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Abstract

In recent years, there has been a growing interest in understanding complex microstructures and their ef-
fect on macroscopic properties. In general, it is difficult to derive an effective constitutive law for such
microstructures with reasonable accuracy and meaningful parameters. One numerical approach to bridge
the scales is computational homogenization, in which a microscopic problem is solved at every macroscopic
point, essentially replacing the effective constitutive model. Such approaches are, however, computation-
ally expensive and typically infeasible in multi-query contexts such as optimization and material design.
To render these analyses tractable, surrogate models that can accurately approximate and accelerate the
microscopic problem over a large design space of shapes, material and loading parameters are required. In
previous works, such models were constructed in a data-driven manner using methods such as Neural Net-
works (NN) or Gaussian Process Regression (GPR). However, these approaches currently suffer from issues,
such as need for large amounts of training data, lack of physics, and considerable extrapolation errors. In
this work, we develop a reduced order model based on Proper Orthogonal Decomposition (POD), Empirical
Cubature Method (ECM) and a geometrical transformation method with the following key features: (i)
large shape variations of the microstructure are captured, (ii) only relatively small amounts of training data
are necessary, and (iii) highly non-linear history-dependent behaviors are treated. The proposed framework
is tested and examined in two numerical examples, involving two scales and large geometrical variations. In
both cases, high speed-ups and accuracies are achieved while observing good extrapolation behavior.

Keywords: Reduced order modelling, proper orthogonal decomposition, computational homogenization,
hyperreduction, empirical cubature method, geometrical transformation

1. Introduction

Driven by advances in additive manufacturing and tailorable effective properties of metamaterials, there
has been a growing interest in understanding structure-property relationships of complex microstructures.
These microstructures can typically be described by a few shape parameters, leading to distinct types of
effective behavior. To investigate such structure-property relations and to find the optimal shape for a given
application, simulations are often considered. These simulations are in general computationally expensive or
even intractable for direct numerical simulation, especially for large engineering applications, since consid-
erably fine meshes are required to capture the complex microstructural geometry. By employing multi-scale
methods [1, 2] or domain decomposition methods [3, 4], such large-scale problems can be separated into
many smaller subproblems, thus rendering them amenable for efficient numerical simulation.
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If scale separation is assumed, i.e., when the length scale of the typical microstructural features is much
smaller than that of the macrostructure, first-order computational homogenization can be employed. Here,
the behavior of the microstructure dictates the (average) constitutive behavior of an effective macrostruc-
tural continuum model. By defining a Representative Volume Element (RVE) which models the fine-scale
geometry of the microstructure in full detail, a coarse-grained representation of the macrostructure with a
much coarser discretization can be assumed at the macroscale. At every macroscopic integration point, the
macroscopic strain is used to specify a microscopic boundary value problem which, after solution, returns
the effective stress and stiffness. Since a partial differential equation (PDE) needs to be solved at every
macroscopic Gauss integration point, this methodology is still computationally expensive, and efficient ways
for its solution are needed.

