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Abstract

In this work, we propose a fully coupled multiscale strategy for components made from short fiber reinforced composites,
here each Gauss point of the macroscopic finite element model is equipped with a deep material network (DMN) which

overs the different fiber orientation states varying within the component. These DMNs need to be identified by linear
lastic precomputations on representative volume elements, and serve as high-fidelity surrogates for full-field simulations on
icrostructures with inelastic constituents.

We discuss how to extend direct DMNs to account for varying fiber orientation, and propose a simplified sampling strategy
hich significantly speeds up the training process. To enable concurrent multiscale simulations, evaluating the DMNs efficiently

s crucial. We discuss dedicated techniques for exploiting sparsity and high-performance linear algebra modules, and demonstrate
he power of the proposed approach on an injection molded quadcopter frame as a benchmark component. Indeed, the DMN
s capable of accelerating two-scale simulations significantly, providing possible speed-ups of several magnitudes.
c 2021 Published by Elsevier B.V.

eywords: Micromechanics; Computational homogenization; Multiscale simulation; Deep material networks; Laminates; Short fiber reinforced
omposites

1. Introduction

1.1. Problem setting

Injection molded short fiber reinforced components are frequently used for industrial applications as they combine
avorable mechanical properties, free formability and short cycle times. As a result of the injection molding process,
he fiber orientation and the fiber volume fraction may vary continuously within the component. Characterizing all
ossible orientation states for such materials is an arduous and expensive task, both experimentally and by simulative
eans.
To illustrate the complexity to be handled routinely, Fig. 1(a) shows a quadcopter frame arm made from short fiber

einforced polyamide with a local fiber orientation determined by an injection molding simulation, see Section 5 for
etails. The color scale encodes the local fiber orientation tensor. Magenta corresponds to a unidirectional, cyan to an
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(a) Injection molded quadcopter arm (b) Quadcopter frame geometry [1]

Fig. 1. Injection molded quadcopter arm (a) with local fiber orientation: magenta, cyan and yellow correspond to unidirectional, isotropic
and planar isotropic fiber orientation states. Quadcopter frame used as benchmark geometry (b) for the component scale simulation.

isotropic and yellow to a planar isotropic fiber orientation state. We observe that, for the majority of the quadcopter
arm, the fibers are almost aligned. Moreover, we encounter isotropic and planar isotropic fiber orientations in areas
where weld lines have formed. As weld lines correspond to weak spots in the structure, it is critical to account for
such regions accurately in mechanical simulations.

1.2. State of the art

Fig. 1(b) represents an example for a component with a spatially varying complex microstructure. A monolithic
finite element (FE) simulation of such a structure which resolves the heterogeneities is not feasible with the
current computational power. If the microscopic heterogeneities fluctuate on a scale that is much smaller than
the size of the component, homogenization methods may be used for obtaining so-called effective material models
which account for the physical mechanisms of complex and highly heterogeneous microstructures. Effective models
emerge naturally by solving a partial differential equation, the cell problem, on a suitable microstructure. For linear
material models, the effective properties may be precomputed and cached. In this way, it is possible to compute the
mechanical response of microstructured components.

Treating inelastic materials is more difficult, as the internal variables live naturally on the microstructure, and
cannot be “homogenized” to the macroscopic scale, in general. FE2 methods, introduced by Renard–Marmonier [2]
and subsequently refined [3–6], offer a solution by furnishing each Gauss point of the macroscopic finite element
model with a microstructure on which the cell problem is solved, accounting for the evolution of the internal
variables on the microscopic scale. To speed up the solution process on the microscale, FFT-based approaches [7–
9] may be used, giving rise to the FE–FFT [10–12] method in the concurrent multiscale context. Despite recent
progress in computational efficiency and parallel computing strategies, concurrent multiscale methods with full-field
models on the microscopic scale are typically too computationally demanding for industrial use.

To mitigate the computational burden of concurrent multiscale methods, the microscale problem is considered as a
parametric partial differential equation which needs to be solved repeatedly (for slightly different input parameters),
and model order reduction techniques may be utilized. Motivated by classical mean-field methods [13,14], Dvorak
and co-workers [15–17] introduced the transformation field analysis (TFA). The TFA applies to small strain
(visco-)plastic material models and assumes the inelastic strains to be piece-wise uniform on specific subdomains,
accounting for the resulting elastic deformations via strain localization tensors. In this way, effective models
with a finite number of internal variables arise, see also Chaboche et al. [18]. Furthermore, Liu and co-workers
[19–21] introduced the self-consistent clustering analysis (SCA), which is similar in spirit to the TFA, but exploits
the Hashin–Shtrikman variational principle [22–24] and is not per se limited to small strain (visco-)plasticity.

Nevertheless, when considered as discretization methods, both TFA and SCA show a slow convergence rate in
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erms of the number of clusters [25] which is rooted in the weak approximation capabilities of piecewise uniform
unctions [26].

Inspired by recent variational estimates for nonlinear materials [27], the non-uniform transformation field
nalysis [28] (NTFA) relies upon non-uniform inelastic basis functions, permitting the approximation errors of
he fields to be made as small as desired. However, the difficulty is transferred to prescribing suitable evolution
quations [29,30] for the reduced inelastic strains, which should be independent of the basis, cheap to evaluate
nd consistent upon refinement. Possible remedies are Taylor series expansions of the force potential [31–33],
ixed variational principles [34,35] or dedicated “reducible” models [36], giving rise to the FE2R (R as reduced)

method [37].
As an alternative to methods which approximate the solution of micromechanical problems on unit cells, it is

possible to approximate the effective properties directly. Typically, this comes at the cost of operating on a high-
dimensional domain of interest. Data driven methods, especially artificial neural networks (ANNs), are predestined
for such approximation tasks. There is a number of works considering training ANNs to approximate the effective
elastic energy of a medium, see Yvonnet and coworkers [38–40]. Furthermore, the regularity of the effective
stress facilitates the direct approximation of the stress–strain relationship of inelastic problems, see the works of
Jadid [41], Penumadu–Zhao [42] or Srinivasu et al. [43] for different approaches. Motivated by natural language
processing, recurrent neural networks (RNN) may provide a framework for incorporating history dependence into
the approximation of the stress–strain relationship, see Mozaffar et al. [44] and Koeppe et al. [45]. Gorji and
coworkers [46] demonstrated that RNN are able to capture effects such as the Bauschinger effect, permanent
softening or latent hardening in the context of elastoplasticity. RNN may also be employed in a multiscale setting,
see Ghavamian–Simone [47], Xu et al. [48] and Wu et al. [49]. Using artificial neural networks accompanied by an
on-the-fly switching to a reduced order model in a two-scale simulation was investigated by Fritzen et al. [50]. A
shortcoming of such data driven methods appears to be that their predictive quality appears low far away from the
training domain, and accounting for the inherent physics, i.e., monotonicity and thermodynamic consistency, may
be difficult.

Liu et al. [51,52] proposed a data driven modeling approach based on an explicit microstructure model consisting
of hierarchical laminates. More precisely, for a K -phase microstructure, Liu et al. consider a K -ary tree structure of
laminates with fixed direction of lamination and intermittent rotations. In analogy to deep artificial neural networks,
they called such an identified surrogate model a deep material network (DMN). Instead of approximating the
effective energy or the stress–strain relationship, DMNs are sought to approximate the effective stiffness of a
fixed microstructure considered as a function of the input stiffness tensors of the constituents. For the parameter
identification, they rely upon automatic differentiation and stochastic gradient descent, as typical for training artificial
neural networks. After training, the hierarchical laminate can be applied to inelastic problems, even at finite strains,
and the approximation accuracy is rather impressive.

Discarding the intermittent rotations, Gajek et al. [53] introduced direct DMNs, which are based on laminates
with variable direction of lamination. Direct DMNs enable a faster and more robust identification process compared
to the indirect DMNs of Liu et al. [51,52], and also compare favorably for inelastic constituents. Furthermore,
Gajek et al. [53] motivated the training on linear elastic data and generalization to the nonlinear regime by showing
that, to first order in the strain rate, the effective inelastic behavior of composite materials is determined by linear
elastic localization. As a byproduct, Gajek et al. [53] established that deep material networks inherit thermodynamic
consistency and stress–strain monotonicity from their phases. This property is crucial, as it ensures the effective
models to inherit stabilizing numerical properties, like strong convexity, from the phases of the composite. Deep
material networks were augmented by cohesive zone models by Liu [54].

Recently, Liu et al. [55] proposed a transfer learning approach to treat fiber reinforced composites by DMNs.
More precisely, they proposed to interpolate the parameters of already identified DMNs, corresponding to different
fiber orientation states. In this work, we go beyond this a posteriori approach, and seek DMNs covering the entire
spectrum of fiber orientations arising in such a fiber reinforced component.

1.3. Contribution and outline

In this article, we investigate a multiscale methodology for direct deep material networks, which covers all
possible variations of the second-order fiber orientation tensors and permits concurrent multiscale simulations with
3
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MNs at the Gauss point level. Similar to the FE2, FE-FFT and the FE2R methods, we call the ensuing method the
E-DMN method.

As point of departure, we consider direct deep material networks [53] and restrict to microstructures without
icro-orientations, i.e., microstructures comprising isotropic phases. To account for a spatially varying fiber

rientation, see Section 2, we augment direct DMNs by the fiber orientation interpolation concept introduced by
öbler et al. [56]. To this end, we assume that the local fiber volume fractions of the individual laminates in the
ierarchy are independent of the local fiber orientation. Therefore, it suffices to fix the fiber volume fractions and
o interpolate the lamination directions only. In contrast to Liu et al. [55], we do not consider a transfer learning
trategy, i.e., to interpolate already identified models, but propose an a priori interpolation strategy. More precisely,
e investigate deep material networks which explicitly depend on the fiber orientation, and identify the optimal
odel parameters jointly.
For this purpose, we utilize high-fidelity microstructures of fiber reinforced composites [57] which permit us

o routinely cover the possible fiber orientations at industrial filler fraction and fiber aspect ratio. For the sake of
implicity, we assume that both fiber volume fraction and fiber length are fixed for all generated microstructures.
e sample the linear elastic training data from up to 31 microstructure realizations. We also improve upon the

revious sampling strategy [51,52] for the constituents’ stiffness tensors used in the offline training. We show by
xample that it is sufficient to cover those stiffnesses which arise as possible material tangents on the microscopic
cale.

