10 research outputs found

    Type driven development of concurrent communicating systems

    Get PDF
    This work was kindly supported by SICSA (the Scottish Informatics and Computer Science Alliance) and EPSRC grant EP/N024222/1 (Type-driven Verification of Communicating Systems).Modern software systems rely on communication, for example mobile applications communicating with a central server, distributed systems coordinating a telecommunications network, or concurrent systems handling events and processes in a desktop application. However, reasoning about concurrent programs is hard, since we must reason about each process and the order in which communication might happen between processes. In this paper, I describe a type-driven approach to implementing communicating concurrent programs, using the dependently typed programming language Idris. I show how the type system can be used to describe resource access protocols (such as controlling access to a file handle) and verify that programs correctly follow those protocols. Finally, I show how to use the type system to reason about the order of communication between concurrent processes, ensuring that each end of a communication channel follows a defined protocol.Publisher PDFPeer reviewe

    Linear Haskell: practical linearity in a higher-order polymorphic language

    Get PDF
    Linear type systems have a long and storied history, but not a clear path forward to integrate with existing languages such as OCaml or Haskell. In this paper, we study a linear type system designed with two crucial properties in mind: backwards-compatibility and code reuse across linear and non-linear users of a library. Only then can the benefits of linear types permeate conventional functional programming. Rather than bifurcate types into linear and non-linear counterparts, we instead attach linearity to function arrows. Linear functions can receive inputs from linearly-bound values, but can also operate over unrestricted, regular values. To demonstrate the efficacy of our linear type system - both how easy it can be integrated in an existing language implementation and how streamlined it makes it to write programs with linear types - we implemented our type system in GHC, the leading Haskell compiler, and demonstrate two kinds of applications of linear types: mutable data with pure interfaces; and enforcing protocols in I/O-performing functions

    Idris 2 : Quantitative Type Theory in practice

    Get PDF
    Funding: This work was funded by EPSRC grant EP/T007265/1.Dependent types allow us to express precisely what a function is intended to do. Recent work on Quantitative Type Theory (QTT) extends dependent type systems with linearity, also allowing precision in expressing when a function can run. This is promising, because it suggests the ability to design and reason about resource usage protocols, such as we might find in distributed and concurrent programming, where the state of a communication channel changes throughout program execution. As yet, however, there has not been a full-scale programming language with which to experiment with these ideas. Idris 2 is a new version of the dependently typed language Idris, with a new core language based on QTT, supporting linear and dependent types. In this paper, we introduce Idris 2, and describe how QTT has influenced its design. We give examples of the benefits of QTT in practice including: expressing which data is erased at run time, at the type level; and, resource tracking in the type system leading to type-safe concurrent programming with session types.Publisher PD

    Value-dependent session design in a dependently typed language

    Get PDF
    Session Types offer a typing discipline that allows protocol specifications to be used during type-checking, ensuring that implementations adhere to a given specification. When looking to realise global session types in a dependently typed language care must be taken that values introduced in the description are used by roles that know about the value. We present Sessions, a Resource Dependent Embedded Domain Specific Language (EDSL) for describing global session descriptions in the dependently typed language Idris. As we construct session descriptions the values parameterising the EDSLs’ type keeps track of roles and messages they have encountered. We can use this knowledge to ensure that message values are only used by those who know the value. Sessions supports protocol descriptions that are computable, composable, higher-order, and value-dependent. We demonstrate Sessions expressiveness by describing the TCP Handshake, a multi-modal server providing echo and basic arithmetic operations, and a Higher-Order protocol that supports an authentication interaction step.Publisher PD

    A Framework for Resource Dependent EDSLs in a Dependently Typed Language (Pearl)

    Get PDF
    Idris' Effects library demonstrates how to embed resource dependent algebraic effect handlers into a dependently typed host language, providing run-time and compile-time based reasoning on type-level resources. Building upon this work, Resources is a framework for realising Embedded Domain Specific Languages (EDSLs) with type systems that contain domain specific substructural properties. Differing from Effects, Resources allows a language’s substructural properties to be encoded within type-level resources that are associated with language variables. Such an association allows for multiple effect instances to be reasoned about autonomically and without explicit type-level declaration. Type-level predicates are used as proof that the language’s substructural properties hold. Several exemplar EDSLs are presented that illustrates our framework’s operation and how dependent types provide correctness-by-construction guarantees that substructural properties of written programs hold

    Type theory as a framework for modelling and programming

    Get PDF
    In the context provided by the proceedings of the UVMP track of ISoLA 2016, we propose Type Theory as a suitable framework for both modelling and programming. We show that it fits most of the requirements put forward on such frameworks by Broy et al. and discuss some of the objections that can be raised against it

    Type driven development of concurrent communicating systems

    No full text
    Modern software systems rely on communication, for example mobile applications communicating with a central server, distributed systems coordinating a telecommunications network, or concurrent systems handling events and processes in a desktop application. However, reasoning about concurrent programs is hard, since we must reason about each process and the order in which communication might happen between processes. In this paper, I describe a type-driven approach to implementing communicating concurrent programs, using the dependently typed programming language Idris. I show how the type system can be used to describe resource access protocols (such as controlling access to a file handle) and verify that programs correctly follow those protocols. Finally, I show how to use the type system to reason about the order of communication between concurrent processes, ensuring that each end of a communication channel follows a defined protocol

    Type-driven development of concurrent communicating systems

    No full text
    Modern software systems rely on communication, for example mobile applcations communicating with a central server, distributed systems coordinaing a telecommunications network, or concurrent systems handling events and processes in a desktop application. However, reasoning about concurrent prgrams is hard, since we must reason about each process and the order in which communication might happen between processes. In this paper, I describe a type-driven approach to implementing communicating concurrent programs, using the dependently typed programming language Idris. I show how the type system can be used to describe resource access protocols (such as controlling access to a file handle) and verify that programs correctly follow those prtools. Finally, I show how to use the type system to reason about the order of communication between concurrent processes, ensuring that each end of a communication channel follows a defined protocol

    Type driven development of concurrent communicating systems

    No full text
    Modern software systems rely on communication, for example mobile applications communicating with a central server, distributed systems coordinating a telecommunications network, or concurrent systems handling events and processes in a desktop application. However, reasoning about concurrent programs is hard, since we must reason about each process and the order in which communication might happen between processes. In this paper, I describe a type-driven approach to implementing communicating concurrent programs, using the dependently typed programming language Idris. I show how the type system can be used to describe resource access protocols (such as controlling access to a file handle) and verify that programs correctly follow those protocols. Finally, I show how to use the type system to reason about the order of communication between concurrent processes, ensuring that each end of a communication channel follows a defined protocol

    Type-driven development of concurrent communicating systems

    No full text
    Modern software systems rely on communication, for example mobile applcations communicating with a central server, distributed systems coordinaing a telecommunications network, or concurrent systems handling events and processes in a desktop application. However, reasoning about concurrent prgrams is hard, since we must reason about each process and the order in which communication might happen between processes. In this paper, I describe a type-driven approach to implementing communicating concurrent programs, using the dependently typed programming language Idris. I show how the type system can be used to describe resource access protocols (such as controlling access to a file handle) and verify that programs correctly follow those prtools. Finally, I show how to use the type system to reason about the order of communication between concurrent processes, ensuring that each end of a communication channel follows a defined protocol
    corecore