Several approaches to tackle this problem have been reported in the literature. For instance, the Fast
Fourier Transform (FFT) [5, 6] allows to directly use pixelized images of real microstructures, thus avoiding
costly meshing of complex microstructures. The solution can further be accelerated by the (nonuniform)
Transformation Field Analysis (see, e.g., [7, 8]), or Self-consistent Clustering Analysis [9, 10]. One disad-
vantage of FFT is that geometrical parameterizations of the RVE cannot be directly treated and, hence,
sensitivities for material optimization cannot be directly computed. Another class of methods aims at solv-
ing the microscopic problem via the Finite Element (FE) method, resulting in a multi-scale formulation
referred to as FE2 [11–13]. By directly solving the microscopic PDE, material or shape parameterizations
can be considered in a straightforward manner, making the approach more suitable for inverse problems and
optimization. To speed up the microstructural simulation, proper orthogonal decomposition (POD) [14, 15]
can be utilized to find a reduced set of basis functions; the method then computes the Galerkin projec-
tion of the solution onto the space spanned by the snapshots. Although POD generally requires many
full-order solves for training, it typically works well for all input parameters. In the context of first-order
homogenization, POD was first applied in Yvonnet et al. [16] for a hyper-elastic RVE, and later explored in
Radermacher et al. [17] for an elasto-plastic RVE under small strains. However, due to the non-linearities
of the microscopic problem, the speed-ups were limited since the global force vector and stiffness matrix
must be assembled by full integration in every microscopic Newton iteration. To address this issue, a
further reduction called hyperreduction is required, which aims at finding an efficient way of assembling
microstructural force and stiffness quantities. Notable hyperreduction methods are empirical interpolation
method (EIM) (see, e.g., [18]), a variant of EIM called discrete empirical interpolation method (DEIM)
(see, e.g., [19]), energy-based mesh sampling and weighting [20], reduced integration domain [21], empirical
quadrature procedure [22], and empirical cubature method (ECM) [23]. EIM and DEIM interpolate the non-
linear integrand of the global force vector such that the integrals can be pre-computed. In [24, 25], DEIM
was used successfully to accelerate the solution of the microscopic PDE. However, these works only discussed
the solution of the microscopic PDE and did not derive the effective stress and stiffness quantities required
for the macroscopic problem. A possible disadvantage of EIM and DEIM is that they lead to non-symmetric
tangent matrices, which might result in convergence issues, observed in, for instance, [25, 26]. The remainder
of the above-mentioned hyperreduction methods aim at approximating the integrals by finding a subset of
integration points with corresponding weights among the set of all integration points used in the formulation
of the microstructural PDE. This has the advantage that the stiffness matrix is always symmetric, ensuring
a good convergence of the microscopic problem. Example applications of hyperreduction methods have been
successfully employed in two-scale simulations in [27], where an elasto-plastic composite RVE under large
deformations was considered. In [28], a damage model for a composite RVE under small deformations was
shown. While both works obtained accurate results and successfully accelerated the forward simulations of
a two-scale problem, such formulations were limited to fixed microstructures only, i.e., did not account for
possible parameterizations. In order to allow for optimization of microstructures, the surrogate model needs
to be extended to a wide range of different design parameters (including geometrical as well as material).

This work aims to address this gap, by developing a hyper-reduced surrogate model for geometrically
parameterized microstructures, to enable (shape) sensitivity analysis and optimization of materials. Fur-
thermore, we intend to provide a detailed analysis of the reduced RVE problem for arbitrary loading paths
and geometries and elucidate possible issues due to reduction. Our main contributions are:
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1. development of a hyper-reduced POD model for a family of geometrically parameterized microstruc-
tures, by employing a geometrical transformation method [29] and by extending the ECM algorithm
to geometrical parameters,

2. consistent derivation of the effective stress and stiffness of the hyper-reduced model,
3. an empirical analysis of the accuracy of the surrogate model for elasto-plastic RVEs under large

deformations for different geometries and loading conditions,
4. a quantitative comparison of a two-scale example with continuous change in microstructural hetero-

geneities.

The remainder of this paper is organized as follows. In Section 2, the microscopic problem arising
in first-order computational homogenization is briefly summarized, together with the computation of the
effective quantities. Section 3 covers in-depth development of the reduced order model with particular focus
on the empirical cubature method for geometrically parameterized microstructures, and includes a detailed
derivation of the effective stress and stiffness. In Section 4, the proposed method is examined and tested in
detail, first for a single RVE and then also for a full two-scale problem. Finally, a summary on the findings
and concluding remarks are given in Section 5.

In this work, the following notational convention is adopted. Italic bold symbols are used for coordinates
X and vectorial or tensorial fields, such as the displacement field u or stress field P . Upright bold symbols
are used for algebraic vectors and matrices, such as the global stiffness matrix K or the coefficients of the
discretized displacement field u. A field quantity u for given parameters µ is denoted as u(X;µ). Given
second-order tensors A and B, fourth-order tensor C, and vector v, the following operations are used:
AB = AijBjk, A : B = AijBij , A : C : B = AijCijklBkl and Av = Aijvj , where the Einstein summation
convention is implied.

