (types as CCS-processes) of π-calculus expressions are obtained
and the validity of temporal formulas are analyzed through model-checking
techniques in order to deduce properties of the process expressions. They pro-
pose a type-and-effect system which incorporates correspondence assertions,
however no long term channel types are available.

Structure of the paper. Section 2 defines πs, a system combining ses-
sion types [14] and correspondence assertions [10]. Section 2.2.1 presents a
type system with effects for πs. The proof of safety is given in Section 3 by
introducing an appropriate labeled transition semantics. Finally we conclude
and suggest further research directions.

2 The πs-Calculus

2.1 Syntax

This section describes the syntax of πs. We begin with a set of names
x, y, z, We distinguish two distinct kinds of names: expression names,
for which we will use a, b, c, . . . (and which range over sessions and integers);
and channel names, for which we will use k, h, k′, We also have integer con-
stants . . . ,−1, 0, 1, . . ., (branching) labels l, l′, . . . and process variables written
X, Y, A value is an expression name or an integer constant and is denoted
with letters v, v′, Assertion labels, written L, L′, . . ., are tuples of values
and are written 〈v1, . . . , vn〉. Process expressions, denoted with P, Q, . . ., are
defined as follows:

P ::= request a(k) in P | accept a(k) in P | k?(x) in P | k![v]; P |

throw k[k′]; P | catch k(k′) in P | (νa : T)P | (νk : ⊥e)P |

k � l; P | k � {l1 : P1� . . .� ln : Pn} | stop | P |Q |

def D in P | X[�v] | begin L; P | end L; P

Process definitions D take the form X1[�a1] = P1 and . . . and Xn[�an] = Pn.

Remark 2.1 Parentheses are binding constructs. The notation �v stands for

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195182

v1, . . . , vn, and likewise for �ai with i ∈ 1..n. Any two process expressions which
differ only in the names of their bound names (called α-equivalent) shall be
considered equal. We use the notation P{a ← v} for the result of substituting
all free occurrences of a in P by v, and similarly for P{k ← k′}. Note that
for the benefit of a clear presentation we have chosen to present a monadic
calculus; an extension to the polyadic case should be straightforward.

The request primitive requests a session on name a. When this session is
established the fresh private channel k shall be used for message interchange.
The accept receives a request on the same name a and generates a new pri-
vate channel for message interchange to be used once the session is established.
The request and accept constructs each bind all free occurrences of the im-
mediately following channel variable, k, in the subsequent process, P . The
synchronous sending and receiving of messages is achieved with k![v]; Q and
k?(x) in P respectively, although, as in [14], a translation to an asynchronous
calculus with branching is possible. Controlled side-stepping of linearity con-
straints on channel usage is achieved by means of the channel delegation con-
structs throw k[k′]; P and catch k(k′) in Q. Mechanisms for selection of a
label and branching are available as k � l; P and k � {l1 : P1� . . . � ln : Pn}.
The notation P |Q has already been explained; we also use stop for inac-
tion. We write (νa : T)P or (νk : ⊥e)P for the usual constructs for name
hiding, where the former is for expression names and the latter for channel
names. T denotes a type expression (Definition 2.2) and ⊥e is the “complete”
channel type with effect e. Definitions of processes are also allowed through
the def D in P construct, possibly introducing recursion. The begin and
end assertions shall be used as type directives in the type system for πs (Sec-
tion 2.2.1): begin L; P simply asserts begin L and then behaves as P ; likewise
end L; P asserts end L and then behaves as P .

2.2 The Type Discipline

The present section enriches the type system of [14] with correspondence as-
sertions in order to address the shortcomings mentioned in the introduction.

2.2.1 Session types and effects

The type system shall assign an effect to a process under a given set of type
assumptions. The effect of a process reflects its pending obligations. An
assertion of the form begin L shall reduce these obligations by withdrawing
the assertion label L from the current effect; likewise end L shall augment the
current effect with L. Thus effects determine lower-bounds of the number of
begin assertions that must be present. If the process has an empty effect,

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195 183

then all end assertions correspond to a matching begin assertion.

As explained above, effects also have to be attached to channel types in
order for two or more processes to share information on their pending or latent
effects. Effects added to channels are thus called latent effects.

