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STATISTICAL ANALYSIS OF GENE EXPRESSION
MICROARRAYS

Tanzy Love and Alicia Carriquiry
Department of Statistics, Iowa State University

Ames, IA 50011-1210
Phone:(515) 294-3440
Fax:(515) 294-4040
tanzy@iastate.edu

Abstract

This manuscript is composed of two major sections. In the first section of the man-
uscript we introduce some of the biological principles that form the bases of cDNA
microarrays and explain how the different analytical steps introduce variability and
potential biases in gene expression measurements that can sometimes be difficult to
properly address. We address statistical issues associated to the measurement of gene
expression (e.g., image segmentation, spot identification), to the correction for back-
ground fluorescence and to the normalization and re-scaling of data to remove effects
of dye, print-tip and others on expression. In this section of the manuscript we also
describe the standard statistical approaches for estimating treatment effect on gene
expression, and briefly address the multiple comparisons problem, often referred to as
the big p small n paradox. In the second major section of the manuscript, we dis-
cuss the use of multiple scans as a means to reduce the variability of gene expression
estimates. While the use of multiple scans under the same laser and sensor settings
has already been proposed (Romualdi et al. 2003), we describe a general hierarchical
modeling approach proposed by Love and Carriquiry (2005) that enables use of all the
readings obtained under varied laser and sensor settings for each slide in the analyses,
even if the number of readings per slide vary across slides. This technique also uses
the varied settings to correct for some amount of the censoring discussed in the first
section. It is to be expected that when combining scans and correcting for censoring,
the estimate of gene expression will have smaller variance than it would have if based
on a single spot measurement. In turn, expression estimates with smaller variance are
expected to increase the power of statistical tests performed on them.

1 Introduction

The rapid increase in the use of high-throughput technologies in molecular biology, such as
gene expression microarrays, has produced large amounts of data. This makes a collabo-
ration between quantitative analysts and subject-matter specialists particularly important
and potentially very fruitful.
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The biological hypotheses that may be tested with gene expression microarrays are nu-
merous and require varied statistical methodologies. The statistical issues associated with
the analyses and interpretation of these data include the design, measurement, and analysis
of the experiment. Here we examine some of the statistical methods relevant to the analyses
of microarray data and use a particular experiment with maize to demonstrate some of these
ideas.

Gene expression is the term used to denote the extent to which a gene is used within
a cell at a particular time or under a certain stimulus. Cells respond to different stimuli
by using genes with different abilities and functions. This is how cells within an organism
differentiate and respond to a changing environment. Genes are used by being transcribed
into mRNA and then mRNA is translated into proteins within the cell. The complex uses
and coordination of these proteins are largely unknown.

Ideally, we would like to assess gene function by measuring the amounts of each protein
the genes produce. Instead, we determine gene expression by counting the number of mRNA
molecules in the transcription phase. mRNA molecules have complementary molecules which
they will hybridize (attach) to and this makes them relatively easy to count. However, mRNA
abundances and protein abundances are not perfectly correlated; not all mRNA sequences
are translated into proteins and certain proteins can build up in a cell by not degrading.
Still, mRNA abundance serves as a proxy for protein abundance.

Typically, we wish to compare gene activity in different tissues within an organism or
in the same tissue but under different conditions. The idea is to determine which genes
are turned on or off (up or down regulated) in different tissues or in different environments.
This information is then used in the pursuit of the holy grail of genomics: determining the
function of each gene.

2 Construction and Imaging

Gene expression values are generally measured as relative intensities; there are many sources
of variation in expression values (labs, technicians, slides, . . . ). Therefore, a typical exper-
iment will include two or more biological samples. The gene expression in each of these
samples is measured for thousands of genes simultaneously. First, the mRNA is extracted
from each of the biological samples. Care is taken to ensure that equal amounts of mRNA
are obtained from each sample to prevent a bias in the relative expression values. This
follows from the common assumption that the amount of mRNA is constant. Subsequent
normalizing procedures (such as used in Newton et al. (2001)) assume that the total mRNA
for the two samples is the same. The mRNA is then reverse-transcribed to create cDNA
sequences complementary to the original sequences.

There are several gene expression microarray technologies. In our examples, we will
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discuss cDNA microarrays. This microarray technology allows two samples of cDNA to be
measured on the same glass slide and therefore adjust for the slide specific effects on gene
expression. The created cDNA is tagged with fluorescent dye. There are several available
dyes and the two samples to be placed on the same array are tagged with different dyes. At
least in terms in usage, the two most popular dyes are called Cy3 and Cy5, which dye the
samples green and red, respectively.

The arrays consist of known probe sequences of nucleic acids affixed at known positions
of the medium. Each probe contains many copies of a known sequence of a gene’s coding
sequence to allow hybridization by the tagged cDNA sequences. Two differently dyed samples
of cDNA prepared from two biological samples are mixed and washed over the array. Dyed
sequences will hybridize (attach) to their complementary probe sequences. The amount of
dyed cDNA that attached to each of the fixed probes is measured by determining the amount
of fluorescence at each spot.

The cDNA slides used in gene expression microarrays are produced in various private
and academic laboratories. The number and content of the probes on a cDNA slide are
determined by the scientists producing the slide who choose the sequences to be used as
probes and the layout of the spots including replicating spots at multiple locations on the
slide. Slides are printed by a computer that drives a robot with a set of print-tips at the
end of an arm. Print-tips are dipped into vials of solution containing the cDNA probes. The
robot then deposits a small drop of solution on the slide creating a spot. Most arrayers spot
several probes at once on a slide using multiple print-tips. A standard print-head contains
32 tips arranged in a four by eight block, thus 32 spots are printed at a time. Each tip prints
a block of spots on the slide and this may induce spatial correlation among the spots in a
print-tip group (sector). Replicated spots may give insights into the spatial variation across
a slide (since they measure the same expression), however this is not straightforward and
they are rarely used in practice.