2. Formulation Of The Microscopic Problem

In multiscale schemes based on first-order homogenization, the macroscopic constitutive model is replaced
by a microscopic PDE which is defined on an RVE. By prescribing the macroscopic deformation gradient on
the microscale, the PDE can be solved and an effective stress and stiffness is returned to the macroscopic
solver, see Fig. 1. For applications such as microstructure optimization, it is reasonable to additionally
introduce a parameterization of the RVE in order to compute the sensitivities with respect to design variables.
The microscopic boundary value problem is formulated below on a parameterized domain, as is usually the
case in shape optimization. For brevity, the dependence on the macroscopic coordinates is omitted and a
fixed macroscopic material point is assumed unless otherwise specified.

2.1. Boundary Value Problem

Consider a family of domains Ωµ ⊂ Rd with space dimension d = 2, 3 the space dimension, parameterized
by geometrical parameters µ, and spanned by a position vector Xµ ∈ Ωµ. In Fig. 1, an example parent
domain with a circular inclusion Ωp is geometrically parameterized and mapped to two distinct parameterized
domains with elliptical inclusions, Ωµ1 and Ωµ2 . The volume and the topology of the domain |Ωµ| are
assumed to remain fixed for all parameters (the outer boundaries of the RVE domain are fixed while the
shape of the interior geometry can change). With the assumption of scale separation between macro- and
microscale, the microscopic displacement field on the parameterized domain u(Xµ) can be written as the
summation of a mean field ū(Xµ) and a fluctuation field w(Xµ), i.e., u(Xµ) = ū(Xµ) + w(Xµ). The
mean field is fully specified through ū(Xµ) := (F̄ −I)Xµ, where F̄ is the macroscopic deformation gradient
tensor and I is the identity tensor. The total deformation gradient tensor F is defined as

F (w(Xµ)) :=
∂u

∂Xµ
= F̄ +

∂w

∂Xµ
. (1)

The governing microscopic PDE is given as

DivP T (F (w(Xµ))) = 0 on Ωµ,

w periodic on ∂Ωµ,
(2)
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Figure 1: Two-scale problem based on first-order homogenization. At every macroscopic point, a microscopic simulation is
defined through deformation gradient F̄ and shape parameters µ, and solved to obtain an effective stress P̄ and stiffness Ā.
For different macroscopic points, different parameterized microstructures can be considered through µ. As an example of a
family of geometrically parameterized microstructures, a parent domain with a circular inclusion Ωp (center), can be mapped
onto parameterized domains Ωµ1 (left) and Ωµ2 (right) with mapping Φµ1 and Φµ2 .

where Div(•) is the divergence operator with respect to Xµ and P denotes the second-order first Piola-
Kirchhoff (1PK) stress tensor. No constitutive model is specified at this point, although we assume that
the stress P is a non-linear function of the deformation gradient F (or its history). The weak form of the
problem is then: given the macroscopic deformation gradient F̄ , find the fluctuation field w∗ ∈ V := {v ∈
(H1(Ωµ))d | v periodic on ∂Ωµ} that fulfills

G(w) :=

∫
Ωµ

∂δw

∂Xµ
: P

(
F̄ +

∂w

∂Xµ

)
dXµ !

