1,248 research outputs found

    Expressiveness of Generic Process Shape Types

    Full text link
    Shape types are a general concept of process types which work for many process calculi. We extend the previously published Poly* system of shape types to support name restriction. We evaluate the expressiveness of the extended system by showing that shape types are more expressive than an implicitly typed pi-calculus and an explicitly typed Mobile Ambients. We demonstrate that the extended system makes it easier to enjoy advantages of shape types which include polymorphism, principal typings, and a type inference implementation.Comment: Submitted to Trustworthy Global Computing (TGC) 2010

    A Type Inference Algorithm for Secure Ambients

    Get PDF
    We consider a type discipline for the Ambient Calculus that associates ambients with security levels and constrains them to be traversed by or opened in ambients of higher security clearance only. We present a bottom-up algorithm that, given an untyped process PP, computes a minimal set of constraints on security levels such that all actions during runs of PP are performed without violating the security level priorities. Such an algorithm appears to be a prerequisite to use type systems to ensure security properties in the web scenario

    Secrecy in Untrusted Networks

    No full text
    We investigate the protection of migrating agents against the untrusted sites they traverse. The resulting calculus provides a formal framework to reason about protection policies and security protocols over distributed, mobile infrastructures, and aims to stand to ambients as the spi calculus stands to ?. We present a type system that separates trusted and untrusted data and code, while allowing safe interactions with untrusted sites. We prove that the type system enforces a privacy property, and show the expressiveness of the calculus via examples and an encoding of the spi calculus

    Mutual Mobile Membranes with Timers

    Full text link
    A feature of current membrane systems is the fact that objects and membranes are persistent. However, this is not true in the real world. In fact, cells and intracellular proteins have a well-defined lifetime. Inspired from these biological facts, we define a model of systems of mobile membranes in which each membrane and each object has a timer representing their lifetime. We show that systems of mutual mobile membranes with and without timers have the same computational power. An encoding of timed safe mobile ambients into systems of mutual mobile membranes with timers offers a relationship between two formalisms used in describing biological systems

    Space-Aware Ambients and Processes

    No full text
    Resource control has attracted increasing interest in foundational research on distributed systems. This paper focuses on space control and develops an analysis of space usage in the context of an ambient-like calculus with bounded capacities and weighed processes, where migration and activation require space. A type system complements the dynamics of the calculus by providing static guarantees that the intended capacity bounds are preserved throughout the computation

    A Calculus of Bounded Capacities

    No full text
    Resource control has attracted increasing interest in foundational research on distributed systems. This paper focuses on space control and develops an analysis of space usage in the context of an ambient-like calculus with bounded capacities and weighed processes, where migration and activation require space. A type system complements the dynamics of the calculus by providing static guarantees that the intended capacity bounds are preserved throughout the computation

    Types for BioAmbients

    Get PDF
    The BioAmbients calculus is a process algebra suitable for representing compartmentalization, molecular localization and movements between compartments. In this paper we enrich this calculus with a static type system classifying each ambient with group types specifying the kind of compartments in which the ambient can stay. The type system ensures that, in a well-typed process, ambients cannot be nested in a way that violates the type hierarchy. Exploiting the information given by the group types, we also extend the operational semantics of BioAmbients with rules signalling errors that may derive from undesired ambients' moves (i.e. merging incompatible tissues). Thus, the signal of errors can help the modeller to detect and locate unwanted situations that may arise in a biological system, and give practical hints on how to avoid the undesired behaviour

    Communication Interference in Mobile Boxed Ambients (talk)

    No full text
    Talk given at FST&TCS 200
    • 

    corecore