Dyed and mixed cDNA from two biological samples is placed on the slide and hybridizes
with the complementary probes. The fluorescent dyes are excited with a laser and a sensor
records the intensity at each spot. The two dyes fluoresce at different laser wavelengths so
we obtain separate images for each sample. The fluorescence intensities measured by the
sensor are recorded as numbers between 0 and 216 − 1=65,535. The value corresponds to
a color depth of sixteen bits per pixel. All pixel readings over the upper threshold will be
recorded as 65,535 and all readings below the lower threshold will be recorded as 0.

3 Preprocessing

Preprocessing of cDNA microarray data consists of transforming the pixel intensity values
from the image scanned into corrected and normalized estimates of gene expression intensity
for each gene represented on the array. These preprocessing steps attempt to make use of
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knowledge about the many structural biases in the microarray measurement process (such
as the fluorescence bias between the different dyes). For further discussion of the issues of
preprocessing microarray data see Smyth, Yang, and Speed (2002), Yang et al. (2002)and
Lönnstedt and Speed (2001).

The first level of preprocessing consists of image processing, converting the image into
numerical summaries for each spot. This must be done before further analyses can be carried
out and usually consists of the following steps:

• Segmentation - classify each pixel as spot, background, or other.

• Intensity summary - calculate a summary value for the intensity of signal and back-
ground at each spot.

• Background correction - correct signal values for the background intensity.

Most of these operations are carried out using specialized software and sometimes these
programs are black boxes.

Image segmentation is the process of determining whether a pixel is signal, background,
or other. The intensity of a signal pixel is the sum of the fluorescence due to dyed target
molecules hybridized with the probe at each spot and the background fluorescence. Back-
ground fluorescence arises due to dust, stray dye molecules, etc. that we do not wish to
measure in our gene expression estimates. Background fluorescence varies across the slide,
thus we measure and correct for local (around each spot) background.

Once pixels have been assigned to signal or background for each spot, summaries over
the pixels must be calculated. Three common summaries are the mean, median, or mode of
the pixels though more complicated summaries could also be used. Other characteristics of
the spots, such as the area (number of pixels) or the total intensity (sum of pixel intensities),
are sometimes used to identify poor quality spots. Censoring of a spot may also indicate a
spot of poor quality because the true value of the fluorescence is not measured. Therefore,
these spots may be excluded from further analysis or analyzed differently from other spots
as will be discussed later in the paper.

Note that using a summary of the pixels masks the censoring (above or below) of the
individual pixels. However, this only means that the censoring thresholds for the spots are
different from the thresholds of the pixels. The proportion of saturated spots and spots
censored below depend on the laser and sensor settings. Figure 1 compares low and high
scans of a slide to a medium scan. In (a), some of the spots are censored above in the high
scan and not in the medium scan. Similarly in (b) some of the spots are censored below
in the low scan, but not in the medium scan. These values are background corrected spot
averages, so the thresholds are not the same as those of the censored pixels.
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Generally, additive background noise is assumed for microarray pixels. A global back-
ground can be estimated as the median of all pixels on the slide that have been classified
as background. If we assume this form of background noise, then the the same global back-
ground value is subtracted from all spot signal values. When background variation on the
slide is large, this is not a good approach. An alternative approach is to estimate and correct
for local background before any analysis takes place. In either case, background-corrected
spot intensities may be negative if the signal summary value is lower than the background
estimate.

Normalization consists in minimizing the non-biological variation in measured gene ex-
pression. The lower the ’noise’ the more reliably we can estimate biological differences in
gene expression across different dyes and slides. There are many sources of non-biological
variability:

• Dye differences in non-specific binding (Cy3 often binds with the slide).

• Dye differences in binding with sample cDNA sequences (dyes alter hybridization for
certain sequences).

• Different amounts of sample cDNA hybridized to slides (this is kept constant between
the two samples on a slide).

• Variability between characteristics of the slides, operators, and labs.

There are several types of normalization methods currently in practice. The simplest of
these is constant label normalization to remove (minimize) the difference between the binding
proficiency and the fluorescence of the two dyes. Let Ri denote the observed expression level
of the ith red-dyed spot and similarly, let Gi denote the observed expression level of the ith
gene when it is dyed green. Figure 2(a) shows that a scatter plot of the two dye channels,
(Ri, Gi) for i = 1, . . . , n, does not fall along the diagonal line. The spots have a higher
median intensity estimate on the green channel than on the red channel. However, we
assume that only a small proportion of the spots should be differentially expressed (have
different true expression in the two samples on a slide). A simple correction for the label
bias is subtracting the difference between the medians of expression for the two channels,
G∗

i = Gi − (median(Gi)−median(Ri)). This will cause the medians to be the same for both
dye channels on the slide.

A more complex form of label normalization assumes that the dye bias is intensity de-
pendent instead of constant. To examine this technique, we introduce a different notation
for channel intensities. Consider the following two functions of intensities:

Mi = log(Ri/Gi) (1)
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and
Ai = log

√

Ri ∗ Gi (2)

(e.g., (Speed 2003)). Plotting these values corresponds to a 45o rotation of the (Ri, Gi)
plot. If there are no dye effects on intensities, a scatterplot of M against A should suggest a
zero correlation between the two quantities and the Mi should be centered around zero. In
general, this does not happen. Figure 2(b) shows the data from the top figure transformed
to (A,M) values. Again, we can see that there is a bias from the dyes because the Mi values
are not centered around zero. Further, there is a nonlinear relationship between M and A.

