9,671 research outputs found

    Type checking cryptography implementations

    Get PDF
    Proceedings da conferência Fundamentals of Software Engineering 2011Cryptographic software development is a challenging field: high performance must be achieved, while ensuring correctness and compliance with low-level security policies. CAO is a domain specific language designed to assist development of cryptographic software. An important feature of this language is the design of a novel type system introducing native types such as predefined sized vectors, matrices and bit strings, residue classes modulo an integer, finite fields and finite field extensions, allowing for extensive static validation of source code. We present the formalisation, validation and implementation of this type system.(undefined

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Formal verification of a software countermeasure against instruction skip attacks

    Get PDF
    Fault attacks against embedded circuits enabled to define many new attack paths against secure circuits. Every attack path relies on a specific fault model which defines the type of faults that the attacker can perform. On embedded processors, a fault model consisting in an assembly instruction skip can be very useful for an attacker and has been obtained by using several fault injection means. To avoid this threat, some countermeasure schemes which rely on temporal redundancy have been proposed. Nevertheless, double fault injection in a long enough time interval is practical and can bypass those countermeasure schemes. Some fine-grained countermeasure schemes have also been proposed for specific instructions. However, to the best of our knowledge, no approach that enables to secure a generic assembly program in order to make it fault-tolerant to instruction skip attacks has been formally proven yet. In this paper, we provide a fault-tolerant replacement sequence for almost all the instructions of the Thumb-2 instruction set and provide a formal verification for this fault tolerance. This simple transformation enables to add a reasonably good security level to an embedded program and makes practical fault injection attacks much harder to achieve

    High-level Cryptographic Abstractions

    Full text link
    The interfaces exposed by commonly used cryptographic libraries are clumsy, complicated, and assume an understanding of cryptographic algorithms. The challenge is to design high-level abstractions that require minimum knowledge and effort to use while also allowing maximum control when needed. This paper proposes such high-level abstractions consisting of simple cryptographic primitives and full declarative configuration. These abstractions can be implemented on top of any cryptographic library in any language. We have implemented these abstractions in Python, and used them to write a wide variety of well-known security protocols, including Signal, Kerberos, and TLS. We show that programs using our abstractions are much smaller and easier to write than using low-level libraries, where size of security protocols implemented is reduced by about a third on average. We show our implementation incurs a small overhead, less than 5 microseconds for shared key operations and less than 341 microseconds (< 1%) for public key operations. We also show our abstractions are safe against main types of cryptographic misuse reported in the literature

    Trusty URIs: Verifiable, Immutable, and Permanent Digital Artifacts for Linked Data

    Get PDF
    To make digital resources on the web verifiable, immutable, and permanent, we propose a technique to include cryptographic hash values in URIs. We call them trusty URIs and we show how they can be used for approaches like nanopublications to make not only specific resources but their entire reference trees verifiable. Digital artifacts can be identified not only on the byte level but on more abstract levels such as RDF graphs, which means that resources keep their hash values even when presented in a different format. Our approach sticks to the core principles of the web, namely openness and decentralized architecture, is fully compatible with existing standards and protocols, and can therefore be used right away. Evaluation of our reference implementations shows that these desired properties are indeed accomplished by our approach, and that it remains practical even for very large files.Comment: Small error corrected in the text (table data was correct) on page 13: "All average values are below 0.8s (0.03s for batch mode). Using Java in batch mode even requires only 1ms per file.
    corecore