Definition 2.2 [Types with Effects] Assertion labels, effects and types are
given by the following grammar:

Plain Type T ::= Int | σ(α)

Channel Type α, β ::= ↓ [a : T]e; α | ↑ [a : T]e; α | ↓ [α]e; β

| ↑ [α]e; β | &{l1 : α1, . . . , ln : αn}e

| ⊕{l1 : α1, . . . , ln : αn}e | 1 | ⊥e

Effect e, e′ ::= (|L1, . . . , Ln |)

Assertion Label L, Li ::= 〈v1, . . . , vn〉

A type is either a plain type or a channel type; we use U, Ui to range over
types. The set of free names of a type U , written fn(U), is defined as usual
(see [2]). The base type Int is the type of integer constants. Session types are
represented as σ(α) and may informally be seen to denote a pair consisting of
a channel type α and its dual α:

↓ [a : T]e; α
def
= ↑ [a : T]e; α ↑ [a : T]e; α

def
= ↓ [a : T]e; α 1

def
= 1

↓ [α]e; β
def
= ↑ [α]e; β ↑ [α]e; β

def
= ↓ [α]e; β

&{li : αi}e
def
= ⊕{li : αi}e ⊕{li : αi}e

def
= &{li : αi}e

The types α and α shall be assigned to the two endpoints of a communication
session. Note that ⊥e is not defined. A channel type consists of a sequence
of input/output types of values or channels, or branch/selection types; the
sequence is assumed to terminate with the channel type terminator 1. Each
of these is accompanied by a latent effect. An effect is a multi-set of asser-
tion labels; we use (| . . . |) for the multi-set constructor. Multiset subtraction
is defined as e \ e′, the smallest multiset e′′ such that e ≤ e′ + e′′, where
“+” is multiset union. The special channel type ⊥e models a “complete” or
“closed” channel which is already being used by two existing endpoints and
thus through which no further communication is possible (cf. Definition 2.5).

2.2.2 Typing Rules:

An environment Γ is a set of type assumptions x1 : U1 · . . . · xn : Un where
x1, . . . , xn are distinct names. We use letters Γ, ∆, . . . for environments. The

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195184

domain of Γ, written dom(Γ), is the set {x1, . . . , xn}. Also, we write domCh(Γ)
for the subset of names to which Γ assigns channel types and domPl(Γ) for
the subset of names to which Γ assigns plain types. In an assumption x : U ,
x is called the subject; if the type assigned to the subject is a plain type then
the assumption is said to be a plain assumption, otherwise it is a channel
assumption. We write Γ · x : U for the environment resulting from extending
Γ with the type assumption x : U for x /∈ dom(Γ). The notation Γ \ x : U
stands for the environment resulting from dropping the assumption x : U from
Γ (assuming it exists).

Definition 2.3 [Depends on] xi : Ui depends directly on xj : Uj in Γ (written
(xj : Uj) ↪→d (xi : Ui)), if xj ∈ fn(Ui). We say xi : Ui depends on xj : Uj in Γ
if xi : Ui ↪→ xj : Uj , where ↪→ denotes the transitive closure of ↪→d.

We say that an environment is be well-formed if it satisfies the following
two conditions:

C1. For each i ∈ 1..n, fn(Ui) ⊆ dom(Γ) \ {xi}.

C2. ↪→ is irreflexive 7 .

Condition C1 requires that all free names in types assigned by Γ must be
declared within Γ. Note that since channel names may not appear in asser-
tion labels (hence not in fn(Ui)), types may only depend on names which are
assigned plain types. Since interaction through channel names is restricted by
linearity conditions in the sense of linear logic [8] (see explanation of Type Par

rule below), this restriction states that we do not allow types depending on
linear assumptions (we do however allow types depending on plain or “intu-
itionistic” assumptions). The intended application of our type discipline is
not disturbed by such a restriction, and it is not clear whether the technical
complications of the meta-theory resulting from lifting it outweigh its benefits.
In fact this restriction already appears in other settings in which linear and
intuitionistic assumptions coexist, such as the linear logical framework of [3].
The second condition, C2, requires that Γ have no cyclic dependencies. This is
usually guaranteed by the representation of environments as sequences of type
assumptions, in which an assumption x : U depends only on those appear-
ing to its left. Such a representation seems unfit in a setting where channel
types are present since basic results on admissibility of structural rules fail
(Remark 2.6).

