6,933 research outputs found

    Application of chicken microarrays for gene expression analysis in other avian species

    Get PDF
    BACKGROUND: With the threat of emerging infectious diseases such as avian influenza, whose natural hosts are thought to be a variety of wild water birds including duck, we are armed with very few genomic resources to investigate large scale immunological gene expression studies in avian species. Multiple options exist for conducting large gene expression studies in chickens and in this study we explore the feasibility of using one of these tools to investigate gene expression in other avian species. RESULTS: In this study we utilised a whole genome long oligonucleotide chicken microarray to assess the utility of cross species hybridisation (CSH). We successfully hybridised a number of different avian species to this array, obtaining reliable signals. We were able to distinguish ducks that were infected with avian influenza from uninfected ducks using this microarray platform. In addition, we were able to detect known chicken immunological genes in all of the hybridised avian species. CONCLUSION: Cross species hybridisation using long oligonucleotide microarrays is a powerful tool to study the immune response in avian species with little available genomic information. The present study validated the use of the whole genome long oligonucleotide chicken microarray to investigate gene expression in a range of avian species

    Gene expression profiling in prepubertal and adult male mice using cDNA and oligonucleotide microarrays

    Get PDF
    Variations in gene expression are the basis of differences in cell and tissue function, response to DNA damaging agents, susceptibility to genetic disease, and cellular differentiation. The purpose of this dissertation research was to characterize variation in basal gene expression among adult mouse tissues for selected stress response, DNA repair and damage control genes and to utilize variation in temporal gene expression patterns to identify candidate genes associated with germ cell differentiation from mitosis through meiosis in the prepubertal mouse testis. To accomplish these goals, high throughput analyses of gene expression were performed using custom cDNA and random oligonucleotide microarrays. CDNA microarray technology was optimized by evaluating the effects of multiple hybridization and image analysis methodologies on the magnitude of background-subtracted hybridization signal intensities. The results showed that hybridizing lower probe quantities in a buffer developed at Lawrence Livermore National Laboratory to tryptone-blocked microarrays improved signal intensities. In addition, the error in expression ratio measurements was significantly reduced when microarray images were preprocessed. A custom cDNA microarray comprised of 417 genes and enriched for stress response, DNA repair, and damage control genes was used to investigate basal gene expression differences among adult mouse testis, brain, liver, spleen, and heart. Genes with functions related to stress response exhibited the most variation in expression among tissues whereas DNA repair-associated gene expression varied the least. Random oligonucleotide microarrays comprised of ∼10,000 genes were used to profile changes in gene expression during the first wave of spermatogenesis in the prepubertal mouse testis. Approximately 550 genes were differentially expressed as male germ cells differentiated from spermatogonia to primary spermatocytes. These findings suggest that the 313 unannotated sequences and 178 genes with known functions in other biological pathways have spermatogenesis-associated roles. This dissertation research showed that microarrays are a useful tool for quantitating the expression of large numbers of genes in parallel under normal physiological conditions and during differentiation. It has also provided candidate genes for future investigations of the molecular mechanisms underlying (1) tissue-specific DNA damage response and genetic disease susceptibility and (2) cellular differentiation during the onset and progression of spermatogenesis

    The statistics of identifying differentially expressed genes in Expresso and TM4: a comparison