The most popular adjustment for intensity-dependent dye bias is to correct the Mi values
by fitting a loess curve of Mi on Ai and then subtracting the loess estimates (i.e. obtaining
loess residuals). Locally weighted polynomial regression, called loess, is a smoothing method
that estimates a line of trend through a dataset by combining polynomial regressions from
small subsets of the data (Cleveland 1979). Figure 3 shows the loess fit through the data
and some loess residuals. The assumptions of this loess adjustment are the following:

1. Most genes are not differentially expressed between the two samples on a slide, so
Ri = Gi for most i.

2. In an experiment with a large number of genes, some genes will be up-regulated and
some down-regulated, so positive and negative deviations should cancel each other out.

Unfortunately, this method produces normalized values of Mi (which are used in the further
analysis of Smyth et al. (2002)), but not of Ri and Gi. To adjust the individual sample
intensities, one method is to add half of the loess adjustment to one dye channel and subtract
the same amount from the other channel. The corrected (loess residual) values for Mi are
plotted against Ai in Figure 4(a) along with the corrected values for Ri and Gi.

The final common type of normalization, scale normalization, removes intensity-dependent
dye bias and equalizes the overall variance between the dye channels. Using loess to do
intensity-dependent normalization removes dye bias, but the overall intensities and their
variability may still differ across slides.

Finally, when artifacts are apparent within the slide, such as blocks on the slide created
by the same print tip, further methods may be necessary to remove the non-biological bias
from the expression data prior to analyses. Note that the fourth column in each of the rows
of box plots of M in Figure 5 has a higher median than the other columns. This suggests
a bias such as an uneven washing of the fourth row of the slide. Print tip groups are also
surrogates for spatial variability on the slide and, therefore, we also correct for some spatial
effects when normalizing in this way. To minimize the effect of local biases due to print tips,
we implement a normalization within each print tip group (sector) on the slide. We again
assume that most of the genes are not differentially expressed so that Ri = Gi for most i
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within the sector and carry out normalization in the same way as previously described on
the data from each sector separately.

In our work, we perform intensity-dependent dye bias normalization on each of the print
tip groups. Therefore, the normalized R’s and G’s are corrected for dye, slide, print tip
group (or spatial), and intensity effects.

4 Differential Expression

Scientists are interested in identifying differentially expressed genes to gain clues as to their
function. For example, a gene that is up-regulated in plant tissue subjected to light but not in
tissue subjected to darkness may be related to photosynthesis and genes whose expressions
change in plants subjected to drought may be important in the development of drought-
resistant varieties of crops. Of interest is µg1 − µg2, the difference in the expected mean
expression of gene g over treatments 1 and 2. The effects of more than two treatments may
also be of interest.

Consider a simple experiment with two treatments. Let the effect of treatment i be
denoted by Ti for i = 1, 2. In a basic experimental design, we can account for treatment,
dye and slide effects. For gene g, let Ygijk denote the observed log signal intensity in the ith
treatment, jth dye and kth slide. Within a classical framework, treatment and dye effects
are often modeled as fixed and slide effects as random. Consider the following mixed-effects
model:

Ygijk = µg + Tgi + dj + sk + egijk, (3)

with sj + egijk ∼ N(0, σ2
s + σ2

e).

In this example, the gene is differentially expressed if Tg1 6= Tg2. An estimate of the
difference in treatment effects for gene g is Ȳg1•• − Ȳg2•• with confidence interval

Ȳg1•• − Ȳg2•• ± t{ng1+ng2−2;1−α
2
}σ̂Ȳg1••−Ȳg2••

, (4)

where ng1 and ng2 are the number of terms in the averages Ȳg1•• and Ȳg2••, respectively. The
estimated fold change is exp(Ȳ1•• − Ȳ2••), with approximate confidence interval estimated
from the log-scale interval. For more than two treatments, ANOVA methods are used to
estimate the treatment effects and confidence intervals.

In addition to detecting differences among two or more treatments, scientists are inter-
ested in discovering patterns of expression across multiple time points. For example, if we
obtain samples during the developmental stages of an animal’s organs, can we detect genes
with non-null patterns of expression over time? Further, can we group the genes accord-
ing to the expression pattern over time? Similar patterns of expression suggest a common
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regulatory pathway and scientists can infer possible gene functions or relationships by un-
derstanding these regulatory pathways. Both heuristic and statistical clustering methods
can group the genes according to their expression patterns.

While the analysis of differential expression can be performed in a straightforward way,
there are several challenging issues which are not explicitly considered by these methods.
First is the fact that signal intensities Y have undergone significant pre-processing. What
we optimistically call an observed signal intensity is a noisy estimate of true signal. Secondly,
there is a large p, small n problem: for each of a large number p of genes we perform tests
using only a small number n of sample individuals. For example, we may test the following
for p different genes:

H0 : no fold change versus Ha : fold change. (5)

The naive approach is to designate a threshold α and declare all genes with a p-value below
the threshold to be differentially expressed. We can expect a large number of false positives;
the true Type 1 error rate will be much higher than α. Thus the recent thrust to develop
methods to control the false positive rate (e.g., (Benjamini and Hochberg 1995), (Dudoit
et al. 2002), (Storey 2002), (Benjamini and Yiekutieli 2001)).

An alternative analysis of expression values that considers measurement error and multi-
ple comparisons explicitly is hierarchical modeling. Using the log expression values as before,
we can formulate a model hierarchically:

Ygijk ∼ N(µgij, σ
2
ij)

µgij ∼ N(µgi, σ
2
i ), (6)

where the µgij, the mean expression of gene g in treatment i and dye j, is assumed to be ex-
changeable given treatment and arising from a distribution with mean µgi. Inferences about
the expression change between treatments for gene g are based on the posterior distribution
of µgi − µgi′ .