For component scale simulations of industrial problems, it is necessary to optimize the user-defined material
odels based upon the identified DMNs, see Section 3.
We take special care to ensure that the interpolated DMN generalizes accurately to the inelastic regime. To this

nd, 78 additional microstructure realizations were generated, exclusively for the inelastic validations. We compute
he stress response of each of the 109 generated microstructure representations by an FFT-based computational
omogenization [7,8] code and compare the former to the predicted stress response of the interpolated direct DMN.
he validation results show that with a maximum error of 5.5%, the DMN is capable of predicting the effective
tress of all investigated 109 discrete fiber orientation states sufficiently. We refer to Section 4 for details.

To show that our approach is applicable to state of the art engineering computations, we consider the entire
rocess chain of a quadcopter frame, see Fig. 1(b) and Section 5. We conduct an injection molding simulation
here we assume the fiber volume fraction to be homogeneous throughout the part, map the spatially varying fiber
rientations upon a finite element mesh and conduct a two-scale simulation using the identified DMN surrogate
odel. We implement the DMN as an implicit user-material (UMAT) subroutine in ABAQUS only relying upon

he provided software interfaces. In contrast, Liu et al. [55] employed DMNs in an explicit finite element analysis.
The quadcopter consists of four arms made from injection molded short fiber reinforced polyamide, two base

lates which are made from aluminum and four legs which are made from pure polyamide. The simulation model
f the quadcopter consist of more than two million elements resulting in almost ten million degrees of freedom. In
ore than 1.9 million elements, a deep material network is integrated implicitly at every Gauss points, accounting

or the local microstructure information in the simulation.
Last but not least, we discuss the computational costs accompanied by our approach in Section 6, and demonstrate

hat the educated guess of the potential computational power of DMNs made in the conclusion of Liu et al. [55]
as too pessimistic.

. Direct deep material networks for variable fiber orientation

In this section, we extend direct deep material networks to short fiber reinforced composite microstructures
arameterized by the second order fiber orientation tensor. The main technical tool is the fiber orientation
nterpolation technique, introduced by Köbler et al. [56], which we apply on the node level of the deep material
etwork.

First, we recall the basics of direct deep material networks and the fiber orientation triangle. Subsequently, we

ombine both concepts.
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Fig. 2. Schematic illustration of the material (a) and weight (b) propagation in a two-phase direct DMN of depth four (the input level is
not counted).

2.1. Direct deep material networks

Let GSM denote the set of all generalized standard materials (GSM) [58]. Then, any two-phase periodic
microstructure Y ⊆ Rd in d spatial dimensions gives rise to the (nonlinear) homogenization function

MY : GSM × GSM → GSM, (G1,G2) ↦→ Ḡ, (2.1)

which maps two input GSMs to the effective GSM that emerges by solving the cell problem of first order
homogenization, see Gajek et al. [53] for details. Homogenization functions may be regarded as the basic objects
of studying micromechanics at small strains.

In general, evaluating homogenization functions requires significant computational resources. Only for special
microstructures, the evaluation can be performed with minimal effort. An example for such a microstructure is given
by a two-phase laminate, uniquely characterized by a direction n of lamination and the volume fractions c1 and c2

of the two phases.
A direct deep material network is defined as a hierarchy of such two-phase laminates, see Fig. 2. The concept was

originally introduced by Liu and co-workers [51,52] for laminates with fixed direction of lamination, but additional
rotation layers, and simplified by Gajek et al. [53]. By combining laminates in a hierarchical manner, the resulting
homogenization function

DMN Y : GSM × GSM → GSM (2.2)

may be rather complex and, by a judicious choice of the involved laminates, may be used as an approximation
of the homogenization function (2.1) corresponding to the original microstructure Y , which is significantly less
demanding to evaluate.

On a more formal level, a direct DMN is a perfect, ordered, rooted binary tree of depth K , where a two-phase
laminate Bi

k is assigned to each node of the tree. We reserve the letter k for labeling the depth of a node, whereas
the horizontal index is consistently indexed by the letter i . Our layer count only comprises the laminate layers, and
the input is counted separately. Thus, the DMN comprises 2K

− 1 laminate nodes. For a two-phase DMN of depth
K , the homogenization function DMN Y

Ḡ = DMN Y (G1,G2) (2.3)

is defined recursively by traversing the binary tree from the leaves, at level K , to the root

Ḡ = G1 with Gi
= Bi (G2i−1,G2i ), k = 1 . . . K , i = 1 . . . 2k−1. (2.4)
1 k k k+1 k+1

5
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nput materials are assigned in an alternating fashion, i.e.,

Gi
K+1 =

{
G1, i odd,
G2, i even, (2.5)

holds. We refer to Fig. 2(a) for a schematic.
Liu et al. [51,52] noticed that parameterizing the involved laminates by the volume fractions c1 and c2 is not

optimal. Indeed, if one of the volume fractions is zero, the entire corresponding sub-tree will have no further
influence. It is more convenient to parameterize the laminates’ volume fractions by assigning pairs of weights
w2i−1

K+1 and w2i
K+1 to each laminate on the input level K . These weights should be non-negative and sum to unity.

Then, by traversing the binary tree from the leaves to the root, the weights on the kth level are computed by the
sum of weights of the respective laminates on the previous level, i.e.,

wi
k = w2i−1

k+1 + w2i
k+1 (2.6)

holds, see Fig. 2(b). The volume fractions c1 and c2 of each laminate Bi
k are then computed by normalization

c1 =
w2i−1

k+1

w2i−1
k+1 + w2i

k+1

and c2 = 1 − c1. (2.7)

For fixed tree topology, a direct DMN is uniquely determined by the directions of lamination, one for each laminate,
and the weights of the input layer. These free parameters are identified based on linear elastic precomputations, the
so-called offline training, see Section 3.1. Once the free parameters are identified, the DMN can be applied to
nonlinear and inelastic materials. This online evaluation is described in Section 3.2.

2.2. The fiber orientation triangle

Suppose a fiber orientation state is given in terms of a fiber orientation distribution (FOD) function ρ, which
specifies the probability to find fibers in direction p. Advani–Tucker [59] introduced the second order fiber
orientation tensor [59]

A2 =

∫
p ⊗ p ρ( p)dA( p) (2.8)

as a compact measure for the current fiber orientation state. Despite its limited information content, its compact form
makes it the typical quantity of interest for commercial injection molding simulations [60]. Higher-order moments
of the FOD are then estimated by closure approximations, see Montgomery–Smith et al. [61].

The tensor A2 is symmetric and positive definite with unit trace. Consequently, only five independent parameters
are involved. In terms of an eigenvalue decomposition

A2 = Q diag (λ1, λ2, λ3) QT, (2.9)

where the matrix Q ∈ SO(3) is orthogonal and the eigenvalues λ1 ≥ λ2 ≥ λ3 are sorted in a descending order, the
fiber orientation tensor A2 may be described by two parameters λ1 and λ2 which satisfy the inequalities

1
3

≤ λ1 ≤ 1 and
1 − λ1

2
≤ λ2 ≤ min (λ1, 1 − λ1). (2.10)

Thus, up to an orthogonal transformation, every tensor A2 corresponds to a point in the triangle described by the
inequalities (2.10), see Fig. 3. In this article, we follow Köbler et al. [56] and use the CMYK coloring scheme for
encoding different fiber orientations as shown in Fig. 3.

The manufacturing process induces local variations of the fiber orientation of short fiber reinforced thermoplastic
components. Thus, for component-scale simulations, these variations need to be accounted for by the material
models. If the fiber orientation state is described in terms of the second-order fiber orientation tensor A2, a family
of effective material models, one for each such tensor A2, needs to be supplemented.

By general covariance considerations, two fiber orientation states which differ only by an orthogonal trans-
ormation should give rise to effective material responses which differ only by this orthogonal transformation.
onsequently, if the considered fiber orientation states are parameterized by the second order fiber orientation tensor,

he essentially different fiber orientation states will be parameterized by the points inside the fiber orientation triangle
2.10).
6
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Fig. 3. Fiber orientation reference triangle showing the two largest eigenvalues of the fiber orientation tensor. The three extreme cases, i.e.,
(a) unidirectional, (b) isotropic and (c) planar isotropic fiber orientation are shown.

Thus, the material models to be identified are parameterized by a two-dimensional continuum. Furthermore, a
certain continuity of the effective response of the material model, considered as a function of the fiber orientation
tensor, is expected. Indeed, changing the fiber orientation only slightly is expected to change the effective mechanical
response only slightly as well, at least for non-critical loading. Unfortunately, the typical multiscale approach based
on representative volume elements is unable to leverage this continuity. Indeed, although the effective material
response depends continuously on the fiber orientation tensor, the representative volume element does not. Indeed,
due to the stochastic nature of such fiber-filled volume elements, infinitely many different representative volume
elements may be used to give rise to the same effective response.

In particular, this reasoning has the following implication. Suppose that we furnish each point (λ1, λ2) in the fiber
orientation triangle (2.10) with a corresponding representative volume element Yλ1λ2 . Even if all these elements have
the same size, the function (λ1, λ2) ↦→ Yλ1λ2 will not be continuous in any useful way.

As an alternative, Köbler et al. [56] proposed a fiber orientation interpolation procedure on the level of effective
tresses. This idea avoids the difficulty of interpolating internal variables which live in different locations for
ifferent microstructures. However, this approach comes at a price: the number of stress evaluations is tripled by
his approach. Indeed, for any fiber orientation state, the stress response associated to the three corners of the
nterpolating triangle needs to be evaluated.

.3. Fiber orientation interpolation of deep material networks

Due to their specific structure, deep material networks may overcome the difficulties mentioned at the end of
he previous section. Indeed, for fixed tree topology, the internal variables of the individual phases live on identical
ocations, also for different DMNs. Indeed, in any case, the internal variables are tied to the materials on the lowest
evel of the tree, see Fig. 2.

Of course, if DMNs are identified independently for each point in the fiber orientation triangle (2.10), the
arameters of the DMN need not depend continuously on the fiber orientation tensor A2. Still, it appears reasonable
o identify the DMN’s parameters jointly over all fiber orientations in the fiber orientation triangle.

More precisely, we consider DMNs which are parameterized by points (λ1, λ2) inside the fiber orientation
riangle. As observed by Liu et al. [51,52] and Gajek et al. [53], the DMN’s weights after training are directly
inked to the constituent volume fractions of the underlying microstructure. The former does not come as a surprise,
ince the effective elastic behavior is determined by the volume fraction to first order, see Milton [62, Ch. 14] or
orquato [63, Sec. 20.2.2], and the DMN is fitted on linear elastic data alone. Since, for generating the training data,
e assume a constant volume fraction, independent of the fiber orientation, we seek weights which are independent
f the fiber orientation.

