420 research outputs found

    Computer aided diagnosis system for breast cancer using deep learning.

    Get PDF
    The recent rise of big data technology surrounding the electronic systems and developed toolkits gave birth to new promises for Artificial Intelligence (AI). With the continuous use of data-centric systems and machines in our lives, such as social media, surveys, emails, reports, etc., there is no doubt that data has gained the center of attention by scientists and motivated them to provide more decision-making and operational support systems across multiple domains. With the recent breakthroughs in artificial intelligence, the use of machine learning and deep learning models have achieved remarkable advances in computer vision, ecommerce, cybersecurity, and healthcare. Particularly, numerous applications provided efficient solutions to assist radiologists and doctors for medical imaging analysis, which has remained the essence of the visual representation that is used to construct the final observation and diagnosis. Medical research in cancerology and oncology has been recently blended with the knowledge gained from computer engineering and data science experts. In this context, an automatic assistance or commonly known as Computer-aided Diagnosis (CAD) system has become a popular area of research and development in the last decades. As a result, the CAD systems have been developed using multidisciplinary knowledge and expertise and they have been used to analyze the patient information to assist clinicians and practitioners in their decision-making process. Treating and preventing cancer remains a crucial task that radiologists and oncologists face every day to detect and investigate abnormal tumors. Therefore, a CAD system could be developed to provide decision support for many applications in the cancer patient care processes, such as lesion detection, characterization, cancer staging, tumors assessment, recurrence, and prognosis prediction. Breast cancer has been considered one of the common types of cancers in females across the world. It was also considered the leading cause of mortality among women, and it has been increased drastically every year. Early detection and diagnosis of abnormalities in screened breasts has been acknowledged as the optimal solution to examine the risk of developing breast cancer and thus reduce the increasing mortality rate. Accordingly, this dissertation proposes a new state-of-the-art CAD system for breast cancer diagnosis that is based on deep learning technology and cutting-edge computer vision techniques. Mammography screening has been recognized as the most effective tool to early detect breast lesions for reducing the mortality rate. It helps reveal abnormalities in the breast such as Mass lesion, Architectural Distortion, Microcalcification. With the number of daily patients that were screened is continuously increasing, having a second reading tool or assistance system could leverage the process of breast cancer diagnosis. Mammograms could be obtained using different modalities such as X-ray scanner and Full-Field Digital mammography (FFDM) system. The quality of the mammograms, the characteristics of the breast (i.e., density, size) or/and the tumors (i.e., location, size, shape) could affect the final diagnosis. Therefore, radiologists could miss the lesions and consequently they could generate false detection and diagnosis. Therefore, this work was motivated to improve the reading of mammograms in order to increase the accuracy of the challenging tasks. The efforts presented in this work consists of new design and implementation of neural network models for a fully integrated CAD system dedicated to breast cancer diagnosis. The approach is designed to automatically detect and identify breast lesions from the entire mammograms at a first step using fusion models’ methodology. Then, the second step only focuses on the Mass lesions and thus the proposed system should segment the detected bounding boxes of the Mass lesions to mask their background. A new neural network architecture for mass segmentation was suggested that was integrated with a new data enhancement and augmentation technique. Finally, a third stage was conducted using a stacked ensemble of neural networks for classifying and diagnosing the pathology (i.e., malignant, or benign), the Breast Imaging Reporting and Data System (BI-RADS) assessment score (i.e., from 2 to 6), or/and the shape (i.e., round, oval, lobulated, irregular) of the segmented breast lesions. Another contribution was achieved by applying the first stage of the CAD system for a retrospective analysis and comparison of the model on Prior mammograms of a private dataset. The work was conducted by joining the learning of the detection and classification model with the image-to-image mapping between Prior and Current screening views. Each step presented in the CAD system was evaluated and tested on public and private datasets and consequently the results have been fairly compared with benchmark mammography datasets. The integrated framework for the CAD system was also tested for deployment and showcase. The performance of the CAD system for the detection and identification of breast masses reached an overall accuracy of 97%. The segmentation of breast masses was evaluated together with the previous stage and the approach achieved an overall performance of 92%. Finally, the classification and diagnosis step that defines the outcome of the CAD system reached an overall pathology classification accuracy of 96%, a BIRADS categorization accuracy of 93%, and a shape classification accuracy of 90%. Results given in this dissertation indicate that our suggested integrated framework might surpass the current deep learning approaches by using all the proposed automated steps. Limitations of the proposed work could occur on the long training time of the different methods which is due to the high computation of the developed neural networks that have a huge number of the trainable parameters. Future works can include new orientations of the methodologies by combining different mammography datasets and improving the long training of deep learning models. Moreover, motivations could upgrade the CAD system by using annotated datasets to integrate more breast cancer lesions such as Calcification and Architectural distortion. The proposed framework was first developed to help detect and identify suspicious breast lesions in X-ray mammograms. Next, the work focused only on Mass lesions and segment the detected ROIs to remove the tumor’s background and highlight the contours, the texture, and the shape of the lesions. Finally, the diagnostic decision was predicted to classify the pathology of the lesions and investigate other characteristics such as the tumors’ grading assessment and type of the shape. The dissertation presented a CAD system to assist doctors and experts to identify the risk of breast cancer presence. Overall, the proposed CAD method incorporates the advances of image processing, deep learning, and image-to-image translation for a biomedical application