= 0, ∀δw ∈ V, (3)

where the integral bounds depend on the parameters µ, δw denotes a test function, and H1(Ωµ) is a Hilbert
space with square integrable functions and square integrable derivatives. The inner product in V is defined
as

(u,v)V :=

∫
Ωµ

(
u · v +

∂u

∂Xµ
:

∂v

∂Xµ

)
dXµ. (4)

From Eq. (3), it is apparent that the macroscopic deformation gradient F̄ represents the external loading,
while the fluctuation displacement field w balances the system. To simplify the problem in Eq. (3) and
remove the parameter dependence of the integral bounds, a parent domain Ωp is defined. To this end, we
assume that there exists a parameter-dependent diffeomorphism Φµ : Ωp → Ωµ,Xp 7→ Xµ, see Fig. 1.
Using integration by substitution, the problem of Eq. (3) can be restated as follows: given the macroscopic
deformation gradient F̄ , find w∗p ∈ Vp := {v ∈ (H1(Ωp))d | v periodic on ∂Ωp} that fulfills

Gp(wp) :=

∫
Ωp

(
∂δwp

∂Xp
F−1
µ

)
: P

(
F̄ +

∂wp

∂Xp
F−1
µ

)
|detFµ| dXp = 0, ∀δwp ∈ Vp, (5)

with the transformation gradient Fµ :=
∂Φµ

∂Xp
and dXµ = |detFµ| dXp. The superscript p is used to denote

quantities pertinent to the parent domain, e.g., w(Xµ) = (w ◦ Φµ)(X
p) = wp(Xp). To iteratively solve
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the non-linear problem in Eq. (5), a linearization using the Gateaux derivative around the current state wp

in direction ∆wp ∈ Vp is required and can be written as,

∂Gp(wp + τ∆wp)

∂τ

∣∣∣∣
τ=0

=

∫
Ωp

(
∂δwp

∂Xp
F−1
µ

)
: A

(
F̄ +

∂wp

∂Xp
F−1
µ

)
:

(
∂∆wp

∂Xp
F−1
µ

)
|detFµ| dXp, (6)

where A :=
∂P

∂F
is the fourth-order stiffness tensor. Once the transformation map Φµ is known, Eq. (3) can

be solved on the parent domain using Eqs. (5) and (6). Further details on how to find these transformations
for a range of geometrical parameters are provided in Section 3.4.

By employing a finite element discretization for wp ≈ wp
h ∈ Vp

h ⊂ Vp, with dimVp
h = N , the number

of degrees of freedom of the dicretization, the internal force vector f ∈ RN and global stiffness matrix
K ∈ RN×N can be derived from Eqs. (5) and (6), resulting in the following non-linear system of equations

f(w) = 0, (7)

where w ∈ RN is the column vector of unknown coefficients of the discretized fluctuation field. This problem
can be solved with the Newton method, i.e.,

K(wm)∆w = −f(wm),

wm+1 = wm +∆w,
(8)

where m is the number of Newton iteration and Eq. (8) is repeated until ||f(wm)||2 ≤ εnewton with εnewton

a user-defined tolerance.

2.1.1. Effective Quantities

For conciseness of notation, the following abbreviations are introduced to denote quantities after the
solution w∗p has been obtained:

P ∗p := P

(
F̄ +

∂w∗p

∂Xp
F−1
µ

)
, (9)

A∗p := A

(
F̄ +

∂w∗p

∂Xp
F−1
µ

)
. (10)

Upon obtaining solution w∗p from Eq. (5), the effective stress is computed as

P̄ := |Ωp|−1

∫
Ωp

P ∗p|detFµ|dXp, (11)

and the effective stiffness (in index notation) as

Āijkl :=
∂P̄ij

∂F̄kl

=|Ωp|−1 ∂

∂F̄kl

∫
Ωp

P ∗p
ij |detFµ|dXp

=|Ωp|−1

∫
Ωp

A∗p
ijmn

(
Imnkl +

∂

∂F̄kl

(
∂w∗

m

∂Xr

)(
F−1
µ

)
rn

)
|detFµ|dXp,

(12)

where Imnkl := δmkδnl is the fourth-order identity tensor. To determine
∂

∂F̄kl

(
∂w∗

m

∂Xr

)
, Eq. (5) is differen-

tiated with respect to F̄ . For one particular component F̄kl (where the indices k and l are assumed to be
temporarily fixed), the differentiation yields∫

Ωp

(
∂δwp

∂Xp
F−1
µ

)
: A∗p :