In order to interpolate the lamination directions ni
k on the fiber orientation triangle, we parameterize each normal

ni
k ∈ S2 by spherical coordinates

ni
k =

⎡⎢⎣ sin
(
αi

k

)
cos

(
β i

k

)
sin
(
αi

k

)
sin
(
β i

k

)(
i
)

⎤⎥⎦ (2.11)

cos αk

7
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Table 1
Shape functions used for the orientation interpolation.

Linear M = 3 φ1 = ϕ1 φ2 = ϕ2 φ3 = ϕ3

Tri-linear M = 4
φ1 = ϕ1 − 9ϕ1ϕ2ϕ3 φ2 = ϕ2 − 9ϕ1ϕ2ϕ3 φ3 = ϕ3 − 9ϕ1ϕ2ϕ3
φ4 = 27ϕ1ϕ2ϕ3

Quadratic M = 6
φ1 = ϕ1 (2ϕ1 − 1) φ2 = ϕ2 (2ϕ2 − 1) φ3 = ϕ3 (2ϕ3 − 1)
φ4 = 4ϕ1ϕ2 φ5 = 4ϕ1ϕ3 φ6 = 4ϕ2ϕ3

with angles αi
k ∈ [0, π] and β i

k ∈ [0, 2π ]. Then, we interpolate the angles αi
k and β i

k on the fiber orientation triangle
(2.10) by a global (finite element) shape function. Please note the difference to Köbler et al. [56], who rely upon
linear interpolation on a subtriangulation of the fiber orientation triangle.

Particularly compact expressions for the finite element shape functions are obtained by transforming the
parameters λ1 and λ2 to barycentric coordinates ϕ1, ϕ2 and ϕ3, i.e., via solving the linear system⎡⎣ 1 1/3 1/2

0 1/3 1/2
1 1 1

⎤⎦⎡⎣ ϕ1
ϕ2
ϕ3

⎤⎦ =

⎡⎣ λ1
λ2
1

⎤⎦ , (2.12)

see e.g., Vince [64]. We collect the parameters of the polynomial shape functions in a vector φ⃗ = [φ1, . . . , φM ],
where M denotes the number of shape functions. Then, the interpolated angles may be expressed as

αi
k(λ1, λ2) = p⃗ i T

k φ⃗(λ1, λ2) and β i
k(λ1, λ2) = q⃗ i T

k φ⃗(λ1, λ2) (2.13)

in terms of the parameter vectors p⃗ = [p1, . . . , pM ] ∈ RM and q⃗ = [q1, . . . , qM ] ∈ RM . In this article, we
investigate linear, tri-linear and quadratic shape functions, see Table 1.

To sum up, extending DMNs to account for varying fiber orientation reduces to increasing the number of unknown
parameters. Indeed, instead of identifying the angles αi

k and β i
k , the parameter vectors p⃗ i

k and q⃗ i
k are sought, in

addition to the unknown weights wi
K+1.

3. Implementation

In this section, we explain how to evaluate linear and nonlinear homogenization functions of an interpolated
direct DMN efficiently.

3.1. Offline training

The goal of the offline training is to identify the free parameters of the DMN, namely the weights and the vectors
p⃗ i

k and q⃗ i
k used for interpolating the angles (2.13), which we collect in “long” vectors

p⃗ =

[
p⃗ 1

K , p⃗ 2
K , . . . p⃗ 2K−1

K , p⃗ 1
K−1, p⃗ 2

K−1, . . . , p⃗ 2K−2

K−1 , . . . , p⃗ 1
2 , p⃗ 2

2 , p⃗ 1
1

]
∈
(
RM)2K

−1
(3.1)

and

q⃗ =

[
q⃗ 1

K , q⃗ 2
K , . . . q⃗

2K−1

K , q⃗ 1
K−1, q⃗ 2

K−1, . . . , q⃗ 2K−2

K−1 , . . . , q⃗ 1
2 , q⃗ 2

2 , q⃗ 1
1

]
∈
(
RM)2K

−1
. (3.2)

We insert the parameters of laminates on level K first and add the parameters of laminates for decreasing level
index in their corresponding order. We enforce the non-negativity constraint on the weights

wi
K+1 ≥ 0 (3.3)

by defining wi
K+1 = ⟨vi ⟩+ in terms of unconstrained weights vi , i = 1, . . . , 2K . Here, ⟨·⟩ : R → R≥0,

x ↦→ max(0, x) denotes the Macauley bracket. By collecting vi in a vector v⃗ =
[
v1, . . . , v2K

]
∈ R2K

, we represent
the DMN’s linear elastic homogenization function in the form

C̄ = DMNL
Λ (C1,C2, λ1, λ2, p⃗, q⃗, v⃗) . (3.4)

DMNL
Λ maps the input stiffnesses C1 and C2, the fiber orientation parameters λ1 and λ2 and the unknown fitting
parameters p⃗, q⃗ and v⃗ to the DMN’s effective stiffness. The specific binary tree structures of the DMN can be

8
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Fig. 4. Schematic illustration of the stiffness propagation in a two-phase direct DMN of depth four.

xploited to evaluate DMNL
Λ efficiently. To this end, we assign the input stiffnesses C1 and C2 to the laminates

of level K in an alternating fashion. The directions of lamination are interpolated on the fiber orientation triangle
based on the given parameters λ1, λ2, p⃗ and q⃗, see Section 2.3. The input stiffnesses are homogenized at level K
for each laminate independently. In the next step, the homogenized stiffnesses serve as the input for level K − 1
and so forth, until the root is reached, giving rise to the DMN’s effective stiffness C̄. The process of propagating
stiffnesses from the K th level to the root is illustrated in Fig. 4.

Thus, computing the effective stiffness of a DMN reduces to computing a sequence of effective stiffnesses of
two-phase laminates. According to Section 9.5 in Milton’s book [65], the linear elastic homogenization function of
a laminate

Ci
k = Bi

k(C2i−1
k+1 ,C

2i
k+1) (3.5)

may be determined by solving the equation(
P(ni

k) + α
[
Ci

k − αIs
]−1
)−1

= c1

(
P(ni

k) + α
[
C2i−1

k+1 − αIs
]−1
)−1

+ c2

(
P(ni

k) + α
[
C2i

k+1 − αIs
]−1
)−1

(3.6)

or the effective stiffness Ci
k . Here, Is : Sym(d) → Sym(d) denotes the identity on Sym(d), the set of symmetric

d × d matrices, and P : Sym(d) → Sym(d) stands for a projection operator, which depends on the direction of
lamination ni

k , and reads

(P(n))mnop =
1
2

(nmδnon p + nnδmon p + nmδnpno + nnδmpno) − nmnnnon p (3.7)

n Cartesian coordinates. Here, δ denotes the Kronecker symbol and α is a parameter which needs to be chosen
ither sufficiently large or suitably small, see Kabel et al. [66].

Keeping the former in mind, we turn our attention to the offline training. We sample Ns quadruples of input
tiffnesses and fiber orientations (Cs

1,C
s
2, λ

s
1, λ

s
2), generate the respective microstructures and compute the effective

tiffnesses C̄s . We denote the generated training data by a sequence of quintuples
{(
C̄s,Cs

1,C
s
2, λ

s
1, λ

s
2

)}Ns

s=1 where
enumerates the sample index. The actual sampling process will be discussed in Section 4.4. For the moment, we

ssume the training data to be given and fixed.
We express the offline training as an optimization problem

J ( p⃗, q⃗, v⃗) −→ min
p⃗,q⃗,v⃗

(3.8)

nvolving the objective function

J ( p⃗, q⃗, v⃗) =
1

Nb

q

√ Nb∑( C̄s − DMNL
Λ

(
Cs

1,C
s
2, λ

s
1, λ

s
2, p⃗, q⃗, v⃗,

) 
p C̄s


)q

+ λ

⎛⎝ 2K∑
⟨vi ⟩+ − 1

⎞⎠2

. (3.9)

s=1 p i=1

9
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Fig. 5. Binary tree compression to speed up offline training and online evaluation. Laminates corresponding to zero weights are removed
rom the binary tree.

he quadratic penalty term encodes the mixing constraint

2K∑
i=1

wi
K+1 = 1. (3.10)

We implemented the offline training in PyTorch [67], see Gajek et al. [53], making use of the framework’s automatic
differentiation capabilities to solve the regression problem (3.8) by means of accelerated stochastic gradient descent
methods using mini batches of size Nb. An epoch j consists of evaluating (3.4) for all samples of the respective
mini batch, evaluating the loss function (3.9), computing the gradients ∂ J/∂ p⃗

(
p⃗ j , q⃗ j , v⃗ j

)
, ∂ J/∂q⃗

(
p⃗ j , q⃗ j , v⃗ j

)
and

∂ J/∂v⃗
(

p⃗ j , q⃗ j , v⃗ j
)

by means of automatic differentiation and updating the fitting parameters

p⃗ j+1 = p⃗ j − αp
∂ J
∂ p⃗

(
p⃗ j , q⃗ j , v⃗ j

)
, q⃗ j+1 = q⃗ j − αq

∂ J
∂q⃗

(
p⃗ j , q⃗ j , v⃗ j

)
and v⃗ j+1 = v⃗ j − αv

∂ J
∂v⃗

(
p⃗ j , q⃗ j , v⃗ j

)
.

(3.11)

uring offline training, it may happen that a portion of weights wi
K+1 becomes equal to zero, and remains zero due

o the vanishing gradient. Liu–Wu [52] removed such sub-trees from the binary tree by deleting nodes and merging
he respective subtrees. In this work, we follow Liu–Wu and compress the binary tree to speed-up the training, and
ventually, the online evaluation. Fig. 5 shows a schematic of how to remove laminates from the binary tree. The
ormer illustrates a weighted tree with edge weights corresponding to the propagated weights wi

K+1. Remember
hat the volume fractions of the individual laminates are computed from these weights by normalization.

During training, superfluous laminates are removed from the binary tree to minimize the number of computed
aminate homogenizations (3.5). The former happens dynamically during every forward pass. For the example in
ig. 5, only four out of seven laminate homogenization functions are computed in a forward pass, resulting in a
peed-up of about 43% compared to a perfect binary tree.