7 R ⊆ A × A is irreflexive iff for every x ∈ A it is not the case that xRx.

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195 185

The πs type system consists of the following four judgements:

Γ �Θ well-formed environment Γ and process protocol Θ

Γ �Θ v : T well-typed value v of type T

Γ �Θ (�v) : (�a : �T) well-typed process parameters �v of type (�a : �T)

Γ �Θ P : e well-typed process P with effect e

The letter Θ stands for a process protocol : a set of expressions of the form
Xj : (�aj : �Tj), for j ∈ 1..n, where each �aj : �Tj is an environment indicating
the types of process parameters to Xj. The judgement Γ �Θ holds if Γ is

a well-formed environment, and also each environment �aj : �Tj in the process
protocol Θ is well-formed.

The type rules of πs are presented in Figure 2. The rules Type Acpt and
Type Rcv introduce a new channel name in the environment, thus guaran-
teeing that a private channel is being used for the session. Note that dual
channel types are used for the requesting and accepting parties. Type Bgn

and Type End affect process effects by eliminating or adding a new assertion
label. The rules Type Snd and Type Rcv allow the typing of the communica-
tion primitives for sending and receiving data. Note that data is sent and
received over channels only. Also, note that the type of k in the upper right-
hand judgement of Type Snd is α{a ← v}, reflecting the fact that the “rest”
of the channel type, namely α, may depend on the output value v. The same
comment applies to the Type Rcv rule. Type Brnch and Type Sel type the
branching and selection primitives, respectively; if pending effects are seen as
credits, then it is clear that the effects of each branch in Type Brnch must
be joined. Channel delegation is achieved by means of the throw and catch
primitives, which are typed by means of Type Thr and Type Cat. The rule
Type Thr is subject to the restriction that β �= 1; this restricts delegation of
channels to those through which communication is possible, i.e. no “dead”
channels 8 . Channel and name restriction (for non-channel names) are typed
as expected. Type Stop types the inaction stop; it requires all communication
through channel names to have been completed. The Type Subsum rule allows
increasing the required assertion obligations of a process term. The Type Par

rule types the parallel execution of two processes. A channel may be used
by one of the two processes P or Q. The only exception to this rule is when
both P and Q use a channel k of dual types. Since channel usage must be
restricted in order to guarantee such linear usage, the environments Γ and Γ′

8 Technically, this allows us to correct a problem present in [14], namely the failure of
Subject Congruence.

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195186

are required to be compatible.

Definition 2.4 [Compatibility �] The relation � is defined as follows: ∅ � ∅,
and Γ � Γ′ implies

(i) Γ · a : T � Γ′ · a : T

(ii) Γ · k : α � Γ′ · k : α

(iii) Γ · k : α � Γ′, if k /∈ dom(Γ′)

(iv) Γ � Γ′ · k : α, if k /∈ dom(Γ)

Note that the notion of compatibility makes sense for two sets of assump-
tions which do not necessarily constitute well-formed environments. Once this
notion of compatibility is in place we may define how two environments are
combined through environment composition.

Definition 2.5 [Composition ◦] Let Γ, Γ′ be two environments such that Γ �
Γ′. We define Γ ◦ Γ′ as follows: ∅ ◦ ∅ = ∅ and

(i) (Γ · a : T) ◦ (Γ′ · a : T) = (Γ ◦ Γ′) · a : T

(ii) (Γ · k : α) ◦ (Γ′ · k : α) = (Γ ◦ Γ′) · k : ⊥fnMult(α)

(iii) (Γ · k : α) ◦ (Γ′) = (Γ ◦ Γ′) · k : α, if k /∈ dom(Γ′)

(iv) Γ ◦ (Γ′ · k : α) = (Γ ◦ Γ′) · k : α, if k /∈ dom(Γ)

The effect fnMult(α) is the multiset which includes a label for each occur-
rence of a free name in α. Other variants for the second clause of Definition 2.5
are possible as long as the effect subscript of ⊥ faithfully records the name de-
pendencies of the dual channel types from which it arises (i.e. no dependency
information is lost).