(
∂qkl
∂Xp

F−1
µ

)
|detFµ| dXp = −

(∫
Ωp

(
∂δwp

∂Xp
F−1
µ

)
: A∗p |detFµ| dXp

)
: Ekl,

(13)
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where a new auxiliary vector field qkl :=
∂w∗p

∂F̄kl
∈ Vp has been defined (reflecting the sensitivity of the

microfluctuation field with respect to the change of the applied macroscopic loading), and Ekl ∈ Rd×d is a
second order tensor with all entries zero, except for the kl-th entry which is 1. The linear tangent problem
of Eq. (13) is then solved for all combinations k, l = 1, ..., d to obtain qkl for each component of F̄ .

For shape optimization, the sensitivities of the effective stress P̄ with respect to the geometrical param-
eters µ are required and are computed as follows (in index notation)

∂P̄ij

∂µk
= |Ωp|−1

∫
Ωp

(
A∗p

ijmn

(
∂

∂µk

(
∂w∗

m

∂Xr

)(
F−1
µ

)
rn

+
∂w∗

m

∂Xr

∂
(
F−1
µ

)
rn

∂µk

)
|detFµ|+ P ∗p

ij

∂|detFµ|
∂µk

)
dXp.

(14)

The left-hand expression is complicated due to the derivatives of F−1
µ and |detFµ|. If the effective stress

P̄ can be assumed to vary smoothly with the parameters µ, which may be a reasonable assumption for
smoothly varying shapes using, for instance, splines, finite differences can be used to approximate these
sensitivities.

3. Surrogate Modelling

Since the microscopic problem has to be solved at every macroscopic quadrature point, the solution
of the microscopic PDE must be efficient. Solving it directly using FE is in general too computationally
expensive, and, hence, the microscopic solver must be accelerated. In this section, a surrogate model for
the geometrically parameterized microscopic PDE is developed by employing the reduced basis method
(RBM) [14] to reduce the number of degrees of freedom and the empirical cubature method (ECM) [23] to
reduce the number of quadrature points. The key idea is to construct the surrogate model on the parent
domain Ωp, adapt it to each geometry Ωµ, and then solve the reduced problem.

3.1. Reduced Basis Method

For complex problems and geometries, typically a fine mesh is required for FE, leading to a high-
dimensional solution space Vp

h for the fluctuation displacement field wp with dimVp
h = N . The idea of

the RBM is to approximate the field with global parameter-independent basis functions and parameter-
dependent coefficients, i.e.,

wp(Xp; F̄ ,µ) ≈
N∑

n=1

an(F̄ ,µ)ϕn(X
p), (15)

where N is the number of basis functions, ideally much smaller than the dimension of the FE space, i.e.,
N ≪ N . The basis functions, {ϕn}Nn=1, span a subset of Vp

h and can be obtained by applying proper
orthogonal decomposition (POD) on a set of pre-computed full solutions for different parameter values.
Additionally, they are orthonormal with respect to Vp, i.e.,

(ϕm,ϕn)Vp = δmn, (16)

where δmn denotes the Kronecker delta. By utilizing the POD space for both the trial and test space and
inserting wp from Eq. (15) into Eqs. (5) and (6), the components for the reduced internal force vector
fPOD ∈ RN and reduced global stiffness matrix KPOD ∈ RN×N can be derived as

fPOD
i (a) :=

∫
Ωp

(
∂ϕi

∂Xp
F−1
µ

)
: P

(
F̄ +

(
N∑

n=1

an
∂ϕn

∂Xp

)
F−1
µ

)
|detFµ| dXp, (17)

KPOD
ij (a) :=

∫
Ωp

(
∂ϕi

∂Xp
F−1
µ

)
: A

(
F̄ +

(
N∑

n=1

an
∂ϕn

∂Xp

)
F−1
µ

)
:

(
∂ϕj

∂Xp
F−1
µ

)
|detFµ| dXp, (18)
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where a = [a1, . . . , aN ]T is the column vector of unknown coefficients to be solved for, and i, j = 1, . . . , N
span over all basis functions. Analogously to Eqs. (7) and (8), the resulting non-linear system of equations

fPOD(a) = 0 (19)

can be solved using Newton method:

KPOD(am)∆a = −fPOD(am),

am+1 = am +∆a.
(20)

3.2. Empirical Cubature Method

Even though the solution field and linear system of equations have been reduced to dimension N ≪ N ,
computing the components of the force vector in Eq. (17) and global stiffness matrix in Eq. (18) still
requires integrating over the RVE. For the full integration, a numerical quadrature rule (usually based on

Gauss quadrature) with integration points and corresponding weights {(X̂q, ŵq)}Q̂q=1, where Q̂ is the total
number of integration points, is employed, i.e.,

fPOD
i (a) ≈

Q̂∑
q=1

ŵq

[(
∂ϕi

∂Xp
F−1
µ

)
: P

(
F̄ +

(
N∑

n=1

an
∂ϕn

∂Xp

)
F−1
µ

)
|detFµ|

]∣∣∣∣∣
X̂q

, (21)

for i = 1, . . . , N . For a fine mesh, Q̂ is very large and thus evaluating Eq. (21) leads to high computational
costs. To address this issue, we employ the Empirical Cubature Method (ECM), which was proposed in
Hernández et al. [23] for a fixed geometry, and extend it to parameterized geometries.

The idea of ECM is to find a subset of points {Xq}Qq=1 ⊂ {X̂q}Q̂q=1 with Q ≪ Q̂ among the set of

all integration points with corresponding weights {wq}Qq=1 that approximates Eq. (21) up to a user-defined
error ε. To find such a subset that approximates Eq. (21) well for all admissible geometrical parameters
µ, Eq. (21) is first rewritten as

fPOD
i (a) =

Q̂∑
q=1

ŵq

 ∂ϕi

∂Xp
:

(
P

(
F̄ +

(
N∑

n=1

an
∂ϕn

∂Xp

)
F−1
µ

)
F−T
µ |detFµ|

)
︸ ︷︷ ︸

W :=


∣∣∣∣∣∣∣∣∣
X̂q

,

=

Q̂∑
q=1

ŵq

[
∂ϕi

∂Xp
: W (Xp; F̄ ,µ)

]∣∣∣∣
X̂q

,

(22)

where the weighted stress W is defined. To remove the parameter dependence of the integrand in Eq. (22),
the weighted stress is approximated by another reduced basis, i.e.,

W (Xp; F̄ ,µ) ≈
L∑

l=1

αl(F̄ ,µ)Bl(X
p), (23)

where {Bl}Ll=1 is a set of L basis functions obtained using POD, which are orthonormal with respect to
L2(Ω), i.e., ∫

Ω

Bm : BndX
p = δmn. (24)

Inserting Eq. (23) into Eq. (22) and rearranging yields,

fPOD
i (a) ≈

L∑
l=1

αl(F̄ ,µ)

Q̂∑
q=1

ŵq

[
∂ϕi

∂X
: Bl

]∣∣∣∣
X̂q

, i = 1, . . . , N. (25)

7



Since Eq. (25) should be accurate for any choice of coefficients αl(F̄ ,µ), all the N ·L terms in Eq. (25) that
approximate the integral have to be approximated as accurately as possible. Hence, the goal becomes to find
a subset Q(≪ Q̂) of integration points with corresponding weights {(Xq, wq)}Qq=1 that approximates Eq. (25)
well, i.e.,

Q̂∑
q=1

ŵq

[
∂ϕi

∂X
: Bl

]∣∣∣∣
X̂q

≈
Q∑

q=1

wq

[
∂ϕi

∂X
: Bl

]∣∣∣∣
Xq

, i = 1, . . . , N, l = 1, . . . , L. (26)

These Q points and corresponding weights are found using a greedy algorithm, the details of which can be
found in [23] and are omitted here. The algorithm is terminated when the mean squared error of all N · L
terms is less than a user-defined tolerance ε.