.2. Online evaluation

Eventually, we seek to employ DMNs to speed up a two-scale simulation, i.e., for every Newton iteration and at
very Gauss point of a finite element model, a deep material network needs to be integrated implicitly. At the same
ime, we want to account for arbitrary eigenvalues λ1 and λ2 of the fiber orientation tensor at every Gauss point of the

acro simulation. In this work, we extend the fast and flexible solution technique, introduced in Gajek et al. [53],
o compute the effective stress of a two-phase DMN. Please note that our global approach, which interprets the
MN as a single laminates with a complex kinematics, see Gajek et al. [53] for an illustration, is algebraically

quivalent to Liu et al.’s [51,52] distributed approach which relies on forward and backward propagations of strains
nd stresses.
10
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We restrict to the two-potential framework of small-strain isothermal generalized standard materials (GSM) [58].
n d spatial dimensions, a GSM is a quadruple (Z , ψ , φ, z0) ∈ GSM comprising a (Banach) vector space Z of

internal variables, a free energy density ψ : Sym(d)×Z → R, a dissipation potential φ : Z → R∪{+∞} and z0 ∈ Z
serves as the initial condition. We assume that the dissipation potential φ is proper, convex, lower semi-continuous
and satisfies φ(0) = 0 as well as 0 ∈ ∂φ(0), where ∂φ denotes the sub-differential of the convex function φ. For
he complete documentation of the GSM model structure in a continuous setting, see, e.g., Gajek et al. [53].

Suppose that the two GSMs G1 = (Z1, ψ1, φ1, z0,1) and G2 = (Z2, ψ2, φ2, z0,2) are given. A time discretization
f both phases i ∈ {1, 2} by the implicit Euler method gives rise to the formulae for discretized stress and Biot’s
quation, respectively,

σ n+1
i =

∂ψi

∂ε

(
εn+1

i , zn+1
i

)
and

∂ψi

∂ z
(
εn+1

i , zn+1
i

)
+ ∂φi

(
zn+1

i − zn
i

△t

)
∋ 0. (3.12)

ere, △t = tn+1
− tn denotes the time increment and the superscript n refers to the nth time step at time tn . Due to

he time discretization and freezing of the internal variables zn
i at time tn , each GSM reduces to a nonlinear elastic

aterial, see Lahellec–Suquet [68]. The condensed free energy Ψi : Sym(d) × Z i → R,

Ψi
(
εn+1

i , zn
i

)
= inf

zn+1
i ∈Zi

(
ψi
(
εn+1

i , zn+1
i

)
+ △t φi

(
zn+1

i − zn
i

△t

))
(3.13)

is solely dependent on the input strain εn+1
i and the internal variables zn

i of the last (converged) time step. Then,
he stress response reads

σ n+1
i =

∂Ψi

∂ε

(
εn+1

i , zn
i

)
. (3.14)

For the sake of readability, we omit explicit reference to time step n+1. First, let us collect the lamination directions
f all laminates in a single vector n⃗ ∈ (Rd )2K

−1 with the same ordering that we used for the vectors p⃗ and q⃗ , i.e.,

n⃗ =

[
n1

K , n2
K , . . . , n2K−1

K , n1
K−1, n2

K−1, . . . , n2K−2

K−1 , . . . , n1
2, n2

2, n1
1

]
. (3.15)

e consider the displacement jump vector a⃗ ∈ (Rd )2K
−1, which inherits its ordering from n⃗ and the vector of phase

trains ε⃗ =
[
ε1, ε2, . . . , ε2K

]
∈ (Sym(d))2K

. By introducing the gradient operator Aλ1λ2 : (Rd )2K
−1

→ (Sym(d))2K
,

e express the phase strains

ε⃗ = ⃗̄ε + Aλ1λ2 a⃗ (3.16)

.r.t. the macro strain ε̄ ∈ Sym(d) and the unknown displacement jumps a⃗. Here, the shorthand notation ⃗̄ε =

ε̄, ε̄, . . . , ε̄] ∈ (Sym(d))2K
is used. Indeed, for the work at hand, the gradient operator, which encodes the DMN’s

opology and lamination directions, depends on the fiber orientation parameters λ1 and λ2. To illustrate this concept,
onsider the following example. For a detailed derivation of the special structure of Aλ1λ2 , see Gajek et al. [53].
or a two-phase DMN of depth three as depicted in Fig. 5(a), Aλ1λ2 takes the following form

Aλ1λ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c2
3 N 1

3,λ1λ2
0 0 0 −c2

2 N 1
2,λ1λ2

0 −c2
1 N 1

1,λ1λ2

c1
3 N 1

3,λ1λ2
0 0 0 −c2

2 N 1
2,λ1λ2

0 −c2
1 N 1

1,λ1λ2

0 −c4
3 N 2

3,λ1λ2
0 0 c1

2 N 1
2,λ1λ2

0 −c2
1 N 1

1,λ1λ2

0 c3
3 N 2

3,λ1λ2
0 0 c1

2 N 1
2,λ1λ2

0 −c2
1 N 1

1,λ1λ2

0 0 −c6
3 N 3

3,λ1λ2
0 0 −c4

2 N 2
2,λ1λ2

c1
1 N 1

1,λ1λ2

0 0 c5
3 N 3

3,λ1λ2
0 0 −c4

2 N 2
2,λ1λ2

c1
1 N 1

1,λ1λ2

0 0 0 −c8
3 N 4

3,λ1λ2
0 c3

2 N 2
2,λ1λ2

c1
1 N 1

1,λ1λ2

0 0 0 c7
3 N 4

3,λ1λ2
0 c3

2 N 2
2,λ1λ2

c1
1 N 1

1,λ1λ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.17)
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ith the symmetrization operators w.r.t. the lamination direction ni
k,λ1λ2

= ni
k(λ1, λ2)

N i
k,λ1λ2

a =
1
2

(
a ⊗ ni

k,λ1λ2
+ ni

k,λ1λ2
⊗ a

)
(3.18)

s building blocks. Since we defined ni
k(λ1λ2) to depend on the parameters λ1 and λ2 explicitly, see Section 2.3,

the gradient operator depends on the fiber orientation, as well. We account for this situation in our notation, i.e., we
write Aλ1λ2 and N i

k,λ1λ2
. For the application at hand, i.e., integrating a DMN at every Gauss point during a two-scale

simulation, the fiber orientation parameters λ1 and λ2 are held fixed. Indeed, we assume that the microstructure does
ot evolve under the applied load.

Let us define the vector of internal variables of the last converged time step z⃗ n
=

[
zn

1, zn
2, zn

3, . . . , zn
2K

]
∈ Z :=

Z1 ⊕ Z2 ⊕ · · · ⊕ Z1 ⊕ Z2 and let Ψ̄ : (Sym(d))2K
× Z → R be the averaged condensed free energy of the flattened

laminate

Ψ̄ (ε⃗, z⃗ n) =

2K∑
i=1

wi
K+1Ψi (εi , zn

i ) where Ψi =

{
Ψ1, i odd,
Ψ2, i even, (3.19)

alternating between the two given condensed free energies Ψ1 and Ψ2. Then, we wish to solve the Euler–Lagrange
equation of the DMN

AT
λ1λ2

W σ⃗ (⃗̄ε + Aλ1λ2 a⃗, z⃗ n) = 0 (3.20)

for the unknown displacement jumps a⃗, where

σ⃗ =
[
σ 1, . . . , σ 2K

]
∈ (Sym(d))2K

with σ i =
∂Ψi

∂ε
(εi , zn

i ), (3.21)

s the vector of phase stresses. For a derivation of the Euler–Lagrange equation (3.20), the reader is referred to
ajek et al. [53]. The strain-wise “mass” matrix W : Sym(d)2K

→ Sym(d)2K
, representing the linear operator

W (ε⃗) =

(
w1

K+1ε1, w
2
K+1ε2, . . . , w

2K

K+1ε2K

)
, (3.22)

ssociates the weight wi
K+1, to the corresponding phase strain εi , i = 1 . . . 2K . In matrix notation, W is given

y a diagonal matrix with the weights wi
K+1 on the diagonal. We solve the Euler–Lagrange equation (3.20)

y Newton’s method. For an initial guess a⃗0 ∈ (Rd )2K
−1, the displacement jump vector a⃗ is iteratively updated

a⃗ j+1 = a⃗ j + s j △a⃗ j , where the increment △a⃗ j ∈
(
Rd
)2K

−1 solves the linear system[
AT
λ1λ2

W
∂σ⃗

∂ ε⃗
(⃗̄ε + Aλ1λ2 a⃗ j , z⃗ n)Aλ1λ2

]
△a⃗ j = −AT

λ1λ2
W σ⃗ (⃗̄ε + Aλ1λ2 a⃗ j , z⃗ n). (3.23)

A step size s j ∈ (0, 1] strictly less than unity may arise by backtracking. The Jacobian ∂σ⃗/∂ ε⃗(⃗̄ε + Aλ1λ2 a⃗ j , z⃗ n) is
a block-diagonal matrix containing the algorithmic tangents of the DMN’s input materials, i.e.,

∂σ⃗

∂ ε⃗
(ε⃗, z⃗ n) = block-diag

(
∂2Ψ1

∂ε∂ε
(ε1, zn

1), . . . ,
∂2Ψ2K

∂ε∂ε
(ε2K , zn

2K )
)
. (3.24)

Upon convergence, the phase strains ε⃗ = ⃗̄ε + Aλ1λ2 a⃗ and, subsequently, the effective stress

σ̄ =

2K∑
i=1

wi
K+1σ i (εi , zn

i ) (3.25)

are computed by averaging. Alternatively, the expression

σ̄ = [Is, Is, . . . , Is]TW σ⃗ (⃗̄ε + Aλ1λ2 a⃗, z⃗ n) (3.26)

ay be used for computing the volume average of the phase stresses, where W denotes the weight matrix and
[Is, Is, . . . , Is] ∈ Sym(d)2K

, Is : Sym(d) → Sym(d) stands for a vector of the identity operators on Sym(d). In
particular, the derivative of the effective stress (3.26) with respect to the macrostrain, the algorithmic tangent of the
DMN, admits the representation

Calgo
≡
∂σ̄

= [Is, Is, . . . , Is]TW
[
∂σ⃗

(⃗̄ε + Aλ1λ2 a⃗, z⃗ n) +
∂σ⃗

(⃗̄ε + Aλ1λ2 a⃗, z⃗ n)Aλ1λ2

∂ a⃗
]
. (3.27)
∂ ε̄ ∂ ε̄ ∂ ε⃗ ∂ ε̄
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ere, the expression ∂σ⃗/∂ ε̄ encodes the vector of algorithmic tangents of the phase materials

∂σ⃗

∂ ε̄
(ε⃗, z⃗ n) =

[
∂2Ψ1

∂ε∂ε
(ε1, zn

1), . . . ,
∂2Ψ2K

∂ε∂ε
(ε2K , zn

2K )
]
. (3.28)

To evaluate (3.27), the partial derivatives of the strain jumps with respect to the macrostrain ∂ a⃗/∂ ε̄ need to be
etermined first. To this end, differentiating the Euler–Lagrange equation (3.20) with respect to the macrostrain
ields the linear system[

AT
λ1λ2

W
∂σ⃗

∂ ε⃗
(⃗̄ε + Aλ1λ2 a⃗ j , z⃗ n)Aλ1λ2

]
∂ a⃗
∂ ε̄

= −AT
λ1λ2

W
∂σ⃗

∂ ε̄
(⃗̄ε + Aλ1λ2 a⃗, z⃗ n), (3.29)

which needs to be solved for ∂ a⃗/∂ ε̄. By comparing Eq. (3.29) to Eq. (3.23), we observe that both problems share the
same linear operator, but with different right hand sides. When using a direct solver, e.g., a Cholesky decomposition,
it is recommended to reuse the matrix decomposition for reasons of efficiency.