Another hierarchical model, Gamma-Gamma, for gene expression for proposed by Newton
et al. (2001). This model applies to the intensities Egijk = exp(Ygijk), ignores slide and dye
effect by assuming normalization removed them, and is restricted to the two treatment case
with no replication (though extensions have since been produced in Kendziorski et al. (2003)).
Let Rg = Eg1 and Gg = Eg2, then we can create the following hierarchical model:

Rg ∼ Gamma(a, θRg)

Gg ∼ Gamma(a, θGg)

θRg ∼ Gamma(a0, ν)

θGg ∼ Gamma(a0, ν), (7)

8 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2005/proceedings/2



where (a, a0, ν) are constant hyperparameters for all genes. This model assumes that R and
G have different mean and variance, but equal coefficient of variation (CV). In this model,

ρ =
E(R)

E(G)
=

θG

θR

(8)

is the quantity of interest. If the gene is not differentially expressed, then ρ = 1. The
shrinkage estimator for ρ

ρ̂ =
R + ν

G + ν
(9)

is a compromise between the mean and mode of p(ρ|R,G, a, a0, ν). This estimate of ρ can
be used to assess evidence of differential expression.

The exchangeability in the second stage of the model implies that all genes are differen-
tially expressed. Replacing the independent distributions of θR and θG with a mixture model
where θR = θG with probability p is more appropriate. To incorporate this a third layer is
added to the model with indicators zg were zg = 0 if θR = θG and 1 otherwise where

zg ∼ Bernoulli(p). (10)

The Gamma-Gamma-Bernoulli model allows estimation of the posterior probability that
z = 1 (a gene is differentially expressed). The posterior distribution of ρ will have a spike at
1 if Pr(z = 0) > 0).

5 Maize Embryogenesis

We now introduce an experiment that uses cDNA microarrays to demonstrate some of the
techniques discussed above and some recent research results. Somatic embryogenesis in Zea
mays is an experimental important tool for genetic engineering. Natural plant development
from a fertilized egg cell follows zygotic embryogenesis development into a seed and eventually
a mature plant. Somatic embryos begin as callus (undifferentiated cells) and are induced to
develop into embryos by immersion in an embryogenic medium. Callus can be generated from
existing plants by transfer to a callus-generating medium. Mature plants can be grown from
existing plant material through another experimental process called organogenesis. Somatic
embryogenesis creates embryos that are similar to those arising from sexual reproduction
and which have the same genotype as the explant from which they were created.

The first somatic embryos in maize tissue culture were produced by Green and Phillips
(1975). Armstrong and Green (1985) found that cell lines derived from sources such as
immature embryos are heterogeneous in their ability to produce somatic embryos (have cells
with differing embryogenic competence) and that certain types of callus tend to be more
embryogenic. Unfortunately, embryogenic competence is genotype-specific in many plant
species including Zea Mays, and often the most desirable or economically important lines
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do not easily produce somatic embryos; they are recalcitrant to regeneration. Since genetic
transformation of the plant in the embryonic stage has enormous potential for development of
high yielding varieties, it is important to recognize embryogenic cells or tissues and to identify
genetic markers for them. In this way we hope to gain tools for improving embryogenesis in
recalcitrant maize lines.

In order to identify the genetic traits responsible for highly embryogenic lines, we exam-
ined gene expression changes during maize somatic embryo development. Somatic embryos
were generated identically in six callus lines (labeled A, B, C, D, E, and F) developed from
immature Hi II embryo explants. These lines are assumed to be random samples from the
population of Hi II lines. Hi II is a regeneration-proficient hybrid of Zea mays which also
produces high crop yields and thus is of economic importance. After callus populations were
generated from the six lines in a callus-generating medium (N6E medium +2, 4-D, 3% su-
crose), embryogenic calli (identifiable by shape) were selected from the total callus for each
of the lines. These selected calli were matured into somatic embryos by transferring them
to a sucrose-enhanced medium (Regen Medium I -2, 4-D, 6% sucrose). After 21 days, the
embryos were exposed to light and transfered to a new medium (Regen Medium II -2, 4-D,
3% sucrose) to encourage germination. Material was sampled at five time points during the
development and maturation of the embryos into seedlings, see Figure 6. To reduce the
interplant variability without actually losing the opportunity to estimate the line to line
variance in measurements, samples from pairs of lines were pooled at each time point, so
the material used later in the microarray analysis comes from the pools rather than from
individual plant lines. Pools were labeled AB, CD, and EF. The dataset used in this analysis
can be obtained by contacting the authors.

Gene expression patterns in the AB, CD and EF lines were profiled using 12,060 element
maize cDNA arrays. The experimental design was a loop design with dye-swapping for line
pools AB, CD, and EF (Kerr and Churchill 2001), which resulted in a total of 30 slides. The
loop design is an efficient design in that each time point is compared to an earlier time period
rather than to a reference or time zero. Thus, the design results in additional replicates of
measurements at each time point without increasing the number of arrays. Under our design,
gene expression is measured at each time point four times within each line pool, so that across
line pools, time point samples are repeated 12 times. However, the four measurements of
a line pool at one time point are taken on identical material (they are technical replicates.
Therefore, the true biological replication is six plants pooled into three pools. Thus, the
power of our conclusions is somewhat lessened by the use of technical replications using the
same biological material. Still, this design allows for an analysis of the measurement variance
across time and across line pools, see Figure 7.

