94 research outputs found

    Efficient two‐scale simulations of microstructured materials using deep material networks

    Get PDF
    Deep material networks (DMN) are a promising piece of technology for accelerating concurrent multiscale simulations. DMNs are identified by linear elastic pre-computations on representative volume elements, and serve as high-fidelity surrogates for full-field simulations on microstructures with inelastic constituents. The offline training phase is independent of the online evaluation, such that a pre-trained DMN may be applied for varying material behavior of the constituents. In this contribution, we investigate a two-scale component simulation of industrial complexity accelerated by DMNs. To this end, a DMN is solved implicitly at every Gauss point to include the microstructure information into the macro simulation

    A reduced order model for geometrically parameterized two-scale simulations of elasto-plastic microstructures under large deformations

    Full text link
    In recent years, there has been a growing interest in understanding complex microstructures and their effect on macroscopic properties. In general, it is difficult to derive an effective constitutive law for such microstructures with reasonable accuracy and meaningful parameters. One numerical approach to bridge the scales is computational homogenization, in which a microscopic problem is solved at every macroscopic point, essentially replacing the effective constitutive model. Such approaches are, however, computationally expensive and typically infeasible in multi-query contexts such as optimization and material design. To render these analyses tractable, surrogate models that can accurately approximate and accelerate the microscopic problem over a large design space of shapes, material and loading parameters are required. In previous works, such models were constructed in a data-driven manner using methods such as Neural Networks (NN) or Gaussian Process Regression (GPR). However, these approaches currently suffer from issues, such as need for large amounts of training data, lack of physics, and considerable extrapolation errors. In this work, we develop a reduced order model based on Proper Orthogonal Decomposition (POD), Empirical Cubature Method (ECM) and a geometrical transformation method with the following key features: (i) large shape variations of the microstructure are captured, (ii) only relatively small amounts of training data are necessary, and (iii) highly non-linear history-dependent behaviors are treated. The proposed framework is tested and examined in two numerical examples, involving two scales and large geometrical variations. In both cases, high speed-ups and accuracies are achieved while observing good extrapolation behavior

    Deep material networks for efficient scale-bridging in thermomechanical simulations of solids

    Get PDF
    We investigate deep material networks (DMN). We lay the mathematical foundation of DMNs and present a novel DMN formulation, which is characterized by a reduced number of degrees of freedom. We present a efficient solution technique for nonlinear DMNs to accelerate complex two-scale simulations with minimal computational effort. A new interpolation technique is presented enabling the consideration of fluctuating microstructure characteristics in macroscopic simulations

    Effective transient behaviour of heterogeneous media in diffusion problems with a large contrast in the phase diffusivities

    Get PDF
    This paper presents a homogenisation-based constitutive model to describe the effective tran- sient diffusion behaviour in heterogeneous media in which there is a large contrast between the phase diffusivities. In this case mobile species can diffuse over long distances through the fast phase in the time scale of diffusion in the slow phase. At macroscopic scale, contrasted phase diffusivities lead to a memory effect that cannot be properly described by classical Fick's second law. Here we obtain effective governing equations through a two-scale approach for composite materials consisting of a fast matrix and slow inclusions. The micro-macro transition is similar to first-order computational homogenisation, and involves the solution of a transient diffusion boundary-value problem in a Representative Volume Element of the microstructure. Different from computational homogenisation, we propose a semi-analytical mean-field estimate of the composite response based on the exact solution for a single inclusion developed in our previous work [Brassart, L., Stainier, L., 2018. Effective transient behaviour of inclusions in diffusion problems. Z. Angew Math. Mech. 98, 981-998]. A key outcome of the model is that the macroscopic concentration is not one-to-one related to the macroscopic chemical potential, but obeys a local kinetic equation associated with diffusion in the slow phase. The history-dependent macroscopic response admits a representation based on internal variables, enabling efficient time integration. We show that the local chemical kinetics can result in non-Fickian behaviour in macroscale boundary-value problems.Comment: 36 pages, 14 figure

    Finite Strain Homogenization Using a Reduced Basis and Efficient Sampling

    Full text link
    The computational homogenization of hyperelastic solids in the geometrically nonlinear context has yet to be treated with sufficient efficiency in order to allow for real-world applications in true multiscale settings. This problem is addressed by a problem-specific surrogate model founded on a reduced basis approximation of the deformation gradient on the microscale. The setup phase is based upon a snapshot POD on deformation gradient fluctuations, in contrast to the widespread displacement-based approach. In order to reduce the computational offline costs, the space of relevant macroscopic stretch tensors is sampled efficiently by employing the Hencky strain. Numerical results show speed-up factors in the order of 5-100 and significantly improved robustness while retaining good accuracy. An open-source demonstrator tool with 50 lines of code emphasizes the simplicity and efficiency of the method.Comment: 28 page

    Material‐informed training of viscoelastic deep material networks

    Get PDF
    Deep material networks (DMN) are a data-driven homogenization approach that show great promise for accelerating concurrent two-scale simulations. As a salient feature, DMNs are solely identified by linear elastic precomputations on representative volume elements. After parameter identification, DMNs act as surrogates for full-field simulations of such volume elements with inelastic constituents. In this work, we investigate how the training on linear elastic data, i.e., how the choice of the loss function and the sampling of the training data, affects the accuracy of DMNs for inelastic constituents. We investigate linear viscoelasticity and derive a material-informed sampling procedure for generating the training data and a loss function tailored to the problem at hand. These ideas improve the accuracy of an identified DMN and allow for significantly reducing the number of samples to be generated and labeled

    An FE–DMN method for the multiscale analysis of short fiber reinforced plastic components

    Get PDF
    In this work, we propose a fully coupled multiscale strategy for components made from short fiber reinforced composites, where each Gauss point of the macroscopic finite element model is equipped with a deep material network (DMN) which covers the different fiber orientation states varying within the component. These DMNs need to be identified by linear elastic precomputations on representative volume elements, and serve as high-fidelity surrogates for full-field simulations on microstructures with inelastic constituents. We discuss how to extend direct DMNs to account for varying fiber orientation, and propose a simplified sampling strategy which significantly speeds up the training process. To enable concurrent multiscale simulations, evaluating the DMNs efficiently is crucial. We discuss dedicated techniques for exploiting sparsity and high-performance linear algebra modules, and demonstrate the power of the proposed approach on an injection molded quadcopter frame as a benchmark component. Indeed, the DMN is capable of accelerating two-scale simulations significantly, providing possible speed-ups of several magnitudes

    An FE-DMN method for the multiscale analysis of thermomechanical composites

    Get PDF
    We extend the FE-DMN method to fully coupled thermomechanical two-scale simulations of composite materials. In particular, every Gauss point of the macroscopic finite element model is equipped with a deep material network (DMN). Such a DMN serves as a high-fidelity surrogate model for full-field solutions on the microscopic scale of inelastic, non-isothermal constituents. Building on the homogenization framework of Chatzigeorgiou et al. (Int J Plast 81:18–39, 2016), we extend the framework of DMNs to thermomechanical composites by incorporating the two-way thermomechanical coupling, i.e., the coupling from the macroscopic onto the microscopic scale and vice versa, into the framework. We provide details on the efficient implementation of our approach as a user-material subroutine (UMAT). We validate our approach on the microscopic scale and show that DMNs predict the effective stress, the effective dissipation and the change of the macroscopic absolute temperature with high accuracy. After validation, we demonstrate the capabilities of our approach on a concurrent thermomechanical two-scale simulation on the macroscopic component scale
    • 

    corecore