To reduce the number of degrees of freedom and, thus, to speed up the solution process, we exploit that some
weights become zero during training as explained in the previous section. We learned that in the offline training,
we can dynamically build a binary tree with simplified topology but identical effective behavior. This is also true
for the online evaluation of the DMN. The DMN’s topology is encoded by the gradient operator Aλ1λ2 . Deleting
laminate blocks from the binary tree is equivalent to deleting the associated rows and columns of Aλ1λ2 . For the
example shown in Fig. 5(b), we obtain a (reduced) gradient operator of the form

Aλ1λ2 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 −c2
2 N 1

2,λ1λ2
−c2

1 N 1
1,λ1λ2

−c4
3 N 2

3,λ1λ2
0 c1

2 N 1
2,λ1λ2

−c2
1 N 1

1,λ1λ2

c3
3 N 2

3,λ1λ2
0 c1

2 N 1
2,λ1λ2

−c2
1 N 1

1,λ1λ2

0 −c6
3 N 3

3,λ1λ2
0 c1

1 N 1
1,λ1λ2

0 c5
3 N 3

3,λ1λ2
0 c1

1 N 1
1,λ1λ2

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.30)

. Identifying a DMN surrogate model

This section is dedicated to the identification of the DMN surrogate model. We discuss the pre-processing
teps, i.e., finding the necessary resolution and the appropriate size of the volume elements, and investigate the
iscretization of the fiber orientation triangle. Subsequently, we explain the sampling of the training data, the offline
raining and the validation of the DMN surrogate model on the fiber orientation triangle. All computations were
erformed on a workstation equipped with two AMD EPYC 7642 with 48 physical cores each, enabled SMT and
024 GB of DRAM.

.1. Short glass fiber reinforced polyamide

For the work at hand, we focus on a short glass fiber reinforced polyamide. We consider E-glass fibers with a
ength of L f = 200 µm and a diameter of Df = 10 µm. The glass fibers are assumed to be isotropic, linear elastic.
he fiber volume fraction is set to cf = 16% corresponding to a fiber mass fraction of approx. 30%. The matrix

s assumed to be governed by J2-elastoplasticity, see Chapter 3 in Simo–Hughes [69] with an exponential–linear
ardening

σY = σ0 + k∞εp + (σ∞ − σ0)
(

1 − exp
(

−
k0 − k∞

σ∞ − σ0
εp

))
. (4.1)

The mechanical properties used in the simulation, taken from Doghri et al. [70], are summarized in Table 2. We
rely upon the Sequential Addition and Migration (SAM) method [57] for generating periodic volume elements with
prescribed volume fraction and second order fiber orientation tensor. The fiber length L f, fiber diameter Df, fiber
volume fraction cf and the axis aligned fiber orientation tensor A2, i.e., λ1 and λ2, serve as input parameters for
the SAM method. Please note that we only consider fiber orientation states with λ3 ≥ 0.01, as purely planar fiber
orientation states cannot be generated at high filler content essentially for geometric reasons, see Schneider [57] for

a discussion.
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Table 2
Material parameters for the short glass fiber reinforced polyamide [70].

Matrix E = 2.1 GPa ν = 0.3 σ0 = 29 MPa σ∞ = 61.7 MPa k0 = 10.6 GPa k∞ = 139 MPa
Fibers E = 72 GPa ν = 0.22

Fig. 6. Relative error of the effective stiffness C for different resolutions (a) and different volume element sizes (b). We consider the three
extreme cases of unidirectional, isotropic and planar isotropic fiber orientation. The reference stiffnesses are obtained for a resolution of 20
voxels per fiber diameter (a) and a volume element with edge length of 7.68 fiber lengths (b).

4.2. On the necessary resolution and the size of the RVE

For a start, we study the resolution necessary to obtain accurate effective properties in the purely elastic case.
For this purpose, we consider cubic microstructures with an edge length of L = 384 µm, i.e., roughly twice the
fiber length of L f = 200 µm. We compute the effective stiffness with the help of an FFT-based computational
micromechanics code [7,8] as described in Schneider [71], using the staggered grid discretization [72,73] and the
conjugate gradient solver [74,75].

We consider the extreme orientations individually, i.e., unidirectional, isotropic and planar isotropic fiber
orientation as shown in Fig. 3, and vary the resolution from 1.7 to 13.3 voxels per fiber diameter in equidistant
steps. This corresponds to volume element discretizations with 643 to 5123 voxels. We measure the error relative to
he effective stiffness C̄ and choose a resolution of 20 voxels per fiber diameter, i.e., a discretized by 7683 voxels,
s the reference.

Fig. 6(a) shows the relative error of the effective stiffness computed by the Frobenius norm of the corresponding
oigt matrices. For the crudest resolution, i.e., five voxels per fiber diameter, the relative error is well below 2% for
ll three considered fiber orientations. Notice that the relative error for the volume elements with planar isotropic
ber orientations is consistently larger than the error for the unidirectional and isotropic orientations. As expected,

he relative error decreases with increasing resolution. At a resolution of 6.7 voxels per fiber diameter, the relative
rrors of the unidirectional and isotropic fiber orientation fall below 1%. For 8.3 voxels per fiber diameter, the relative
rror of the planar isotropic fiber orientation is below 1%, as well. For this article, we consider a resolution of 6.7
oxels per fiber diameter as sufficient, i.e., relative errors below 1% for isotropic and unidirectional fiber orientation
nd an error slightly above 1% for the planar isotropic case. We fix this resolution and focus on finding the size of
representative volume element. For a resolution of 6.7 voxels per fiber diameter, we investigate volume elements
ith edge lengths L ranging from 1.44 up to 3.84 fiber lengths corresponding to volume element discretizations
ith 1923 up to 5123 voxels.
To obtain our reference, we generated a volume element with edge lengths of 7.68 fiber lengths discretized with

3
024 voxels. As for studying the necessary resolution, we again consider the relative error in the effective stiffness
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Fig. 7. The investigated fiber orientation discretizations: (a) four, (b) ten and (c) 31 sampling points.

as our error measure. For the volume elements with edge lengths of 1.9 fiber length and above, the relative error
is well below 0.5% and does not further decrease significantly for increasing volume element size. For this reason,
we consider volume elements with an edge length of L = 384 µm as sufficient. To sum up, we finally choose a
resolution of 6.7 voxel per fiber length, i.e., a voxel size of 1.5 µm and a discretization with 2563 voxels for the
article at hand.

4.3. Discretization of the fiber orientation triangle

To generate the linear elastic training data, we seek to sample the space of input stiffnesses and fiber orientations
uniformly. Apart from sampling the input stiffnesses, it is possible to sample λ1 and λ2 as well, e.g., via a
low-discrepancy sequence such as the Sobol sequence [76] or via Latin hypercube sampling [77]. Due to the
high dimension of the input space, we follow the former approach for generating tuples of input stiffnesses. The
considered fiber orientations are parameterized by a two-dimensional space. Its discretization will follow geometric
considerations, to be elaborated upon below.

We discretize the fiber orientation triangle by partitioning it into four self-similar triangles, which may be
subsequently partitioned, as well. We select the three points on the vertices of each triangle plus the centers of the
triangles as sampling points for the parameters λ1 and λ2. We start with the full orientation triangle, see Fig. 7(a).
The four sampling points, illustrated by four hollow circles, are located at the three corners and the center of the
orientation triangle. After the first splitting, the orientation triangle comprises four triangles and ten points, see
Fig. 7(b). After dividing the triangles one more time, we arrive at 31 sampling points. For each of these points
in fiber orientation space, we generate a single volume element using the SAM method [57] with edge lengths
L = 384 µm and a discretization with 2563 voxels, see Section 4.2. In this work, we consider the discretizations
shown in Fig. 7, i.e., we discretize the orientation triangle with four, ten and 31 sampling points which we call D4,
D10 and D31, respectively.

Choosing the sampling points in a hierarchical manner permits us to re-use already generated volume elements
for the next finer discretization. For instance, going from D10 to D31 only requires generating 21 new volume
elements. This restriction is not imposed by the SAM [57] algorithm since generating volume elements with the
given resolution and edge length is just a matter of milliseconds to seconds. Being able to reuse results from coarser
discretizations comes in handy for the inelastic validations we perform in Section 4.6. In Section 4.6, we generate 78
additional volume elements to validate the DMN outside of its training regime and to check if the DMN generalizes
sufficiently on the orientation space. To this end, we compare the DMNs predicted effective stress to the effective
stress obtained by full field simulations for twelve independent strain paths for every generated volume element
and orientation state within the orientation discretization. Obtaining the full field solutions is computationally
expensive. Therefore, being able to reuse the full-field solutions from coarser discretizations for validating the finer

discretizations comes in handy to keep the validation effort manageable.
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.4. Material sampling

We turn our attention to the sampling of the input stiffnesses. There is some freedom in the selection of
ppropriate sampling strategies for the training data. For instance, Liu et al. [51], Liu and Wu [52] and Gajek
t al. [53], sampled (axis aligned) orthotropic stiffnesses. In the work at hand, we seek to decrease the number
f degrees of freedom further, from 17 to 8, by taking into account that the glass fibers are linear elastic and the
olyamide matrix is governed by J2-elastoplasticity. For that reason, we assume that the samples C1, corresponding
o the glass fibers, are isotropic, i.e., the equation

C1 = 3K1 P1 + 2G1 P2 (4.2)

holds, where P1 : Sym(d) → Sph(d) and P2 : Sym(d) → Dev(d) project onto the spherical and deviatoric subspaces
of Sym(d), respectively. Secondly, we assume that the samples corresponding to the polyamide matrix are isotropic
minus a rank-one perturbation, i.e.,

C2 = 3K2 P1 + 2G2
(
P2 − a N ′

⊗ N ′
)
. (4.3)

Here, the tensor N ′
∈ N is normalized and deviatoric, i.e.,

N = {N ∈ Sym(d) | tr (N) = 0, ∥ N ∥F = 1} . (4.4)

The structure of the second stiffness C2 encompasses the possible algorithmic tangents of J2-elastoplasticity, see
Chapter 3 in Simo–Hughes [69].