We are interested in identifying the genes or groups of genes which actively participate in
somatic embryogenesis. These genes will exhibit significant changes in their expression over
the course of tissue development and maturation. While most of the genes participating
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in embryonic development are expected to be up-regulated as embryos mature, it is also
possible that some genes active in embryogenesis will down-regulate over time or will exhibit
some other expression profiles. Therefore, we seek to classify the 12,060 elements of the
microarrays into those with constant expression over all time points and those with any
other pattern of expression. Some initial results obtained using a subset of these data are
reported in (Che et al. 2005).

6 Combining Multiple Readings

As is often the case in microarray experiments, each slide was scanned multiple times using
different laser and sensor settings. By varying the settings of the instruments, the operator
can strike a balance between over-exposing the highly expressing genes while still picking
up a signal from the lowly fluorescing spots. As we have seen, there is truncation of pixels
both above (assigning over-exposed pixels the value of 65,535) and below (assigning under-
exposed pixels values near or below the background level). In a canonical analysis of gene
expression data, only a single scan of each slide is included in the analysis and the rest are
discarded, however it has been empirically demonstrated that scans can be repeated up to
around 10 times without degrading the slide (depending on the technology used) (Romualdi
et al. 2003). We use an approach proposed in Love and Carriquiry (2005) that permits
estimating gene expression profiles using all available measurements for each spot. Here we
show that by making use of the additional information we obtain estimates of gene expression
intensities that are less variable than using the ’best’ scan alone. Importantly, the set of
genes identified as embryogenic in our experiment changes if all scans, rather than just the
best, are used in statistical analyses of the data.

The spot level intensity summaries described earlier (most often mean spot pixel minus
median background pixel) display truncation in a different manner than pixel intensities. The
averaging of pixels within the spot masks both types of truncation. Further, background
correction shifts the observed truncation level away from the limits of the scanner. This is
why the visible truncation in Figure 1 appears near 10 and 50,000 and not at the scanner
limits of 0 and 65,535.

Multiple readings of the microarray slides can be taken for both fluorescence channels.
Since all of the readings at different settings attempt to capture true expression levels for the
genes on the slide, it is reasonable to assume that all readings contribute useful information
about true expression levels and to think of combining the multiple readings into one estimate
of gene expression for each spot. If the readings at different settings contain information
about the true expression of the gene, then the variance in estimated gene expression that
is due to the measurement process should be reduced in the estimate that is based on all
available readings.
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Generally, settings for different slides are very different because of the large experimental
variation between slides. That is, one slide may result in a good reading at low laser and
sensor settings while another may require higher settings to reduce the number of expression
levels below threshold while keeping the number of overexposed spots to a minimum. Because
of this practice, we are typically unable to assume that the settings act as blocks in a
traditional experimental design. Since the settings to read the two channels are almost always
chosen separately across slides, we can model each slide/dye combination separately. In what
follows, we consider an arbitrary slide and dye channel in the experiment and demonstrate a
hierarchical model for estimating gene expression levels that permits incorporating multiple
measurements for each gene into a single analysis.

6.1 Bayesian Hierarchical Gamma Model

In order to estimate gene expression, we use a Bayesian hierarchical model proposed in Love
and Carriquiry (2005). This model incorporates all slide scans into one estimate of expression
per spot. To formulate the model, we rely on the natural ordering of slide readings. In
practice, we order the slides from smallest to largest based on median reading.

Suppose that there are m + 1 readings taken at each of n spots on a particular slide
and a dye. In the maize embryogenesis experiment that we discuss here, m + 1 = 3 and
n = 12, 060 for all 60 slide/dye combinations, but the number of readings need not be
constant over slides. For a given gene i, we use Si1, . . . , Si(m+1) to denote the m + 1 ordered
signal measurements after background correction. We assume that all readings measure the
same quantity – actual gene expression – with error. Therefore, under suitable scaling the
readings would be identically distributed. We assume that the scaled readings (which are
strictly positive) can be represented by a Gamma distribution. The Gamma has support on
the positive real line and, depending on parameter values, exhibits noticeable skewness. We
assume a constant shape parameter, a, for all genes on the slide/dye. The scale parameter
for each observation Sij will have two components, θi for the intensity due to the gene i
expression and δj for the intensity due to the scan j settings.

We do not observe intensity of spots in readings where they are censored; however, we
do know that they are censored and we also know that the measurement is larger (smaller)
than a known value. We define an indicator variable, Cij, where Cij = 0 if observation Sij

is not censored, Cij = 1 if observation Sij is censored below, and Cij = 2 if observation
Sij is censored above. This variable and the subset of S, S(o), which includes non-censored
measurements make up our observed data. The measurements that would have been observed
in the absence of censoring are therefore taken to be missing. The set of missing data is
denoted by S(m) and S=S(o) ∪ S(m). In a Bayesian framework, we can estimate missing
values along with parameters.

In practice a spot can be designated as censored below if any of its pixels are less than
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the background median. A spot can be designated as censored above if any of its pixels are
saturated. Alternatively, exploratory data analysis can be used to decide appropriate cut-off
values for a particular slide/dye combination, such as 20 and 50,000. To ensure that no
gene has all of its values missing, a spot censored below in the highest scan or above in the
lowest scan is not recorded as censored for that scan. We will denote the lower and upper
truncation points by L and U , respectively.