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant

    A Review of Artificial Intelligence in Breast Imaging

    Get PDF
    With the increasing dominance of artificial intelligence (AI) techniques, the important prospects for their application have extended to various medical fields, including domains such as in vitro diagnosis, intelligent rehabilitation, medical imaging, and prognosis. Breast cancer is a common malignancy that critically affects women’s physical and mental health. Early breast cancer screening—through mammography, ultrasound, or magnetic resonance imaging (MRI)—can substantially improve the prognosis for breast cancer patients. AI applications have shown excellent performance in various image recognition tasks, and their use in breast cancer screening has been explored in numerous studies. This paper introduces relevant AI techniques and their applications in the field of medical imaging of the breast (mammography and ultrasound), specifically in terms of identifying, segmenting, and classifying lesions; assessing breast cancer risk; and improving image quality. Focusing on medical imaging for breast cancer, this paper also reviews related challenges and prospects for AI

    Computer-aided detection and diagnosis of breast cancer in 2D and 3D medical imaging through multifractal analysis

    Get PDF
    This Thesis describes the research work performed in the scope of a doctoral research program and presents its conclusions and contributions. The research activities were carried on in the industry with Siemens S.A. Healthcare Sector, in integration with a research team. Siemens S.A. Healthcare Sector is one of the world biggest suppliers of products, services and complete solutions in the medical sector. The company offers a wide selection of diagnostic and therapeutic equipment and information systems. Siemens products for medical imaging and in vivo diagnostics include: ultrasound, computer tomography, mammography, digital breast tomosynthesis, magnetic resonance, equipment to angiography and coronary angiography, nuclear imaging, and many others. Siemens has a vast experience in Healthcare and at the beginning of this project it was strategically interested in solutions to improve the detection of Breast Cancer, to increase its competitiveness in the sector. The company owns several patents related with self-similarity analysis, which formed the background of this Thesis. Furthermore, Siemens intended to explore commercially the computer- aided automatic detection and diagnosis eld for portfolio integration. Therefore, with the high knowledge acquired by University of Beira Interior in this area together with this Thesis, will allow Siemens to apply the most recent scienti c progress in the detection of the breast cancer, and it is foreseeable that together we can develop a new technology with high potential. The project resulted in the submission of two invention disclosures for evaluation in Siemens A.G., two articles published in peer-reviewed journals indexed in ISI Science Citation Index, two other articles submitted in peer-reviewed journals, and several international conference papers. This work on computer-aided-diagnosis in breast led to innovative software and novel processes of research and development, for which the project received the Siemens Innovation Award in 2012. It was very rewarding to carry on such technological and innovative project in a socially sensitive area as Breast Cancer.No cancro da mama a deteção precoce e o diagnóstico correto são de extrema importância na prescrição terapêutica e caz e e ciente, que potencie o aumento da taxa de sobrevivência à doença. A teoria multifractal foi inicialmente introduzida no contexto da análise de sinal e a sua utilidade foi demonstrada na descrição de comportamentos siológicos de bio-sinais e até na deteção e predição de patologias. Nesta Tese, três métodos multifractais foram estendidos para imagens bi-dimensionais (2D) e comparados na deteção de microcalci cações em mamogramas. Um destes métodos foi também adaptado para a classi cação de massas da mama, em cortes transversais 2D obtidos por ressonância magnética (RM) de mama, em grupos de massas provavelmente benignas e com suspeição de malignidade. Um novo método de análise multifractal usando a lacunaridade tri-dimensional (3D) foi proposto para classi cação de massas da mama em imagens volumétricas 3D de RM de mama. A análise multifractal revelou diferenças na complexidade subjacente às localizações das microcalci cações em relação aos tecidos normais, permitindo uma boa exatidão da sua deteção em mamogramas. Adicionalmente, foram extraídas por análise multifractal características dos tecidos que permitiram identi car os casos tipicamente recomendados para biópsia em imagens 2D de RM de mama. A análise multifractal 3D foi e caz na classi cação de lesões mamárias benignas e malignas em imagens 3D de RM de mama. Este método foi mais exato para esta classi cação do que o método 2D ou o método padrão de análise de contraste cinético tumoral. Em conclusão, a análise multifractal fornece informação útil para deteção auxiliada por computador em mamogra a e diagnóstico auxiliado por computador em imagens 2D e 3D de RM de mama, tendo o potencial de complementar a interpretação dos radiologistas