The set of all considered positive definite stiffness tuples (C1,C2) may be parameterized via(
K1,G1, K2,G2, a, N ′

)
∈ R4

>0 × [0, 1)× N , (4.5)

where Ki and G i have the dimensions of a Young’s modulus and a and N ′ are dimensionless. Since the latter set
is unbounded, we restrict to the subset of elements

(
K1,G1, K2,G2, a, N ′

)
with

K1 = 1 GPa, G1 = 10p1 GPa, K2 = 10p2 GPa, G2 = 10p3 GPa (4.6)

and exponents p1, p2, p3 ∈ [−3, 3]. By fixing the compression modulus K1, we removed the redundancy due to
homothetic rescaling via (C1,C2) ↦→ (λC1, λC2) for λ > 0. For parameterizing N ′, we make use of an eigenvalue
decomposition N ′

= QN QT with an orthogonal Q ∈ SO(3) and a diagonal N ∈ N matrix. We parameterize N
by spherical coordinates

N = diag (sin (α) cos (β) , sin (α) sin (β) , cos (α)) (4.7)

ensuring the condition ∥ N ∥F = 1 to hold. To account for the vanishing trace, tr (N) = 0, we eliminate the angle
α in Eq. (4.7) and arrive at the parameterization

N =
1√

cos(β) sin(β)+1
2 cos(β) sin(β)+1

diag

(
−

√
2 cos (β)

2 cos (β)+ 2 sin (β)
,−

√
2 sin (β)

2 cos (β)+ 2 sin (β)
,

1
√

2

)
(4.8)

in terms of an single remaining angle β ∈ [0, 2π ]. As in Gajek et al. [53], the special orthogonal group is
arameterized via an axis–angle representation

Q : R3
→ R3, x ↦→ cos (θ) x + sin (θ) n × x + (1 − cos (θ))(n · x)n, (4.9)

or the axis n = (sin (ψ) cos (ϕ) , sin (ψ) sin (ϕ) , cos (ψ)), and where the conditions θ−sin (θ) ∈ [0, π], ψ ∈ [0, π]
and ϕ ∈ [0, 2π ] hold, see Miles [78].

To sum up, we consider the following eight degrees of freedom

(a, p1, p2, p3, β, θ, ψ, φ) (4.10)

with their respective domains specified above. To sample the input space evenly, we sample the parameters (4.10)

by the Sobol sequence and, subsequently, construct the stiffness tensors (C1,C2).
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Table 3
Number of generated samples and training and validation set sizes.

D4 D10 D31

Total 800 1000 1550
Per microstructure 200 100 50

Training set 720 900 1395
Validation set 80 100 155

4.5. Offline training

For the offline training, we generate Ns pairs of stiffnesses
(
Cs

1,C
s
2

)
by the protocol described in Section 4.4.

Then, we assign each stiffness tuple to one of the previously generated volume elements in a cyclic fashion. For
instance, for the orientation discretization D4, we assign

(
C1

1,C1
2

)
to the volume element with fiber orientation(

λ1
1, λ

1
2

)
,
(
C2

1,C2
2

)
to the volume element with

(
λ2

1, λ
2
2

)
and

(
C5

1,C
5
2

)
to the volume element with

(
λ1

1, λ
1
2

)
and so

forth. For every quadruple
(
Cs

1,C
s
2, λ

s
1, λ

s
2

)
, we compute the associated effective stiffness C̄s with the help of an FFT-

based computational micromechanics code [7,8]. The generated data
{(
C̄s,Cs

1,C
s
2, λ

s
1, λ

s
2

)}Ns

i=1 serves as training data
for identifying the DMN. The number of samples depends on the discretization of the orientation triangle and is
summarized in Table 3. For D4, we generate 800 samples in total which corresponds to 200 samples per volume
element. To keep the sampling and training effort manageable, we reduce the number of generated samples to 100
and 50 per microstructure when increasing the number of discrete orientations to ten and 31, respectively. For D4,
D10 and D31, we randomly split the pre-computed samples into a training and validation set, comprising 90% and
10% of the samples. We train the deep material network on mini-batches with a batch size of Nb = 32 samples.
More precisely, we draw the batches randomly from the training set and drop the last batch, should the remaining
batch size be smaller than 32.

We consider deep material networks with eight layers. In general, eight layers are necessary to achieve a sufficient
approximation quality, in particular for inelastic computations [51–53]. We train for 3000 epochs and rely upon
the AMSGrad method [79,80] combined with the warm restart technique suggested by Loshchilov–Hutter [81].
Furthermore, we make use of a modulation of the learning rate between a minimum learning rate αmin and a
maximum learning rate αmax, i.e.,

α : N → R, m ↦→ γ m
(
αmin +

1
2
(αmax − αmin)

(
1 + cos

(
π

m
M

)))
, (4.11)

where 2M corresponds to the period and M = 50 is chosen. Additionally, we decay the learning rate at a geometric
rate with γ = 0.999.

Since gradient descent is sensitive w.r.t. the proper choice of the step size, we determine the learning rates αp,
q and αv by a learning rate sweep as introduced by Smith–Topin [82]. The resulting learning rates are almost

dentical for all three parameter groups, and, therefore, we set αp = αq = αv = α with a maximum learning rate of
max = 1.5 · 10−2. The minimum learning rate is chosen to be an order of magnitude smaller than the maximum

earning rate, i.e., αmin = 1.5·10−3. We sample the initial weights v⃗ from a uniform distribution on [0, 1] and rescale
he weights to sum to unity. The entries of the parameter vectors p⃗ and q⃗ are sampled from a uniform distribution
n [0, 2π ].

The penalty parameter of the objective function (3.9) is set to λ = 103. Additionally, we set the exponents to
p = 1 and q = 10, see Gajek et al. [53], i.e., we enforce the maximum of the component-wise mean error to be

inimized. To assess the accuracy of the fit, we define the sample-wise error

es =

DMNL
Λ (C1,C2, λ1, λ2)− C̄s


1 C̄s


1

, (4.12)

where ∥ · ∥1 refers to the Frobenius-1 norm defined by the ℓ1-norm of the stiffness components in Voigt notation.
dditionally, we define the maximum and mean errors of all samples

emax = max
s
(es) and emean =

1
N

Ns∑
es, (4.13)
s s=1
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Fig. 8. Loss function (a) and mean training and validation error (b) during training for D31.

where Ns denotes the number of elements in the training or validation set, depending on the considered
scenario.

In Fig. 8, the training progress for the D31 orientation discretization and the investigated linear, tri-linear and
quadratic orientation interpolations is shown. In the first 500 epochs, the effect of the learning rate modulation
becomes apparent. The loss function and mean error fluctuate noticeably. In the last 500 epochs, the decay of
the learning rate ensures convergence of the trained parameters. Conforming to intuition, increasing the degrees
of freedom, i.e., choosing a tri-linear or quadratic orientation interpolation over a linear orientation interpolation,
decreases the loss function at convergence. This trend carries over to the mean training errors, as well. For the mean
validation error, however, the linear orientation interpolation provides the best mean validation error. Such overfitting
phenomena are not uncommon for training deep neural networks, where increasing the degrees of freedom not
necessarily yields better generalization and validation results. As training progresses, no increasing validation errors
can be observed for linear, tri-linear and quadratic orientation interpolation. Thus, no significant model over-fitting
is observed during training.

In Table 4, we summarized the training results for the investigated orientation discretization and interpolation.
Additionally, we listed the number of non-zero weights wi

K+1 at the end of training. In general, we observe
he following trends: Mean and maximum training errors will decrease if a tri-linear or quadratic orientation
nterpolation is chosen instead of a linear interpolation. The same observation holds for the mean validation error.
he maximum validation error, on the other hand, does not necessarily decrease by introducing additional fitting
arameters. Furthermore, the maximum validation error shows significant fluctuations. Indeed, for D4 and the linear
nterpolation, it reaches almost 12%. Since the maximum validation error is dominated by a single sample, see Liu
t al. [51,52] or Gajek et al. [53], we consider the mean validation error to be a more appropriate indicator of the
uality of the training results.

If we go from D4 to D10 and D31, the loss function as well as the training and validation errors will increase, in
eneral. Indeed, the DMN has to predict the effective behavior of significantly more volume elements with different
ber orientations and this result does not come unexpected.

.6. Online evaluation

We implemented Newton’s method, as described in Section 3.2, as a user-material subroutine in ABAQUS. In
erms of implementation, the major difference compared to Gajek et al. [53] is that, for the work at hand, the gradient
perator depends on the fiber orientation parameters λ1 and λ2, see Section 3.2. This does not infer any additional
hallenges, since the microstructure characteristics do not change during computation. Both parameters λ and λ
1 2
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able 4
raining results of the deep material network for different orientation interpolations and orientation discretizations.

J etr
mean etr

max eval
mean eval

max Active weights

D4
Linear 7.378 · 10−3 0.462% 1.236% 0.669% 7.088% 71%
Tri-linear 6.456 · 10−3 0.413% 1.016% 0.572% 3.960% 73%
Quadratic 6.736 · 10−3 0.431% 1.054% 0.563% 2.948% 71%

D10
Linear 1.026 · 10−2 0.638% 1.610% 0.982% 11.982% 70%
Tri-linear 9.109 · 10−3 0.587% 1.266% 0.698% 4.933% 70%
Quadratic 8.156 · 10−3 0.541% 1.127% 0.665% 2.969% 68%

D31
Linear 1.296 · 10−2 0.730% 2.173% 0.783% 3.935% 67%
Tri-linear 1.175 · 10−2 0.700% 1.928% 0.879% 6.018% 65%
Quadratic 9.757 · 10−3 0.620% 1.361% 0.841% 7.051% 68%

are fixed during the online evaluation, and after assembling Aλ1λ2 , the effective stress and algorithmic tangent are
omputed by Newton’s method in the proposed manner. For a summary of the main steps of the algorithm, i.e.,
omputing phase strains and stresses, updating the displacement jumps, updating internal variables and computing
he DMN’s effective stress, we refer to Gajek et al. [53], where the pseudo-code for the implementation of the
nline phase can be found.