For the sake of readability, in Figure 2, we have omitted the hypothe-
ses that the environment of the conclusion of the rule be well-formed, for
all those rules where the environment of the conclusion is different from the
environment of all hypothesis. Note that in some of the latter rules the con-
dition is superfluous, namely Type CRes, Type Par, Type Subsum, Type PVar

and Type Def.

Remark 2.6 A representation of environments based on sequences of hypoth-
esis, as usually adopted in the literature on dependent type systems [1], is not
applicable to our system. The reason is that basic results on the admissibility
of structural rules fail. In particular, the Exchange Lemma, which states that
the order of independent hypothesis is irrelevant for the sake of derivability,
fails. Indeed, consider the following possible type rule Type Snd formulated in

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195 187

Γ · a : σ(α) · k : α �Θ P : e
Type Acpt

Γ · a : σ(α) �Θ accept a(k) in P : e

Γ · a : σ(α) · k : α �Θ P : e
Type Requ

Γ · a : σ(α) �Θ request a(k) in P : e

Γ �Θ P : e fn(L) ⊆ dom(Γ)
Type Bgn

Γ �Θ begin L; P : e \ (|L |)

Γ �Θ P : e fn(L) ⊆ dom(Γ)
Type End

Γ �Θ end L; P : e + (|L |)

Γ �Θ v : T Γ · k : α{a ← v} �Θ P : e
Type Snd

Γ · k :↑ [a : T]e′; α �Θ k![v]; P : e + e′{a ← v}

Γ · a : T · k : α �Θ P : e fn(e \ e′) ⊆ dom(Γ)
Type Rcv

Γ · k :↓ [a : T]e′; α �Θ k?(y) in P : e \ e′

Γ · k : α1 �Θ P1 : e1 . . . Γ · k : αn �Θ Pn : en

Type Brnch
Γ · k : &{l1 : α1, . . . , ln : αn}e

′ �Θ k � {l1 : α1, . . . , ln : αn} : (
_

ei) \ e′

Γ · k : αj �Θ P : e (1 ≤ j ≤ n)
Type Sel

Γ · k : ⊕{l1 : α1, . . . , ln : αn}e
′ �Θ k � lj ; P : e + e′

Γ · k : α �Θ P : e
Γ · k′ : β · k :↑ [β]e′; α �Θ throw k[k′]; P : e + e′Type Thr

Γ · k′ : β · k : α �Θ P : e
Γ · k :↓ [β]e′; α �Θ catch k(k′) in P : e \ e′Type Cat

Γ �Θ stop : (||)
ranCh(Γ) ⊆ {1,⊥e}

Type Stop
Γ · a : T �Θ P : e

Γ �Θ (νa : T)P : eType NRes

Γ · k : ⊥e′ �Θ P : e
Γ �Θ (νk : ⊥e′)P : e

fn(e′) ⊆ dom(Γ)
Type CRes

Γ �Θ P : e Γ′ �Θ Q : e′ Γ 	 Γ′

Type Par
Γ ◦ Γ′ �Θ P |Q : e + e′

Γ �Θ P : e e ≤ e′ fn(e′) ⊆ dom(Γ)
Type Subsum

Γ �Θ P : e′

Γ �Θ (�v) : (�a : �T) X : (�a : �T) ∈ Θ ranCh(Γ) ⊆ {1,⊥e}
Type PVar

Γ �Θ X[�v] : (||)

Γ \ chan(Γ) · �ai : �Ti �Θ Pi : (||) Θ(Xi) = (�ai : �Ti) Γ �Θ Q : e
Type Def

Γ �
Θ\ �X def X1(�a1) = P1 . . . and . . . Xn(�an) = Pn in Q : e

Fig. 2. Well-formed process expressions

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195188

Γ · a : T �Θ �
Wf Val Name

Γ · a : T �Θ a : T

Γ �Θ � n ∈ Z

Wf Val Int
Γ �Θ n : Int

Γ �Θ �
Wf PP Nil

Γ �Θ () : ()