    Analyzing the breast tissue in mammograms using deep learning

    Get PDF
    La densitat mamogràfica de la mama (MBD) reflecteix la quantitat d'àrea fibroglandular del teixit mamari que apareix blanca i brillant a les mamografies, comunament coneguda com a densitat percentual de la mama (PD%). El MBD és un factor de risc per al càncer de mama i un factor de risc per emmascarar tumors. Tot i això, l'estimació precisa de la DMO amb avaluació visual continua sent un repte a causa del contrast feble i de les variacions significatives en els teixits grassos de fons en les mamografies. A més, la interpretació correcta de les imatges de mamografia requereix experts mèdics altament capacitats: És difícil, laboriós, car i propens a errors. No obstant això, el teixit mamari dens pot dificultar la identificació del càncer de mama i associar-se amb un risc més gran de càncer de mama. Per exemple, s'ha informat que les dones amb una alta densitat mamària en comparació amb les dones amb una densitat mamària baixa tenen un risc de quatre a sis vegades més gran de desenvolupar la malaltia. La clau principal de la computació de densitat de mama i la classificació de densitat de mama és detectar correctament els teixits densos a les imatges mamogràfiques. S'han proposat molts mètodes per estimar la densitat mamària; no obstant això, la majoria no estan automatitzats. A més, s'han vist greument afectats per la baixa relació senyal-soroll i la variabilitat de la densitat en aparença i textura. Seria més útil tenir un sistema de diagnòstic assistit per ordinador (CAD) per ajudar el metge a analitzar-lo i diagnosticar-lo automàticament. El desenvolupament actual de mètodes daprenentatge profund ens motiva a millorar els sistemes actuals danàlisi de densitat mamària. L'enfocament principal de la present tesi és desenvolupar un sistema per automatitzar l'anàlisi de densitat de la mama ( tal com; Segmentació de densitat de mama (BDS), percentatge de densitat de mama (BDP) i classificació de densitat de mama (BDC) ), utilitzant tècniques d'aprenentatge profund i aplicant-la a les mamografies temporals després del tractament per analitzar els canvis de densitat de mama per trobar un pacient perillós i sospitós.La densidad mamográfica de la mama (MBD) refleja la cantidad de área fibroglandular del tejido mamario que aparece blanca y brillante en las mamografías, comúnmente conocida como densidad porcentual de la mama (PD%). El MBD es un factor de riesgo para el cáncer de mama y un factor de riesgo para enmascarar tumores. Sin embargo, la estimación precisa de la DMO con evaluación visual sigue siendo un reto debido al contraste débil y a las variaciones significativas en los tejidos grasos de fondo en las mamografías. Además, la interpretación correcta de las imágenes de mamografía requiere de expertos médicos altamente capacitados: Es difícil, laborioso, caro y propenso a errores. Sin embargo, el tejido mamario denso puede dificultar la identificación del cáncer de mama y asociarse con un mayor riesgo de cáncer de mama. Por ejemplo, se ha informado que las mujeres con una alta densidad mamaria en comparación con las mujeres con una densidad mamaria baja tienen un riesgo de cuatro a seis veces mayor de desarrollar la enfermedad. La clave principal de la computación de densidad de mama y la clasificación de densidad de mama es detectar correctamente los tejidos densos en las imágenes mamográficas. Se han propuesto muchos métodos para la estimación de la densidad mamaria; sin embargo, la mayoría de ellos no están automatizados. Además, se han visto gravemente afectados por la baja relación señal-ruido y la variabilidad de la densidad en apariencia y textura. Sería más útil disponer de un sistema de diagnóstico asistido por ordenador (CAD) para ayudar al médico a analizarlo y diagnosticarlo automáticamente. El desarrollo actual de métodos de aprendizaje profundo nos