Compared to the original algorithm for a fixed geometry, as proposed in [23], the only differences are
that the weighted stress W is employed instead of the stress P and that the parent domain Ωp is considered
instead of a fixed domain Ω. With the ECM integration rule, the hyper-reduced force vector and global
stiffness matrix are computed as

fPODECM
i (a) :=

Q∑
q=1

wq

[(
∂ϕi

∂Xp
F−1
µ

)
: P

(
F̄ +

(
N∑

n=1

an
∂ϕn

∂Xp

)
F−1
µ

)
|detFµ|

]∣∣∣∣∣
Xq

, (27)

KPODECM
ij (a) :=

Q∑
q=1

wq

[(
∂ϕi

∂Xp
F−1
µ

)
: A

(
F̄ +

(
N∑

n=1

an
∂ϕn

∂Xp

)
F−1
µ

)
:

(
∂ϕj

∂Xp
F−1
µ

)
|detFµ|

]∣∣∣∣∣
Xq

. (28)

3.3. Effective Quantities

Once the new set of integration points and weights is found, the integrands of Eqs. (27) and (28) only

need to be evaluated at the points {Xq}Qq=1 during the solution of the reduced problem. This also means
that the stress and stiffness field are available at these points only. To compute the effective quantities, the
most straightforward method is to use the integration rule obtained by ECM, i.e.,

P̄ = |Ωp|−1

∫
Ωp

P ∗p|detFµ|dXp

≈ |Ωp|−1

Q∑
q=1

wq (P ∗p|detFµ|)|Xq
.

(29)

Since the stress field P ∗p is known at all integration points {Xq}Qq=1, the effective stress can be directly
evaluated. The method yields very accurate results in the examples considered below in Section 4. However,
it should be noted that there is currently no guarantee that the integration rule found by ECM will generally
be accurate for the computation of the effective stress.

As discussed in Section 2.1.1, derivatives
∂w∗

∂F̄
are needed to find the effective stiffness Ā, see Eq. (12).

For each component of F̄ , the linear tangent problem of Eq. (13) needs to be solved. By employing the trial
space of the fluctuation field for the auxiliary function qkl, i.e.,

qkl =

N∑
n=1

qnϕn(X
p), (30)

and the integration rule found by ECM, the following linear system results:

K∗pq = b, (31)
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where q = [q1, . . . , qN ]T is the column vector of unknowns to be solved for and

K∗p
ij =

Q∑
q=1

wq

[(
∂ϕi

∂Xp
F−1
µ

)
: A∗p :

(
∂ϕj

∂Xp
F−1
µ

)
|detFµ|

]∣∣∣∣
Xq

, (32)

bi = −
(

Q∑
q=1

wq

[(
∂ϕi

∂Xp
F−1
µ

)
: A∗p |detFµ|

]∣∣∣∣
Xq

)
: Ekl. (33)

Note that the matrix K∗p ∈ RN×N is exactly the same as the global stiffness matrix K of Eq. (28) evaluated
at the solution w∗p. After solving the tangent problems, the effective stiffness Ā can be computed (in index
notation) as

Āijkl = |Ωp|−1

Q∑
q=1

wq

(
∂P ∗p

ij

∂F̄kl
|detFµ|

)∣∣∣∣∣
Xq

, (34)

where

∂P ∗p

∂F̄kl
= A∗p :

(
Ekl +

(
∂qkl
∂Xp

F−1
µ

))
. (35)

The derivation of the effective sensitivities (recall Eq. (14)) can be performed analogously to the effective
stiffness. However, due to the derivatives of the inverse and determinant of the transformation gradient Fµ,
such derivations become rather technical and hence are omitted.