Γ �Θ (�v) : (�a : �T) Γ �Θ v : T{�a ← �v}
b /∈ {�a} ∪ dom(Γ)

Wf PP Cons
Γ �Θ (�v, v) : (�a : �T , b : T)

Fig. 3. Well-formed values and process parameters

a setting where environments are sequences:

Γ1 · Γ2 �Θ v : T Γ1 · k : α{a ← v} · Γ2 �Θ P : e Γ1 · k :↑ [a : T]e′; α · Γ2 �Θ

Γ1 · k :↑ [a : T]e′; α · Γ2 �Θ k![v]; P : e + e′{a ← v}

Assume that Γ1 = Γ′

1 · v : T . Then note that v : T and k :↑ [a : T]e′; α satisfy
the condition of the Exchange Lemma, since neither one depends on the other.
However, when we attempt to exchange v : T and k : α{a ← v} in the upper
middle judgement we fail, since α{a ← v} may have free occurrences of v.
Note that these issues do not appear in previous type-theoretic formulations
of correspondence assertions for concurrent/distributed calculi since long-term
session types are not considered.

3 Safety Proof for πs

In order to trace the execution of certain actions such as begin and end

assertions, we shall introduce a labeled transition semantics [10] (LTS) for πs.
The LTS is defined modulo structural congruence ≡ and shall be used for
formalizing the notion of safe process and showing that all typable processes
with null effects are safe. The actions of the transition system, denoted with
letters ψ, φ, . . ., are:

•P
begin L
−→ P ′ P reaches a begin L assertion.

•P
end L
−→ P ′ P reaches a end L assertion.

•P
res(a : T)

−→ P ′ P generates a new session name a.

•P
res(k : ⊥e)

−→ P ′ P generates a new channel name k.

•P
τ
−→ P ′ P performs an internal action.

Thus the set of actions is begin L, end L, res(a : T), res(k : ⊥e), τ . The

labeled transition system for πs is given in Figure 4; we write P
ψ
−→ P ′ when P

reduces to P ′ through action ψ. The same figure defines the free and generated
names of an action.

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195 189

fn(τ)
def
= ∅

fn(begin L)
def
= fn(L)

fn(end L)
def
= fn(L)

fn(res(a : T))
def
= {a} ∪ fn(T)

fn(res(k : ⊥e))
def
= {k} ∪ fn(e)

gn(τ)
def
= ∅

gn(begin L)
def
= ∅

gn(end L)
def
= ∅

gn(res(a : T))
def
= {a}

gn(res(k : ⊥e))
def
= {k}

(accept a(k) in P1)| (request a(k) in P2)
τ
−→ (νk : ⊥e)(P1|P2) Trans Link

(k![v]; P1)| (k?(a) in P2)
τ
−→ P1|P2{a ← v} Trans Comm

(k � li; P)| (k � {l1 : P1� . . . � ln : Pn})
τ
−→ P |Pi, if i ∈ 1..n Trans Brnch

(throw k[k′]; P1)| (catch k(k′′) in P2)
τ
−→ P1|P2{k

′′ ← k′} Trans Catch

def D in (X[�v]|Q)
τ
−→ def D in (P{�a ← �v}|Q), Trans Def1

if X(�a) = P ∈ D

begin L; P
begin L

−→ P Trans Begin

end L; P
end L
−→ P Trans End

(νa : T)P
res(a : T)

−→ P Trans ResN

(νk : ⊥e)P
res(k : ⊥e)

−→ P Trans ResCh

P
ψ
−→ P ′

Trans Def2

def D in P
ψ
−→ def D in P ′

P
ψ
−→ P ′

Trans Par

P |Q
ψ
−→ P ′|Q

, if gn(ψ) ∩ fn(Q) = ∅

P ≡ P ′ P ′ ψ
−→ Q′ Q′ ≡ Q

Trans ≡

P
ψ
−→ Q

Fig. 4. LTS for πs

A sequence of transitions may be tracked with traces. A trace s is a
sequence ψ1 . . . ψn of actions. We use ε for the empty trace. The free names
(resp. generated names) of a trace ψ1 . . . ψn are defined as fn(ψ1)∪. . .∪fn(ψ1)
(resp. gn(ψ1) ∪ . . . ∪ gn(ψ1)). A traced transition is a sequence of actions:

Definition 3.1 [Traced Transitions] P reduces to P ′ with trace s if P
s
−→ P ′,

where
s
−→ is defined as:

P ≡ P ′ ⇒ P
ε

−→ P ′ Trace ≡

P
ψ
−→ Q, Q

s
−→ P ′ ⇒ P

ψs
−→ P ′ Trace Action, where fn(ψ) ∩ gn(s) = ∅

In order to define when a process is safe we shall need to count the number

of begin’s and end’s in traces. The former is defined as begins(ψ1 . . . ψn)
def
=

begins(ψ1) ∪ . . . ∪ begins(ψn) and the latter ends(ψ1 . . . ψn)
def
= ends(ψ1) ∪

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195190

. . . ∪ ends(ψn), where ∪ stands for multi-set union and

begins(begin L)
def
= (|L |) ends(begin L)

def
= (||)

begins(end L)
def
= (||) ends(end L)

def
= (|L |)

begins(res(u))
def
= (||) ends(res(u))

def
= (||)

begins(τ)
def
= (||) ends(τ)

def
= (||)

Definition 3.2 [Safe Process] A process P is safe if and only if for all traces

s and processes P ′, if P
s
−→ P ′ then ends(s) ≤ begins(s).

Thus a process is safe if every end L is accounted for by a corresponding
begin L. For example, begin L; stop is safe, however begin L; end L; end L; stop
is not. We now address the proof of safety, namely that a process typable with
null effect is safe. This requires first showing that process reduction preserves
typings and effects.

Theorem 3.3 Assume Γ �Θ P : e.

(i) (Subject Congruence) If P ≡ Q, then Γ �Θ Q : e.

(ii) (Subject Reduction)

(a) If P
τ
−→ P ′, then Γ′ �Θ P ′ : e, where Γ′ and Γ differ only in the

effects assigned to the channel type ⊥ (if any).

(b) If P
begin L
−→ P ′, then Γ �Θ P ′ : e + (|L |).

(c) If P
end L
−→ P ′, then Γ �Θ P ′ : e \ (|L |) and L ∈ e.

(d) If P
res(a : T)

−→ P ′ and a /∈ dom(Γ), then Γ · a : T �Θ P ′ : e.

(e) If P
res(k : ⊥f)

−→ P ′ and k /∈ dom(Γ), then Γ · k : ⊥f �Θ P ′ : e.

Subject Congruence is proved by induction on the derivation of P ≡ Q;
the fact that effects are not lost when environments are composed (Def. 2.5)
is crucial to its proof. Subject reduction is proved by cases according to the
action which takes place (see [2]). Finally, we may put the results together and
obtain the main result. Its proof is based upon observing that the following

invariant holds: If Γ �Θ P : e and P
s
−→ P ′ and gn(s) ∩ dom(Γ) = ∅, then

ends(s) ≤ begins(s) + e ([2]).

Theorem 3.4 (Safety) If Γ �Θ P : (||), then P is a safe process.

Let us return to the example of the ATM. By assigning the types indi-
cated in Figure 5 to the session names a and b, the good ATM Example from
Figure 1 may be considered safe. However, as one might expect, with this
type assignment Example 1.3 is not safe according to our type system. Note
that the necessary assertion labels are inserted as already explained in that
example. See [2] for further details.

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195 191

a : σ(↓ [idA : Int](||); &{deposit :↓ [amtA : Int](| 〈idA, amtA〉 |);↑ [balA : Int](||); 1,

� withdraw :↓ [amtA : Int](||); ↑ [balA : Int](||); 1}(||))

b : σ(&{deposit :↓ [idB : Int](||); ↓ [amtB : Int](| 〈idB, amtB〉 |); ↑ [balB : Int](||); 1,

� withdraw :↓ [idB : Int](||); ↓ [amtB : Int](||); ↑ [balB : Int](||); 1}(||))