Following Love and Carriquiry (2005) we now examine the conditional likelihood of Sij,
given the censoring indicator, Cij. Let f(·|λ) be the density function of the Gamma(a, λ)
distribution and F (·|λ) be its cumulative distribution function. Then censoring implies that
the likelihood for Sij ∈ S(o), an uncensored point, should have the following form:

p(Sij|Cij = 0) = f(Sij|θiδj) (F (U |θiδj) − F (L|θiδj))
−1 I(L,U)(Sij), (11)

where IA(·) is the identity function on the set A. For a gene expression measurement Sij ∈
S(m), which is censored below, the likelihood has the following form:

p(Sij|Cij = 1) = f(Sij|θiδj)F (L|θiδj)
−1I[0,L](Sij). (12)

The likelihood of Sij ∈ S(m) which is censored above is

p(Sij|Cij = 2) = f(Sij|θiδj) (1 − F (U |θiδj))
−1 I[U,∞)(Sij). (13)

The restriction on the support of the likelihood will remain in the posterior distributions of
the Sij ∈ S(m).

This leads to the following observed data likelihood (for details, please refer to Love and
Carriquiry (2005)):

p(S(o), C) =
∏

(i,j)∈IN

(

f(Sij|θiδj)I(L,U)(Sij)
)

×
∏

(i,j)∈IL

F (L|θiδj) ×
∏

(i,j)∈IU

(1 − F (U |θiδj)) (14)

We complete the specification of the model by assigning prior distributions to each pa-
rameter. The conjugate prior option, while convenient from a mathematical viewpoint, is
unsuitable from a biological viewpoint. We consider instead independent Gamma prior dis-
tributions for each of the n + m parameters. Gamma distributions can be justified from a
biological point of view because typically genes spotted on a slide exhibit low expression lev-
els and only some of them exhibit high levels of expression. The Gamma distribution would
appear to be an appropriate model for the population distribution because the expression
values of the genes, estimated by a/θi, will be skewed. Thus

θi ∼ Γ(a0, ν) (15)

for i = 1, . . . , n. The Gamma model may also be reasonable for the strictly positive scaling
parameters, so that

δj ∼ Γ(α1, α2) (16)
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for j = 1, . . . ,m. The joint Gamma prior has the form

p(θ, δ) ∝
n
∏

i=1

θa0

i

m
∏

i=1

δα1

j e−ν
∑n

i=1
θi−α2

∑m+1

j=1
δj . (17)

The conditional posterior distributions of θ|δ and δ|θ are Gamma distributions under this
prior, but the joint posterior of (θ, δ) is not. Therefore, the prior in (17) is a semi-conjugate
prior distribution.

The hyperparameters in the model are η = (a, a0, ν, α1, α2). We must either specify prior
distributions for these hyperparameters or fix the parameters at some appropriate value.
We have investigated several methods for choosing η in Love and Carriquiry (2005). The
hyperparameters α1 and α2 are both chosen to be 10 to create a relatively noninformative
prior on the δ’s. Specifying a value for the other hyperparameters a, a0 and ν, however,
requires some thought since these parameters can have a significant effect on the estimates
of expression levels. We use the Empirical Bayes estimates of the remaining hyperparameters,
given the data from one scan of the slide (Carlin and Louis 1997). This has been found
to be the most computationally efficient among methods that have low MSE of expression
estimation in simulation studies (Love and Carriquiry 2005).

The joint posterior distribution of (δ, θ) is given by:

p(δ, θ|S(o), C, η) ∝





m
∏

j=1

δj





na+α1−1

e−
∑m+1

j=1
δj(
∑n

i=1
θiSij−α2)

(

n
∏

i=1

θi

)a(m+1)+a0−1

e−ν
∑n

i=1
θi .

The posterior distribution of S(m) is

p(S(m)|S(o), C, η) =
∫ ∫

p(S(m)|θ, δ, S(o), C, η)p(θ, δ|S(o), C, η)dθdδ. (18)

We use Markov chain Monte Carlo (MCMC) methods to approximate the joint posterior
distribution of the parameters and missing values in the model (Gelman et al. 1995). To do
so, we first derive the full conditional distributions for each of them:

δj|η, δ−j, θ, S, C ∼ Γ(na + α1,
n
∑

i=1

θiSij + α2) (19)

for j = 1, . . . ,m,

θi|η, δ, θ−i, S, C ∼ Γ((m + 1)a + a0, Si(m+1) +
m
∑

j=1

δjSij + ν) (20)

for i = 1, . . . , n,
Sij|η, δ, θ, S(o), S

(m)
−ij , C ∼ Γ(a, θiδj)I[0,L](Sij) (21)
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for (i, j) ∈ IL, and

Sij|η, δ, θ, S(o), S
(m)
−ij , C ∼ Γ(a, θiδj)I[U,∞)(Sij) (22)

for (i, j) ∈ IU . Here, sampling from the last distribution is equivalent to drawing from
Γ(a, θiδj) and rejecting the draw if it is less than U .

Notice that all full conditional distributions have standard form, and thus the Gibbs
sampler can be used to sequentially draw parameter values from the conditionals. If we have
chosen a fully Bayesian estimation of (a, a0, ν), then the full conditionals of (a, a0, ν), are
included in the Gibbs sampler. A point estimate for the expression of the ith gene is the
posterior mean of a/θi. These estimates may be subsequently used as the expression values
for further analysis after appropriate normalization has been done.

7 Comparing Results

We now revisit the maize embryogenesis experiment that was introduced earlier. The main
objective of the experiment was to determine the subset of the 12,060 genes that vary sig-
nificantly in the process of somatic embryogenesis in maize. Thirty cDNA microarray slides
were spotted in the course of the experiment, which resulted in 60 slide/dye combinations
on which to implement one of the standard approaches as well as the new method proposed
here. We first analyzed the gene expression data using background-corrected expression as
the gene expression estimate. In order to make results comparable, however, we also carried
out some of the analyses applying the hierarchical modeling approach proposed by Newton
et al. (2001). Each of the 60 slide/dye combinations were scanned three times at different
laser and sensor settings. Unequal numbers of scans per slide would not have limited the
application of the procedure. Some of the results discussed below are also discussed in Love
and Carriquiry (2005) in greater detail.