Our goal in Section 5 is to employ deep material networks for a two-scale simulation using ABAQUS. For
his purpose, we seek to speed up the inelastic computations as much as possible. As a first step, the elimination
rocedure described in Section 3 proves effective. The deleting is performed in an upstream pre-processing step
fter the offline training to avoid unnecessary computational overhead. Secondly, we exploit the sparsity pattern of
ll involved linear operators, both, the sparsity pattern of the gradient operator and the Jacobian ∂σ⃗/∂ ε⃗, containing
he algorithmic tangents of the phases. To this end, we rely upon the library Eigen3 [83] for all linear algebra
perations and use sparse matrices whenever possible. For Newton’s method, we use the following convergence
riterion AT

λ1λ2
W σ⃗ (⃗̄ε n+1

+ Aλ1λ2 a⃗ n+1
, z⃗ n)


F

(2K − 1)
 σ̄ n+1


F

≤ tol, (4.14)

where we set the tolerance tol to 10−12 and ∥ · ∥F refers to the Frobenius norm defined by the ℓ2-norm of the
nvolved matrices in Voigt notation. We solve the linear system by means of a sparse Cholesky decomposition.

Before employing the DMN in a two-scale simulation, we turn our attention to validating the predicted effective
tress of the deep material network. To investigate whether deep material networks are capable of accurately
nterpolating the effective stress outside of the training regime, additional volume elements were generated. We
se D4 as our point of departure and subdivide the orientation triangle three more times yielding 105 additional
ampling points on the orientation triangle. For D10 and D31, we subdivide the orientation triangle two and one
ore times, giving rise to 99 and 78 additional sampling points, respectively.
In Fig. 9, for all three discretizations, the sampling points used for obtaining the training data (hollow circles)

nd the sampling points exclusively used for the inelastic validations (black filled circles) are shown. For every
dditional sampling point, we generated a volume element using SAM [57]. We keep using the volume elements
lready generated for offline training such that we have 109 generated volume elements in total for every D4, D10
nd D31.

Using the material parameters of the short fiber reinforced polyamide given in Section 4.1, we investigate six
ndependent uniaxial strain loadings

ε̄ =
ε̄

2

(
ei ⊗ e j + e j ⊗ ei

)
, (i, j) ∈ L1 ≡ {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)} . (4.15)

For every uniaxial strain loading direction in the index set L1, a full hysteresis with a strain amplitude of ε̄ = 2.5%
over a time of T = 4 s is computed in 80 equidistant load steps to account for load reversal. To consider more
complex loading conditions, we investigate six independent biaxial strain loadings

¯ { }
ε = ε̄1 ei ⊗ ei + ε̄2 e j ⊗ e j , (i, j) ∈ L2 ≡ (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2) (4.16)
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Fig. 9. Investigated fiber orientation discretizations comprising volume elements used in offline training and additionally generated volume
elements for the online validation: (a) four training and 105 validation, (b) ten training and 99 validation and (c) 31 training and 78 validation
points.

over a time of T = 2 s and computed in 40 equidistant load steps. For every biaxial loading direction in the
ndex set L2, a strain loading of ε̄1 = 1.77% is applied while the strain in the second direction is held constant
ε̄2 = 0%. After the load in the first direction is applied, a strain loading of ε̄2 = 1.77% is applied in the second

irection as well. Both for the uniaxial and biaxial simulations, mixed boundary conditions [84], i.e., stress free
oading perpendicular to the loading direction, were used. As reference, we compute the volume elements’ effective
tress σ̄ FFT by means of an FFT-based computational micromechanics code and use an Eyre–Milton solver [85,86].
o evaluate the approximation error in a quantitative way, we introduce the following error measures. For fixed
rientation parameters λ1 and λ2, we define the relative error in the stress component (i, j) as

ηi j,λ1λ2 (t) =

⏐⏐⏐σ̄DMN
i j,λ1λ2

(t) − σ̄ FFT
i j,λ1λ2

(t)
⏐⏐⏐

max
t∈T

⏐⏐⏐σ̄ FFT
i j,λ1λ2

(t)
⏐⏐⏐ , (4.17)

where T = [0, T ] denotes the considered time interval. Furthermore, the mean and the maximum error are defined
by

ηmean
λ1λ2

= max
i, j∈{1,2,3}

1
T

∫ T

0
ηi j,λ1λ2 (t)dt (4.18)

nd

ηmax
λ1λ2

= max
i, j∈{1,2,3}

max
t∈T

ηi j,λ1λ2 (t), (4.19)

respectively. For each of the sampled 109 fiber orientation states, we compute the previously mentioned twelve
independent loading paths and evaluate these error measures. The resulting mean and maximum errors for all
orientations are shown in Fig. 10, for D31 and linear orientation interpolation. Comparing Figs. 10(a) and 10(b), we
observe that the mean error fluctuates less on the orientation triangle than the maximum error, in particular in the
vicinity of the isotropic fiber orientation. The maximum relative error attains its maximum value of around 5.5% for
the unidirectional fiber orientation. The mean error, on the other hand, fluctuates less and attains its maximum also
for the unidirectional case. Still, with a maximum error of 5.5%, the DMN is capable of predicting the effective
stress of all investigated 109 discrete fiber orientation states with sufficient accuracy.

Fig. 11 gives an impression of how the mean and maximum errors shown in Fig. 10 translate into actual stress–
time curves. For the three extreme cases and an uniaxial extension in the 11-direction, the 11-component of the
effective stress predicted by the DMN and computed by an FFT-solver is shown in Fig. 11(a). For isotropic and
planar isotropic fiber orientations, the DMN’s effective stress σ̄DMN

11 and the full field solution σ̄ FFT
11 are almost

ndistinguishable. Even for the unidirectional fiber orientation, which exhibits the previously mentioned maximum
rror of 5.5%, σ̄DMN

11 and σ̄ FFT
11 show a good agreement. In Fig. 11(b), the stress components for a biaxial extension

n the 11- and the 22-direction are illustrated. As noted previously, we observe the largest relative error for the
20
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Fig. 10. Distribution of mean and maximum error on the orientation triangle for D31 and a linear orientation interpolation.

Fig. 11. Comparing the effective stresses predicted by the DMN and computed by an FFT-solver for an uniaxial extensions (a) and biaxial
xtension (b) for the three extreme fiber orientation states.

nidirectional fiber orientation, whereas the predictions of DMN and FFT for isotropic and planar isotropic fiber
rientations are almost indistinguishable.

Fig. 12 summarizes the minimum, mean and maximum of the individual error measures with respect to the
rientation parameters λ1 and λ2 for D4, D10, D31 and linear, tri-linear and quadratic orientation interpolation.

Fig. 12, which compares 11 772 computed DMN load paths with 1308 full field simulations, permits us to draw
he following conclusions. For fixed type of orientation interpolation, a finer orientation discretization reduces the

ean and maximum errors. The dependence of the mean and maximum error on the polynomial degree is more
omplicated. Compared to the linear orientation interpolation, both, the mean and the maximum error increase
ignificantly for tri-linear and quadratic interpolation. The former holds true for D4, D10 and D31. Similar to the
ffline training, the loss and training errors decrease for higher order interpolations. Only the validation errors
hows a slight increase. This suggests an overfitting with respect to the orientation interpolation, so that the linear
pproaches to the orientation interpolation is recommended, in the end.

. A computational example

After validating that the DMN is able to provide sufficiently accurate results, we turn our attention to a
omponent of industrial complexity. We choose a quadcopter frame, see Fig. 1(b), whose CAD geometry is publicly
vailable [1]. We assume that the arms of the quadcopter are manufactured by injection molding. To obtain realistic
21
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Fig. 12. Minimum, mean and maximum errors w.r.t. mean ηmean
λ1λ2

and maximum ηmax
λ1λ2

error for the three considered orientation interpolations.

able 5
arameters used for the injection molding simulation [89].

Mass density: 1410 kg/m3 Folger–Tucker interaction coeff. : Ci = 0.01
Injection temperature: 548.15 K Particle number: Np = 0
Mold temperature: 313.15 K Glass transition temperature: θref = 503.15 K
Heat cap. at const. pressure: 2400 J/(K kg) A0: 0.1 s
Thermal conductivity: 0.25 W/(m K) A1: 0.65
Initial orient. distribution: Isotropic A2: 0.021 1/K
Fiber aspect ratio: ra = 20 Reference shear viscosity η0: 100 Pas

fiber orientation data, we conducted a mold filling simulation for a single quadcopter arm (and utilize these data
for all four identical quadcopter arms). We use the publicly available software InjectionMoldingFoam [87], which
is based upon the two-phase, incompressible flow solver of OpenFOAM [88]. We choose identical settings and
material parameters as Köbler et al. [56], i.e., we assume a homogeneous fiber volume fraction and select the
following Carreau–WLF equation [60]

η(θ, γ̇ ) = η0
e−A2(θ−θref)(

1 + (A0γ̇ )
2) 1−A1

2

. (5.1)

Here, θ denotes the absolute temperature and γ̇ refers to the norm of the strain-rate tensor. The parameters for the
injection molding simulation are summarized in Table 5 and originally stem from Bhat et al. [89]. The results of
the injection molding simulation are shown in Fig. 13, both for a top and a side view, and at three distinct instances
of time, corresponding to a volume coverage of 50%, 75% and 100%, respectively. The computed fiber orientations
are represented by the color scale shown in Fig. 3. We observe that, at the flow fronts, planar and isotropic fiber
orientations dominate. For the rest of the drone arm, fiber orientations close to the unidirectional case are prevalent.
Fig. 13(d) illustrates the principal fiber orientations, i.e., the eigenvector corresponding to the largest eigenvalue of
A2, after the mold is filled.

As a result of the location of the injection points, pronounced weld lines are formed on the left of the center of
the drone arm, see Fig. 13(c).

Using the material behavior of the short fiber reinforced polyamide as given in Section 4.1, we perform a
structural simulation on a single drone arm using the FE software ABAQUS. We mesh the drone arm by quadratic
tetrahedron elements and investigate five different mesh densities ranging from 63 580 up to 1 005 862 elements
in order to analyze convergence, wall–clock times and memory requirements, see Table 9. The computed fiber
orientation tensors serve as the input for the simulation, i.e., the eigenvectors of A are mapped onto the ABAQUS
2
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Fig. 13. Injection molding simulation with volume coverage of 50%, 75% and 100% and principal fiber orientation after filling.