Fig. 5. Types with effects for the ATM example

4 Conclusions

This paper combines correspondence assertions and session types. The lat-
ter are a versatile mechanism for restricting process behavior in multi-party
interactions. A session describes the message exchange pattern between two
parties. However, these types provide no means of synchronization between
sessions in a multi-session system. Indeed, we have shown an example illus-
trating how, when processing a client’s request for a withdrawal operation, an
ATM may either decide not to interact with the Bank at all, or to deposit an
amount less than the client requested and at the same time deposit the rest
in some other account (creating an unintended message exchange with the
Bank). Session types are not expressive enough to distinguish these variants:
In both these cases, the same type can be assigned as in the case of the “cor-
rect” ATM. By introducing correspondence assertions into the type system,
we are able to draw a fine line between them and identify the “correct” ATM

from the faulty or malicious ones.

However, there are a number of situations that our system does not cap-
ture. For example, consider P |Q where

P = begin 〈3〉; k![3]; stop

Q = k?(x); end 〈x〉 in stop

and assume that the type of k in P is k :↑ [x : Int]〈x〉; 1 and the type of
k in Q is its dual, namely k :↓ [x : Int]〈x〉; 1. Then the fact that P |Q is
safe allows us to infer that if a value x was received in Q then it must be the
case that P sent it. However, only under the additional assumption that the
communication channel is not tampered with may we assume that the value
received for x is in fact the value 3 sent by P . In many situations this is
somewhat unrealistic. One possible approach to address this drawback is to
incorporate encryption primitives as in [9].

Another situation not captured by our system is the following. Consider
a process Forwd that receives a channel k from P and passes it on to some
other process Q.

P(l) = request PF (h) in throw h(l); stop

Forwrd = accept PF (h1) in request FQ(h2)

in catch h1(k) in throw h2(k); stop

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195192

Q = accept FQ(h) in catch h(k′); stop

The process Q may be interested in verifying that if it received some
channel k′, then this channel was exactly the one sent by P . If α is the type
of l and “•” is some dummy value, then one could attempt to insert effects in
the type associated to h1 and h2

PF : σ(↓ [α](| 〈•〉 |); 1)

FQ : σ(↑ [α](| 〈•〉 |); 1),

a corresponding begin 〈•〉 assertion just before the throw operation in P , and
a corresponding end 〈•〉 assertion just after the catch operation in Q . The
program P |Forwrd|Q is indeed safe; however, the type assignment does not
reflect our intentions. Indeed, if Forwrd did a throw with any channel of type
α, in particular a channel different from k, then the resulting code would also
be safe. What we really want is a type assignment of the form:

PF : σ(↓ [k : α](| 〈k〉 |); 1)

FQ : σ(↑ [k : α](| 〈k〉 |); 1)

However, such a type assignment is not allowed in our system since effects
may not contain occurrences of channel names, namely k.

In addition to studying extensions of the calculus that remedy these situ-
ations, other issues require further attention:

• One issue that has not been addressed is some process for automated inser-
tion of correspondence assertions and effects in types. Such a process would
require as input a precise description of the property to be verified.

• When a deposit operation is requested by the client, correspondence asser-
tions allow us to check that the account number which the ATM communi-
cates to the Bank is exactly the same as the one punched in by the client
as received by the ATM. It would be interesting to consider a language
for describing constraints on multisets such as these. Then, instead of re-
quiring safe programs to type with an empty effect, the satisfiability of an
appropriate set of constraints would determine when this program is safe.

• Session types look much like processes. In [15] a generic type system for the
π-calculus is studied in which types are CCS-like processes. They suggest
that it is possible to integrate a theory of correspondence assertions into
their framework. We are currently looking into this issue.

• Additional future work includes developing the formal theory of this calculus
in HOL [11] and using the development to encode and reason about security
and networking protocols.

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195 193

Acknowledgments: We are grateful to the Laboratory for Secure Sys-
tems group at Stevens for interesting discussions, and in particular to Tom
Chothia for suggesting session types as a relevant concept. We also thank
Healfdene Goguen for comments and suggestions on previous drafts. This
work was partially supported by The Stevens Technogenesis Fund, the NSF
Grant No. CCR-0220286 ITR:Secure Electronic Transactions, and the ARO
Award No. DAAD-19-01-1-0473.