7.1 Single gene expression profiles

We first present a direct comparison of the results that would be obtained from a single slide
if one or all available readings are used to estimate expression. Two hierarchical models were
fit to one dye channel of one slide: the hierarchical model proposed here, that incorporates
all readings and the hierarchical model proposed by Newton et al. (2001) that incorporates
information from only one scan. In this example, the Newton model was applied to the
highest available reading for the gene. We present the results obtained for two arbitrarily
chosen genes. Examination of those results suggests that by combining all readings for a
spot we realize several improvements.

For a particular slide, the point estimates (posterior means) for the scaling parameters
δ1, δ2 were δ̂1 = 0.510 and δ̂2 = 0.978 so that scaling of the three gene expression mea-
surements results in 1.96Si1 ≈ 1.02Si2 ≈ Si3. The first gene on which we focus is gene
labeled #1 for which we obtained a posterior expression estimate of 213.1 based on its three
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measurements of (51.3, 211.0, 227.3). When using only its highest measurement (227.3),
the estimate obtained was 593.5 with a 95% credible set of (170, 1735). Notice that the
gene expression estimate based on the three readings is within the 95% posterior probability
interval Consider now gene #1735, for which the highest reading was censored at 0 due to
very large within-spot measurement error. The posterior point estimate of expression for
this gene was 108.1 based on three measurements of (59.9, 77.2, 0).When using only the
measurement from the highest scan (0), the estimate of gene expression was 368.7 with a
95% credible set of (112, 1080). In this case, the estimate obtained by combining the three
readings for the gene was also contained in the 95% posterior probability interval.

We argue that by combining multiple measurements into the estimate of gene expression
for a single gene the resulting estimator has lower standard error. In fact, the posterior
standard deviations of expression of genes #1 and #1735 in our example were 80 and 42,
respectively when using the three measurements but increased to 919 and 307 when only
one scan was used for estimation. Therefore, the posterior distributions of gene expression
are much less concentrated around the mean when only one reading is used in estimation.

Now, we focus on inferences about gene expression profiles for individual genes and
compare results that are obtained by using a standard and the proposed approaches. Here,
the standard approach consists of using the observed, background-corrected expression value
in the ’best’ scan as the estimate of gene expression. We grouped genes according to their
expression profiles over time and identified representative genes of interest from six groups
(Che et al. 2005). Figure 8 shows errorbar plots for example genes from these six genes as
presented in Che et al. (2005). Using all readings in the hierarchical model and the posterior
mean as the expression estimate for each gene, we get the errorbar plots in Figure 9. Though
the patterns remain almost unchanged, the incorporation of multiple scans changes the scale
of the microarray measurement. These data have been normalized in the same way, however,
the ’best’ scan which was used in the initial analysis was not necessarily the highest scan
of the three incorporated. Also, very high and low expressing genes have their estimated
expression altered by the treatment of censoring (see the water channel protein in Figure 9).

7.2 Inferences about time and line effects

In order to identify line and time effects we fitted two-way analysis of variance models
(ANOVA) to the estimated expression for each of the 12,060 genes. Recall that the power
of our conclusions is somewhat lessened by the use of technical replication (See Section 5),
however, this affects one and three scan analysis of the data equally. We are interested in
identifying those genes for which time effects, line effects or both are statistically significant
after controlling for multiple comparisons using the approach proposed by Benjamini and
Hochberg (1995).

When gene expression is estimated using the observed background-corrected reading
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for each gene, 1,026 genes were identified as exhibiting significantly differential expression
over time. When the three slide readings per slide/dye combination were used to estimate
gene expression, we found that 2,229 genes appear to have significantly different expression
levels at different time points, thus indicating that these genes are regulated during somatic
embryogenesis. Note that the number of genes identified as differentially expressed during
somatic embryogenesis approximately tripled when all available measurements on each spot
were used for analysis. This result was to be expected given the reduction in bias and RMSE
in gene expression estimates that was achieved by implementing the procedure we propose.
Of the 1,026 genes that were identified as embryogenic using only one scan, 933 were also
included in the longer list of differentially expressed genes identified when all readings were
utilized.

In Che et al. (2005) we counted the number of genes with estimated two and three-fold
changes in expression relative to the day seven measurement (Che et al. 2005). By so doing
we obtain an overall assessment of gene activity during somatic embryogenesis. Figure 10
shows the number of genes with different expression values at each time point relative to day
seven and was obtained using gene expression estimates based on only one scan per gene.
We say that a gene is up-regulated if its expression increased and that it is down-regulated
if its expression value decreased. From the figure we see that in the absence of light, more
of the active genes are down-regulated than up-regulated. The light was turned on on day
23 of the experiment. At days 23 and 28, many more genes become active and exhibit two-
and three-fold expression changes relative to day seven. This was an expected result; light
triggers photomorphogenesis, a complex biological process that is known to involve many
genes. Note too that about 3% to 5% of the genes are down-regulated at days 14 and 21
(relative to day seven). The number of down-regulated genes then falls off dramatically at
days 23 and 28. Upon further investigation, these genes were found to be largely histone and
ribosomal protein genes, which may be downregulated as a result of a slowing down in cell
proliferation and growth during embryo maturation. We carried out the same analysis using
the three readings available for each slide and the hierarchical modeling approach proposed
in this manuscript. We did not find noticeable differences in the conclusions that would
be drawn from the one-scan or the three-scan analyses. However, there are many more
genes identified as significantly down-regulated at day 23. Using gene expression estimates
generated from all available readings, we obtain a larger number of significantly differentially
expressed genes that follow a similar pattern of genes up- or down-regulation during the
course of the experiment (see Figure 11).