    Get PDF
    BACKGROUND: Analysis of DNA microarray data takes as input spot intensity measurements from scanner software and returns differential expression of genes between two conditions, together with a statistical significance assessment. This process typically consists of two steps: data normalization and identification of differentially expressed genes through statistical analysis. The Expresso microarray experiment management system implements these steps with a two-stage, log-linear ANOVA mixed model technique, tailored to individual experimental designs. The complement of tools in TM4, on the other hand, is based on a number of preset design choices that limit its flexibility. In the TM4 microarray analysis suite, normalization, filter, and analysis methods form an analysis pipeline. TM4 computes integrated intensity values (IIV) from the average intensities and spot pixel counts returned by the scanner software as input to its normalization steps. By contrast, Expresso can use either IIV data or median intensity values (MIV). Here, we compare Expresso and TM4 analysis of two experiments and assess the results against qRT-PCR data. RESULTS: The Expresso analysis using MIV data consistently identifies more genes as differentially expressed, when compared to Expresso analysis with IIV data. The typical TM4 normalization and filtering pipeline corrects systematic intensity-specific bias on a per microarray basis. Subsequent statistical analysis with Expresso or a TM4 t-test can effectively identify differentially expressed genes. The best agreement with qRT-PCR data is obtained through the use of Expresso analysis and MIV data. CONCLUSION: The results of this research are of practical value to biologists who analyze microarray data sets. The TM4 normalization and filtering pipeline corrects microarray-specific systematic bias and complements the normalization stage in Expresso analysis. The results of Expresso using MIV data have the best agreement with qRT-PCR results. In one experiment, MIV is a better choice than IIV as input to data normalization and statistical analysis methods, as it yields as greater number of statistically significant differentially expressed genes; TM4 does not support the choice of MIV input data. Overall, the more flexible and extensive statistical models of Expresso achieve more accurate analytical results, when judged by the yardstick of qRT-PCR data, in the context of an experimental design of modest complexity

    Designing Toxicogenomics Studies that use DNA Array Technology

    Get PDF
    Background: Bioassays are routinely used to evaluate the toxicity of test agents. Experimental designs for bioassays are largely encompassed by fixed effects linear models. In toxicogenomics studies where DNA arrays measure mRNA levels, the tissue samples are typically generated in a bioassay. These measurements introduce additional sources of variation, which must be properly managed to obtain valid tests of treatment effects.Results: An analysis of covariance model is developed which combines a fixed-effects linear model for the bioassay with important variance components associated with DNA array measurements. These models can accommodate the dominant characteristics of measurements from DNA arrays, and they account for technical variation associated with normalization, spots, dyes, and batches as well as the biological variation associated with the bioassay. An example illustrates how the model is used to identify valid designs and to compare competing designs.Conclusions: Many toxicogenomics studies are bioassays which measure gene expression using DNA arrays. These studies can be designed and analyzed using standard methods with a few modifications to account for characteristics of array measurements, such as multiple endpoints and normalization. As much as possible, technical variation associated with probes, dyes, and batches are managed by blocking treatments within these sources of variation. An example shows how some practical constraints can be accommodated by this modelling and how it allows one to objectively compare competing designs

    STATISTICAL ANALYSIS OF GENE EXPRESSION MICROARRAYS

    Get PDF
    This manuscript is composed of two major sections. In the first section of the manuscript we introduce some of the biological principles that form the bases of cDNA microarrays and explain how the different analytical steps introduce variability and potential biases in gene expression measurements that can sometimes be dificult to properly address. We address statistical issues associated to the measurement of gene expression (e.g., image segmentation, spot identification), to the correction for back-ground fluorescence and to the normalization and re-scaling of data to remove effects of dye, print-tip and others on expression. In this section of the manuscript we also describe the standard statistical approaches for estimating treatment effect on gene expression, and briefly address the multiple comparisons problem, often referred to as the big p small n paradox. In the second major section of the manuscript, we discuss the use of multiple scans as a means to reduce the variability of gene expression estimates. While the use of multiple scans under the same laser and sensor settings has already been proposed (Romualdi et al. 2003), we describe a general hierarchical modeling approach proposed by Love and Carriquiry (2005) that enables use of all the readings obtained under varied laser and sensor settings for each slide in the analyses, even if the number of readings per slide vary across slides. This technique also uses the varied settings to correct for some amount of the censoring discussed in the first section. It is to be expected that when combining scans and correcting for censoring, the estimate of gene expression will have smaller variance than it would have if based on a single spot measurement. In turn, expression estimates with smaller variance are expected to increase the power of statistical tests performed on them

