58,419 research outputs found

    On the strength of dependent products in the type theory of Martin-L\"of

    Full text link
    One may formulate the dependent product types of Martin-L\"of type theory either in terms of abstraction and application operators like those for the lambda-calculus; or in terms of introduction and elimination rules like those for the other constructors of type theory. It is known that the latter rules are at least as strong as the former: we show that they are in fact strictly stronger. We also show, in the presence of the identity types, that the elimination rule for dependent products--which is a "higher-order" inference rule in the sense of Schroeder-Heister--can be reformulated in a first-order manner. Finally, we consider the principle of function extensionality in type theory, which asserts that two elements of a dependent product type which are pointwise propositionally equal, are themselves propositionally equal. We demonstrate that the usual formulation of this principle fails to verify a number of very natural propositional equalities; and suggest an alternative formulation which rectifies this deficiency.Comment: 18 pages; v2: final journal versio

    Nominal Abstraction

    Get PDF
    Recursive relational specifications are commonly used to describe the computational structure of formal systems. Recent research in proof theory has identified two features that facilitate direct, logic-based reasoning about such descriptions: the interpretation of atomic judgments through recursive definitions and an encoding of binding constructs via generic judgments. However, logics encompassing these two features do not currently allow for the definition of relations that embody dynamic aspects related to binding, a capability needed in many reasoning tasks. We propose a new relation between terms called nominal abstraction as a means for overcoming this deficiency. We incorporate nominal abstraction into a rich logic also including definitions, generic quantification, induction, and co-induction that we then prove to be consistent. We present examples to show that this logic can provide elegant treatments of binding contexts that appear in many proofs, such as those establishing properties of typing calculi and of arbitrarily cascading substitutions that play a role in reducibility arguments.Comment: To appear in the Journal of Information and Computatio

    Automatic Termination Analysis of Programs Containing Arithmetic Predicates

    Full text link
    For logic programs with arithmetic predicates, showing termination is not easy, since the usual order for the integers is not well-founded. A new method, easily incorporated in the TermiLog system for automatic termination analysis, is presented for showing termination in this case. The method consists of the following steps: First, a finite abstract domain for representing the range of integers is deduced automatically. Based on this abstraction, abstract interpretation is applied to the program. The result is a finite number of atoms abstracting answers to queries which are used to extend the technique of query-mapping pairs. For each query-mapping pair that is potentially non-terminating, a bounded (integer-valued) termination function is guessed. If traversing the pair decreases the value of the termination function, then termination is established. Simple functions often suffice for each query-mapping pair, and that gives our approach an edge over the classical approach of using a single termination function for all loops, which must inevitably be more complicated and harder to guess automatically. It is worth noting that the termination of McCarthy's 91 function can be shown automatically using our method. In summary, the proposed approach is based on combining a finite abstraction of the integers with the technique of the query-mapping pairs, and is essentially capable of dividing a termination proof into several cases, such that a simple termination function suffices for each case. Consequently, the whole process of proving termination can be done automatically in the framework of TermiLog and similar systems.Comment: Appeared also in Electronic Notes in Computer Science vol. 3

    Light Logics and the Call-by-Value Lambda Calculus

    Full text link
    The so-called light logics have been introduced as logical systems enjoying quite remarkable normalization properties. Designing a type assignment system for pure lambda calculus from these logics, however, is problematic. In this paper we show that shifting from usual call-by-name to call-by-value lambda calculus allows regaining strong connections with the underlying logic. This will be done in the context of Elementary Affine Logic (EAL), designing a type system in natural deduction style assigning EAL formulae to lambda terms.Comment: 28 page

    TreatJS: Higher-Order Contracts for JavaScript

    Get PDF
    TreatJS is a language embedded, higher-order contract system for JavaScript which enforces contracts by run-time monitoring. Beyond providing the standard abstractions for building higher-order contracts (base, function, and object contracts), TreatJS's novel contributions are its guarantee of non-interfering contract execution, its systematic approach to blame assignment, its support for contracts in the style of union and intersection types, and its notion of a parameterized contract scope, which is the building block for composable run-time generated contracts that generalize dependent function contracts. TreatJS is implemented as a library so that all aspects of a contract can be specified using the full JavaScript language. The library relies on JavaScript proxies to guarantee full interposition for contracts. It further exploits JavaScript's reflective features to run contracts in a sandbox environment, which guarantees that the execution of contract code does not modify the application state. No source code transformation or change in the JavaScript run-time system is required. The impact of contracts on execution speed is evaluated using the Google Octane benchmark.Comment: Technical Repor
    • …
    corecore