8 Discussion

This manuscript is composed of two major sections. In the first section, we discuss in
some detail the steps that are typically taken in the collection and pre-processing of gene
expression microarray data. We also describe simple analyses of microarray gene expression
data that can be implemented to identify differentially expressed genes across treatments.
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In the second section of the paper, we present some newer research results that summarize
what has been presented in Love and Carriquiry (2005).

Data collected in the course of microarray experimentation is subject to multiple sources
of measurement error. Some of the measurement error may actually introduce biases and
analysts typically attempt to reduce those biases by re-scaling and normalizing the data
prior to analysis. One source of potentially significant measurement error is the settings of
the instruments (laser and sensor) that are used to obtain the data. Because the ’optimal’
settings may vary from slide to slide, operators often obtain multiple readings of each slide
and then choose the ’best’, meaning the reading that includes the fewest saturated spots and
the fewest under-exposed spots.

In the first half of the manuscript we introduce some of the biological principles that form
the bases of cDNA microarrays and explain how the different analytical steps introduce vari-
ability and potentially also biases in gene expression measurements that can be sometimes
difficult to properly address. We address statistical issues associated to the measurement of
gene expression (e.g., image segmentation, spot identification), to the correction for back-
ground fluorescence and to the normalization and re-scaling of data to remove effects of dye,
print-tip and others on expression. Because normalization has received some attention in
the literature, we discuss in some detail the more commonly used approaches to partially
account for systematic yet extraneous effects on gene expression data. In this section of the
manuscript we also describe the standard statistical approaches for estimating treatment ef-
fect on gene expression, and briefly address the multiple comparisons problem, often referred
to as the big p small n paradox.

The use of multiple scans obtained under the same laser and sensor settings have been
proposed as a means to reduce the variability of gene expression estimates (Romualdi et
al. 2003). Yet improving homogeneity of spots and accounting for the purely random mea-
surement error should be possible using effective segmentation and background cleaning
methods. It has been only recently that some attention has been focused on analytical
methods that might permit incorporating multiple slide scans obtained under different mea-
surement conditions into statistical analyses. Several approaches have been proposed in the
literature for doing so (Dudley et al., 2002; Lyng et al., 2004; Garcia de la Nava et al., 2004).
In the second half of this manuscript, we describe a general hierarchical modeling approach
proposed by Love and Carriquiry (2005) that enables use of all the readings available for
each slide for analyses, even if the number of readings per slide vary across slides. The basic
premise is that each reading of a spot contains some information about the true expression
of the gene and that if an appropriate scaling factor for each spot can be estimated, then all
readings for a spot estimate the same quantity and can be combined. If so, then it is to be
expected that the estimate of gene expression will have smaller variance than it would have
if based on a single spot measurement. To determine whether the modeling approach we
propose results in estimators of gene expression with good statistical properties, Love and
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Carriquiry (2005) ran a simulation study and assessed bias and root mean squared error of
the estimators over repeated sampling. They found that the hierarchical modeling approach
they propose had smaller bias and smaller RMSE than all other estimators, suggesting that
basing estimation on as many readings for each spot as might be available is probably a
reasonable idea.

To illustrate the proposed approach, we applied it to microarray data collected in a maize
embryogenesis experiment carried out by scientists in the Plant Sciences Institute at Iowa
State University. The complete analyses of these data is presented elsewhere (Che et al.,
2005). We show only a subset of the results here, to highlight some of the benefits that
appear to accrue when using the three scans available for each slide. When comparing our
results to those obtained from fitting the Newton (2001) hierarchical model using only one
reading per slide, we note that the variance of expression estimates is lower when based
on three readings, as would be expected. We also notice that expression levels are not as
shrunken toward the mean expression (2594). Because of the smaller bias and RMSE in gene
expression estimates, inferences about the set of genes involved in somatic embryogenesis in
maize change drastically when statistical analyses are based on one or on three readings
of each slide. As might be expected, the power of tests increases as the RMSE in gene
expression estimates decreases which in turn results in more precise time and biological line
pool effects. As Skibbe, Nettleton, and Schnable (2004) pointed out, conclusions drawn
about differential expression can be dependent on the slide scan used. Here we see that
stronger conclusions are possible using all available scans than using only one.
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Figure 1: Examples of background corrected spot averages (a) saturated in a high scan and
(b) censored below in a low scan. The few negative background correct average values have
been set to zero.
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Figure 2: The log intensities for the red and green channels of spots and the M versus A
plot for spot intensities on one slide.
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Figure 3: The loess fit of M as a function of A. The normalized values of M are the residuals
from this line. One hundred residuals are shown. Note the outlier gene near 7 on the A axis.
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Figure 4: The corrected values for spot intensities on one slide. Note that the dye bias and
intensity dependence have been removed in the corrected values.
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Figure 5: Boxplots for Mi values for each of 32 print tip groups on a slide, grouped by the
four metarows on the slide.
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Figure 6: The time course experiment for somatic embryogenesis in maize.
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Figure 7: The microarray double loop design with dye swap for the maize embryogenesis
experiment. Each box represents one of the 30 slides created. The arrows show the direction
of the loop as each time point is compared to its neighbors.
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Figure 8: Errorbar plots for some example genes from Che et al. (2005) (Fig 4).
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Figure 9: Errorbar plots for the example genes from Che et al. (2005) (Fig 4) after using all
readings.
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Figure 10: Numbers of genes with fold changes in expression from Che et al. (2005)(Fig 3).
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Figure 11: Numbers of genes with fold changes in expression from Che et al. (2005)(Fig 3)
after using all readings.
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