motiva a mejorar los sistemas actuales de análisis de densidad mamaria. El enfoque principal de la presente tesis es desarrollar un sistema para automatizar el análisis de densidad de la mama ( tal como; Segmentación de densidad de mama (BDS), porcentaje de densidad de mama (BDP) y clasificación de densidad de mama (BDC)), utilizando técnicas de aprendizaje profundo y aplicándola en las mamografías temporales después del tratamiento para analizar los cambios de densidad de mama para encontrar un paciente peligroso y sospechoso.Mammographic breast density (MBD) reflects the amount of fibroglandular breast tissue area that appears white and bright on mammograms, commonly referred to as breast percent density (PD%). MBD is a risk factor for breast cancer and a risk factor for masking tumors. However, accurate MBD estimation with visual assessment is still a challenge due to faint contrast and significant variations in background fatty tissues in mammograms. In addition, correctly interpreting mammogram images requires highly trained medical experts: it is difficult, time-consuming, expensive, and error-prone. Nevertheless, dense breast tissue can make it harder to identify breast cancer and be associated with an increased risk of breast cancer. For example, it has been reported that women with a high breast density compared to women with a low breast density have a four- to six-fold increased risk of developing the disease. The primary key of breast density computing and breast density classification is to detect the dense tissues in the mammographic images correctly. Many methods have been proposed for breast density estimation; however, most are not automated. Besides, they have been badly affected by low signal-to-noise ratio and variability of density in appearance and texture. It would be more helpful to have a computer-aided diagnosis (CAD) system to assist the doctor analyze and diagnosing it automatically. Current development in deep learning methods motivates us to improve current breast density analysis systems. The main focus of the present thesis is to develop a system for automating the breast density analysis ( such as; breast density segmentation(BDS), breast density percentage (BDP), and breast density classification ( BDC)), using deep learning techniques and applying it on the temporal mammograms after treatment for analyzing the breast density changes to find a risky and suspicious patient

    Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions

    Full text link
    Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in the deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. In this paper, we provide an extensive survey of deep learning-based breast cancer imaging research, covering studies on mammogram, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods, publicly available datasets, and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are described in detail. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.Comment: Survey, 41 page

    Mammography

    Get PDF
    In this volume, the topics are constructed from a variety of contents: the bases of mammography systems, optimization of screening mammography with reference to evidence-based research, new technologies of image acquisition and its surrounding systems, and case reports with reference to up-to-date multimodality images of breast cancer. Mammography has been lagged in the transition to digital imaging systems because of the necessity of high resolution for diagnosis. However, in the past ten years, technical improvement has resolved the difficulties and boosted new diagnostic systems. We hope that the reader will learn the essentials of mammography and will be forward-looking for the new technologies. We want to express our sincere gratitude and appreciation?to all the co-authors who have contributed their work to this volume
    • …
    corecore