Fig. 14. Side and top view of the simulated drone arm for a homogeneous, isotropic fiber orientation (a) and the mapped anisotropic fiber
orientation (b) from the injection molding simulation.

mesh and determine the material orientation. The eigenvalues λ1 and λ2 are provided to the DMN subroutine via
pre-defined fields. We apply a loading of F = 80 N on the motor mount via a surface force and fix the left side of
the drone arm, see Fig. 14.

The loading is applied in ten equidistantly spaced time increments. Fig. 14 shows the results for the finest
discretization of about one million tetrahedron elements. The former took about 165 min to complete on 96 threads
and required 133 GB of DRAM. On the left hand side, the von Mises stress distribution for the last time increment
and for an assumed homogeneous and isotropic fiber orientation is shown. The right hand side of Fig. 14 shows
the computed stress for the mapped anisotropic, inhomogeneous fiber orientation. For the mapped anisotropic fiber
orientation, stress fluctuations, especially in the vicinity of weld lines are clearly visible. In contrast, stress and
strain concentrations at weld lines cannot be predicted for a homogeneous fiber orientation. Accounting for the entire
process chain appears imperative in order to exploit the full lightweight potential of injection-molded fiber-reinforced
components, as becomes evident when comparing the predicted total deflections. Indeed, for the assumed isotropic
fiber orientation, the macro simulation predicts a deflection of 6.13 mm. A deflection of 3.99 mm is predicted for
the anisotropic fiber distribution. Thus, the isotropic variant underestimates the actual stiffness of the component
by a factor of two.

To demonstrate the capabilities of the introduced multiscale method, we investigate the entire drone frame in
a mechanical simulation, see Fig. 15. The four drone arms are manufactured from injection molded, short fiber
23
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Table 6
Material parameters of the aluminum plates [90].

Aluminum E = 75 GPa ν = 0.3 σ0 = 75 MPa k = 416 MPa m = 0.3895

Fig. 15. Simulated quadcopter drone frame.

reinforced polyamide with mapped anisotropic fiber orientation. A deep material network is integrated at every
Gauss point. Both, the upper and lower plates, which the drone arms are attached to, are made of aluminium. For
this material, we use a J2-elastoplasticity model [69] with power law hardening

σy = σ0 + k εm
p . (5.2)

The material parameters, i.e., Young’s modulus E , Poisson’s ratio ν and hardening parameters σ0, k and m are taken
rom Segurado et al. [90] and summarized in Table 6. We assume the drone legs to be made of pure polyamide.
or the latter, we assign a linear elastic material behavior, see Table 2. The simulation model consists of about two
illion elements with almost ten million degrees of freedom, see Table 10. The drone arms are loaded as shown

n Fig. 15 with a force of F = 80 N. The loading is applied in ten equidistant load steps. The simulation took
bout 4.5 h wall–clock time on a consumer grade workstation, running on 96 threads in parallel. In particular,
eep material networks enable high-fidelity two-scale simulations with reasonable effort. Indeed, by the results of
ection 4.6, the maximum error of DMNs, evaluated for all investigated fiber orientations and load cases, does not
xceed 5.5%. For most engineering applications, such an error appears reasonable.

. Computational cost

Last but not least, we discuss the computational cost of deep material networks accounting for the offline training
nd online evaluation separately. The material sampling is performed in parallel, i.e., we compute six load steps
n parallel using 16 threads for each individual simulation. All deep material networks are trained in parallel on 4
hreads each. The wall–clock times of the material sampling and the offline training are summarized in Table 7.
pparently, the sampling and offline training effort increases linearly with the number of samples. Incidentally, the
umber of fitting parameters, which varies depending on the type of the orientation interpolation, has no significant
nfluence on the runtime of the offline training.

Turning our attention to the online evaluation, we focus on the computational costs of the DMN evaluated at
single Gauss point. Integrating a deep material network at a single Gauss point for a prescribed macro strain
24
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Table 7
Wall–clock times for sampling, training and number of fitting parameters.

Wall–clock time #Fitting parameters

D4 D10 D31

Sampling
21.48 h 27.02 h 42.43 h

(800 samples) (1000 samples) (1550 samples)

Training
Linear 2.43 h 3.18 h 4.60 h 1020
Tri-linear 2.58 h 3.30 h 4.60 h 1275
Quadratic 2.50 h 3.18 h 4.62 h 1785

Table 8
Wall–clock times and speed-up (compared to an FFT-based computational
micromechanics solver) for a single time step of the inelastic micro simulation.

FFT (1 thread) DMN (1 thread)

Wall–clock time 242.69 s 2.03 ms
Speed-up – 119 552

#DOF 6 × 2563 513

Table 9
Wall–clock time, memory consumption and total Newton iterations of the single drone arm for different mesh sizes.

ABAQUS (96 threads)

Elements 63 580 121 416 247 444 488 689 1 005 862
#DOF 308 987 572 688 1 134 597 2 194 091 4 418 695

Wall–clock time 9 min 15 min 32 min 63 min 165 min
Memory consumption 9 GB 15 GB 33 GB 62 GB 133 GB
Total Newton iterations 18 18 19 20 20

increment takes about 2 ms on a single thread, see Table 8. This is about 120 000 times faster than a full-field
simulation of the micro problem using an FFT-based computational mechanics solver on a microstructure discretized
by 2563 voxels, also running on a single thread. For the work at hand, we exclusively consider DMNs with eight
layers. For applications which permit using DMNs with a smaller number of layers, even higher speed-up factors
can be reached.

Next, we focus on the component scale simulation of the quadcopter arm. The wall–clock times of all five
xamined discretizations ranging from 63 580 up to 1 005 862 quadratic tetrahedron elements and, computed on 96
hreads, are summarized in Table 9. We observe that the DRAM footprint is roughly proportional to the number
f elements. The wall–clock times, however, increase super-linearly. We attribute this effect to the complexity
f the direct solver used by ABAQUS. Apparently, the applicability of the method is more restricted by the
emory requirements, and the computational effort plays a minor role. The required DRAM depends on the

umber of internal variables to be stored. For a DMN of eight layers, linear elastic fibers and an elastoplastic
atrix, 128 × (1 + 5) = 768 floating-point numbers need to be stored for every Gauss point. To improve the

onvergence of Newton’s method, the displacement jumps of the last converged time step are stored as well, i.e.,
68 + 255 × 3 = 1533 scalars need to be kept in memory. Since we rely upon the thinned binary tree as introduced
n Section 3.2, 1533 serves as an upper bound. For the application at hand, the actual number of internal variables of
he DMN surrogate model is 1297. ABAQUS requires no more than two Newton iterations per load step, indicating
robust quadratic convergence independent of the mesh size. The slight increase from 1.8 to 2.0 Newton iterations
er load step is minimal, and may be a result of the increased plastification of the material in the vicinity of finely
esolved geometric features of the component.

To analyze the drone arm, using less than one million elements for the discretization would be sufficient. Rather,
y choosing such a fine discretization, we demonstrate that deep material networks easily scale to component scale
25
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Table 10
Wall–clock time, memory consumption and total Newton iterations for the simulation of the entire quadcopter
frame.

Part Materials Discretization

Arms DMN 4 × 488 689 Quadratic tetrahedron elements
Bottom plate Aluminum 39 422 Quadratic hexahedron elements
Top plate Aluminum 19 028 Quadratic hexahedron elements
Legs Polyamide 4 × 20 054 Quadratic tetrahedron elements

Total – 2 093 422 –

#DOF 9 378 683
Wall–clock time 267 min
Memory consumption 252 GB
Total Newton iterations 22

simulations with higher complexity. The hardware requirements implicated by Table 9 can be provided by any
state-of-the-art workstation.

Computing all ten load steps on 96 threads for the entire quadcopter took 22 Newton iterations, 267 min and
equired 252 GB or DRAM, see Table 10. This corresponds to over two million elements and about ten million
egrees of freedom. In our opinion, this clearly shows that DMNs are a promising technique to enable two-scale
imulations of industrial complexity with manageable resource expenditure.

. Conclusion

In this work, we investigated the capabilities of deep material networks to provide a digital twin for short
ber reinforced plastic microstructures, which can be used in concurrent multiscale simulations. To realize the
ull lightweight potential of short fiber reinforced components, it is imperative to account for the locally varying
ber orientation in mechanical simulations on component scale. Building upon the work of Köbler et al. [56],

we proposed a robust and computationally efficient approach to utilize direct deep material networks for variable
fiber orientations. Instead of identifying multiple deep material networks and interpolating the effective stress, we
interpolated the DMN’s microstructure characteristics on the fiber orientation triangle. Assuming that the local
fiber volume fractions of the individual laminates in the hierarchy are independent of the local fiber orientation,
it suffices to fix the fiber volume fraction and to interpolate the lamination directions only. This procedure gives
rise to a single DMN surrogate model covering all fiber orientations. Presumably, the scheme easily extends to
incorporating local variations in the fiber volume fraction by interpolating the DMN’s volume fractions as well.
By sampling the training data from up to 31 microstructure realizations with different fiber orientation, we fitted
the DMN to multiple fiber orientations simultaneously. Subsequently, we showed that the DMN generalizes to the
entire fiber orientation triangle with small error, also for the inelastic regime.

To evaluate the ensuing performance of our approach, we simulated the entire process chain of a quadcopter
frame starting from an injection molding simulation. We mapped the computed fiber orientations upon a finite
element mesh of the complete quadcopter frame and conducted a two-scale simulation of the full component. Our
results indicate that deep material networks enable two-scale simulations of structures with industrial complexity
with moderate hardware requirements. In this way, the FE-DMN method finally realizes the promise of concurrent
multiscale simulations and constitutes a powerful piece of technology which promises to become a standard tool
for industrial applications.

It should be interesting to extend the FE-DMN method to problems involving damage or fracture [91–93], finite
strains [94,95] or thermomechanical coupling [96,97] and to extend the range of applicability, for instance in the
context of polycrystalline materials [98,99] or sheet molding compound composites [100,101] with continuous
carbon fiber reinforcement. To be more specific, extending the proposed method to incorporate materials with micro-
orientations, e.g., carbon fiber reinforced composites, is straightforward by introducing additional rotations at the
bottom layer of the deep material networks and parameterizing these rotations in analogy to Section 2.3.

Despite the apparent success in practice, there is still a need for theoretical results which shed light on the

approximation capabilities (and the limitations) of DMNs. Indeed, whether every fixed two-phase microstructure
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as a microstructure twin of a hierarchical laminate with identical effective properties, appears to be unresolved, see
roblem 4 in Milton [102]. Interestingly, there exist counter examples for five-phase composites where the former

s false, see Milton [62].
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