    Evaluation of normalization methods for microarray data

    Get PDF
    BACKGROUND: Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. This novel technique helps us to understand gene regulation as well as gene by gene interactions more systematically. In the microarray experiment, however, many undesirable systematic variations are observed. Even in replicated experiment, some variations are commonly observed. Normalization is the process of removing some sources of variation which affect the measured gene expression levels. Although a number of normalization methods have been proposed, it has been difficult to decide which methods perform best. Normalization plays an important role in the earlier stage of microarray data analysis. The subsequent analysis results are highly dependent on normalization. RESULTS: In this paper, we use the variability among the replicated slides to compare performance of normalization methods. We also compare normalization methods with regard to bias and mean square error using simulated data. CONCLUSIONS: Our results show that intensity-dependent normalization often performs better than global normalization methods, and that linear and nonlinear normalization methods perform similarly. These conclusions are based on analysis of 36 cDNA microarrays of 3,840 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells. Simulation studies confirm our findings

    Transcriptomic Analyses Reveal Novel Genes with Sexually Dimorphic Expression in the Zebrafish Gonad and Brain

    Get PDF
    Background Our knowledge on zebrafish reproduction is very limited. We generated a gonad-derived cDNA microarray from zebrafish and used it to analyze large-scale gene expression profiles in adult gonads and other organs. Methodology/Principal Findings We have identified 116638 gonad-derived zebrafish expressed sequence tags (ESTs), 21% of which were isolated in our lab. Following in silico normalization, we constructed a gonad-derived microarray comprising 6370 unique, full-length cDNAs from differentiating and adult gonads. Labeled targets from adult gonad, brain, kidney and β€˜rest-of-body’ from both sexes were hybridized onto the microarray. Our analyses revealed 1366, 881 and 656 differentially expressed transcripts (34.7% novel) that showed highest expression in ovary, testis and both gonads respectively. Hierarchical clustering showed correlation of the two gonadal transcriptomes and their similarities to those of the brains. In addition, we have identified 276 genes showing sexually dimorphic expression both between the brains and between the gonads. By in situ hybridization, we showed that the gonadal transcripts with the strongest array signal intensities were germline-expressed. We found that five members of the GTP-binding septin gene family, from which only one member (septin 4) has previously been implicated in reproduction in mice, were all strongly expressed in the gonads. Conclusions/Significance We have generated a gonad-derived zebrafish cDNA microarray and demonstrated its usefulness in identifying genes with sexually dimorphic co-expression in both the gonads and the brains. We have also provided the first evidence of large-scale differential gene expression between female and male brains of a teleost. Our microarray would be useful for studying gonad development, differentiation and function not only in zebrafish but also in related teleosts via cross-species hybridizations. Since several genes have been shown to play similar roles in gonadogenesis in zebrafish and other vertebrates, our array may even provide information on genetic disorders affecting gonadal phenotypes and fertility in mammals

    Comprehensive quality control utilizing the prehybridization third-dye image leads to accurate gene expression measurements by cDNA microarrays

    Get PDF
    BACKGROUND: Gene expression profiling using microarrays has become an important genetic tool. Spotted arrays prepared in academic labs have the advantage of low cost and high design and content flexibility, but are often limited by their susceptibility to quality control (QC) issues. Previously, we have reported a novel 3-color microarray technology that enabled array fabrication QC. In this report we further investigated its advantage in spot-level data QC. RESULTS: We found that inadequate amount of bound probes available for hybridization led to significant, gene-specific compression in ratio measurements, increased data variability, and printing pin dependent heterogeneities. The impact of such problems can be captured through the definition of quality scores, and efficiently controlled through quality-dependent filtering and normalization. We compared gene expression measurements derived using our data processing pipeline with the known input ratios of spiked in control clones, and with the measurements by quantitative real time RT-PCR. In each case, highly linear relationships (R(2)>0.94) were observed, with modest compression in the microarray measurements (correction factor<1.17). CONCLUSION: Our microarray analytical and technical advancements enabled a better dissection of the sources of data variability and hence a more efficient QC. With that highly accurate gene expression measurements can be achieved using the cDNA microarray technology
    • …
    corecore