160,746 research outputs found

    Type inference in mathematics

    Full text link
    In the theory of programming languages, type inference is the process of inferring the type of an expression automatically, often making use of information from the context in which the expression appears. Such mechanisms turn out to be extremely useful in the practice of interactive theorem proving, whereby users interact with a computational proof assistant to construct formal axiomatic derivations of mathematical theorems. This article explains some of the mechanisms for type inference used by the Mathematical Components project, which is working towards a verification of the Feit-Thompson theorem

    Keterampilan Berpikir Kritis Siswa SMP dalam Memecahkan Masalah Matematika Kontekstual Ditinjau dari Kemampuan Matematika dan Perbedaan Jenis Kelamin

    Get PDF
    This research aims to describe the critical thinking skills of junior high school students in solving contextual math problems in terms of mathematical ability and gender differences. The type of research used is descriptive qualitative research. The subjects in this research were 1 male and 1 female student with high mathematics ability, 1 male and 1 female student with moderate mathematics ability, and 1 male and 1 female student with low mathematics ability.Data were collected using test and interview techniques. The instruments used were Mathematics Ability Test (TKM), Problem Solving Test (TPM), and interview guidelines. Based on the results of the research, it can be concluded that the critical thinking skills of (1) male and female students with high mathematical ability met the indicators of interpretation, analysis, evolution (on argument proof, because in argument assessment only male students met the sub-indicator), inference, and explanation. Male students did not fulfill the indicators of self-regulation, while female students did. (2) Male and female students with moderate mathematics ability met the indicators of interpretation, inference, and explanation. Male students did not fulfill the indicators of analysis and self-regulation, while female students did. However, both did not fulfill the evaluation indicator. (3) Male and female students with low mathematics ability have many differences in critical thinking skills. Male students did not fulfill the indicators of interpretation, analysis, explanation, and evaluation. However, the self-regulation indicator is fulfilled. While female students fulfill the indicators of interpretation and analysis. Female students did not fulfill the indicators of evaluation, explanation, and self-regulation

    A Metatheoretic Analysis of Subtype Universes

    Get PDF
    Subtype universes were initially introduced as an expressive mechanisation of bounded quantification extending a modern type theory. In this paper, we consider a dependent type theory equipped with coercive subtyping and a generalisation of subtype universes. We prove results regarding the metatheoretic properties of subtype universes, such as consistency and strong normalisation. We analyse the causes of undecidability in bounded quantification, and discuss how coherency impacts the metatheoretic properties of theories implementing bounded quantification. We describe the effects of certain choices of subtyping inference rules on the expressiveness of a type theory, and examine various applications in natural language semantics, programming languages, and mathematics formalisation

    Advanced mathematics and deductive reasoning skills: testing the Theory of Formal Discipline

    Get PDF
    This thesis investigates the Theory of Formal Discipline (TFD): the idea that studying mathematics develops general reasoning skills. This belief has been held since the time of Plato (2003/375B.C), and has been cited in recent policy reports (Smith, 2004; Walport, 2010) as an argument for why mathematics should hold a privileged place in the UK's National Curriculum. However, there is no rigorous research evidence that justifies the claim. The research presented in this thesis aims to address this shortcoming. Two questions are addressed in the investigation of the TFD: is studying advanced mathematics associated with development in reasoning skills, and if so, what might be the mechanism of this development? The primary type of reasoning measured is conditional inference validation (i.e. `if p then q; not p; therefore not q'). In two longitudinal studies it is shown that the conditional reasoning behaviour of mathematics students at AS level and undergraduate level does change over time, but that it does not become straightforwardly more normative. Instead, mathematics students reason more in line with the `defective' interpretation of the conditional, under which they assume p and reason about q. This leads to the assumption that not-p cases are irrelevant, which results in the rejection of two commonly-endorsed invalid inferences, but also in the rejection of the valid modus tollens inference. Mathematics students did not change in their reasoning behaviour on a thematic syllogisms task or a thematic version of the conditional inference task. Next, it is shown that mathematics students reason significantly less in line with a defective interpretation of the conditional when it is phrased `p only if q' compared to when it is phrased `if p then q', despite the two forms being logically equivalent. This suggests that their performance is determined by linguistic features rather than the underlying logic. The final two studies investigated the heuristic and algorithmic levels of Stanovich's (2009a) tri-process model of cognition as potential mechanisms of the change in conditional reasoning skills. It is shown that mathematicians' defective interpretation of the conditional stems in part from heuristic level processing and in part from effortful processing, and that the executive function skills of inhibition and shifting at the algorithmic level are correlated with its adoption. It is suggested that studying mathematics regularly exposes students to implicit `if then' statements where they are expected to assume p and reason about q, and that this encourages them to adopt a defective interpretation of conditionals. It is concluded that the TFD is not supported by the evidence; while mathematics does seem to develop abstract conditional reasoning skills, the result is not more normative reasoning

    Doing and Showing

    Get PDF
    The persisting gap between the formal and the informal mathematics is due to an inadequate notion of mathematical theory behind the current formalization techniques. I mean the (informal) notion of axiomatic theory according to which a mathematical theory consists of a set of axioms and further theorems deduced from these axioms according to certain rules of logical inference. Thus the usual notion of axiomatic method is inadequate and needs a replacement.Comment: 54 pages, 2 figure

    A Project Based Approach to Statistics and Data Science

    Full text link
    In an increasingly data-driven world, facility with statistics is more important than ever for our students. At institutions without a statistician, it often falls to the mathematics faculty to teach statistics courses. This paper presents a model that a mathematician asked to teach statistics can follow. This model entails connecting with faculty from numerous departments on campus to develop a list of topics, building a repository of real-world datasets from these faculty, and creating projects where students interface with these datasets to write lab reports aimed at consumers of statistics in other disciplines. The end result is students who are well prepared for interdisciplinary research, who are accustomed to coping with the idiosyncrasies of real data, and who have sharpened their technical writing and speaking skills
    • …
    corecore