References

[1] Barendregt, H. P., Lambda calculi with types, in: S. Abramsky, D. M. Gabbay and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science: Background - Computational
Structures (Volume 2), Clarendon Press, Oxford, 1992 pp. 117–309.

[2] Bonelli, E., A. Compagnoni and E. Gunter, Correspondence assertions for process
synchronization in concurrent communications, Technical Report 2003-7, Department of
Computer Science, Stevens Institute of Technology (2003).

[3] Cervesato, I. and F. Pfenning, A linear logical framework, Information and Computation 179

(2002), pp. 19–75.

[4] Chaki, S., S. Rajamani and J. Rehof, Types as models: Model checking message-passing
programs, in: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (2002), pp. 45–57.

[5] Clarke, E. and W. Marrero, Using formal methods for analyzing security, Information
Survivability Workshop (1998).

[6] Gay, S. and M. Hole, Types and subtypes for client-server interactions, in: Proceedings of the
European Symposium on Programming Languages and Systems, number 1576 in LNCS (1999),
pp. 74–90.

[7] Gay, S., V. Vasconcelos and A. Ravara, Session types for inter-process communication,
Technical Report TR-2003-133, Department of Computing Science, University of Glasgow
(2003).

[8] Girard, J.-Y., Linear logic, Theoretical Computer Science (1987), pp. 1–102.

[9] Gordon, A. and A. Jeffrey, Authenticity by typing for security protocols, in: 14th IEEE
Computer Security Foundations Workshop (2001), pp. 145–159.

[10] Gordon, A. and A. Jeffrey, Typing correspondence assertions for communication protocols, in:
Seventeenth Conference on the Mathematical Foundations of Programming Semantics (MFPS
2001), number 45 in ENTCS (2001).

[11] Gordon, M. and T. Melham, “Introduction to HOL: A theorem proving environment for higher-
order logic,” CUP, Cambridge, 1993.

[12] Hole, M. and S. Gay, Bounded polymorphism in session types, Technical Report TR-2003-132,
Department of Computing Science, University of Glasgow (2003).

[13] Honda, K., M. Kubo and K. Takeuchi, An interaction-based language and its typing system,
in: Proc. of PARLE’94, number 817 in LNCS (1994), pp. 398–413.

[14] Honda, K., V. Vasconcelos and M. Kubo, Language primitives and type discipline for structured
communication-based programming, in: Proc. of ESOP’98, LNCS (1998), pp. 122–138.

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195194

[15] Igarashi, A. and N. Kobayashi, A generic type system for the pi-calculus, in: Proceedings of the
28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2001),
pp. pp.128–141.

[16] Kobayashi, N., A partially deadlock-free type process calculus, in: Proceedings of the Twelth
Annual IEEE Symposium on Logic in Computer Science (1997), pp. 128–139.

[17] Kobayashi, N., B. Pierce and D. Turner, Linearity in the pi-calculus, in: Proceedings of the
23rd ACM Symposium on Principles of Programming Languages, 1996, pp. 358–371.

[18] Pierce, B. and D. Sangiorgi, Typing and subtyping for mobile processes, in: Proceedings of the
Eighth Annual IEEE Symposium on Logic in Computer Science (1993), pp. 376–385.

[19] Puntigam, F., Synchronization expressed in the types of communication channels, in:
Proceedings of the EURO-PAR’96, number 1123 in LNCS (1996), pp. 762–769.

[20] Turner, D., “The Polymorphic Pi-Calculus: Theory and Implementation,” Ph.D. thesis,
University of Edinburgh (1995).

[21] Vallecillo, A., V. Vasconcelos and A. Ravara, Typing the behavior of objects and component
using session types, Electronic Notes in Theoretical Computer Science 68 (2003).

[22] Woo, T. and S. Lam, A semantic model for authentication protocols, in: Proceedings of the
IEEE Symposium on Security and Privacy, 1993, pp. 178–194.

[23] Yoshida, N., Graph types for monadic mobile processes, in: FST/TCS’16, number 1180 in LNCS
(1996), pp. 371–386.

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 97 (2004) 175–195 195

	Introduction
	Motivation
	Correspondence Assertions

	The s-Calculus
	Syntax
	The Type Discipline

	Safety Proof for s
	Conclusions
	References