3.4. Auxiliary Problem For Geometrical Transformation

Thus far, the geometrical transformation Φµ : Ωp → Ωµ has been assumed to be known and has not
been discussed in more detail. However, such transformations are in general not known analytically and
have to be found numerically by using, for example, radial basis functions, see, e.g., [30, 31], or mesh-based
methods, see, e.g., [29, 32]. For each of those methods, an auxiliary problem arises which needs to be solved.
In order to rapidly solve the surrogate model for a wide range of different geometries, it must therefore also
be ensured that the auxiliary problem can be solved rapidly. In this work, the method in [29] is employed, in
which the auxiliary problem is formulated as a linear elasticity problem by defining Φµ(X

p) = Xp+d(Xp),
with d the transformation displacement obtained from

Div

(
Caux :

1

2

(
∂d

∂Xp
+

(
∂d

∂Xp

)T
))

= 0 in Ωp. (36)

In the above equation, Caux is the fourth-order elasticity tensor, fully specified by the Young’s modulus Eaux

and Poisson’s ratio νaux. The boundary conditions for this PDE are problem-dependent and are specified
by the geometrical parameters µ. For the RVE problem, the outer boundaries are fixed (d = 0), while d
is prescribed on parts of the interior that are parameterized by µ. In [29] the effect of the choice of Eaux

and νaux was studied and it was demonstrated empirically that the choice only has a minor effect on the
final approximation quality. Hence, in all numerical examples considered in this work, a Young’s modulus
of Eaux = 1 and Poisson’s ratio νaux = 0.25 is assumed. The auxiliary problem can then be significantly
accelerated with the RBM in combination with a DEIM (e.g., [29, 31]), resulting in

Âd̂ = b̂(µ), (37)

where Â ∈ RNp×Np is the reduced system matrix, d̂ ∈ RNp is the reduced transformation displacement,
b̂(µ) ∈ RNp is the reduced forcing vector andNp is the number of geometrical parameters. SinceNp is usually

small, Eq. (37) can be rapidly solved. From d̂, the transformation gradient Fµ, its inverse F−1
µ , and its

determinant detFµ can be computed. Moreover, expressions for the derivative of the inverse and determinant
of the transformation gradient Fµ can be derived, which are needed for computing the sensitivities with
respect to µ, see Eq. (14). For more information on the auxiliary problem and its reduction, the reader is
referred to [29].
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3.5. Summary

For convenience, the offline-online decomposition for constructing and solving the surrogate model is
summarized in Algorithm 1.

Algorithm 1: Offline-online decomposition of the proposed PODECM framework with microstruc-
tures parameterized with external loading F̄ and geometrical features µ.

Offline Stage:
1: Define a parent domain Ωp and its finite element discretization.
2: Generate parameter samples {F̄ i,µi}Ns

i=1 from a random distribution.
3: For each different set of geometrical parameters µi, solve the auxiliary problem in Eq. (36) to obtain

the transformation map Φµi .

4: Compute F−1
µi and detFµi for each parameter sample µi, then run full simulations (Eqs. (5) and (6))

for F̄ i and collect fluctuation displacement and weighted stress snapshots.
5: Compute POD for the fluctuation displacement and weighted stress, cf. Eqs. (15) and (23).
6: Run ECM algorithm and find integration points and weights, cf. Eq. (26).
7: Assemble the reduced system matrix and forcing vector for the auxiliary problem in Eq. (37) by

applying POD and DEIM. Details are provided in [29].
Online Stage:
1: Given a new parameter set (F̄ ∗,µ∗), solve reduced auxiliary problem Eq. (37) and compute F−1

µ∗ and
detFµ∗ .

2: Solve reduced problem for F̄ ∗ with Eqs. (27) and (28).
3: Compute effective stress using Eq. (29).
4: Solve the linear problem Eq. (31) for each component of F̄ ∗.
5: Compute components of the effective stiffness with Eq. (34).

4. Example Problems

The proposed framework, referred to as PODECM, is first tested on a non-linear composite microstruc-
ture under various loading conditions and analyzed in depth regarding its capabilities and accuracy. The
RVE consists of an elasto-plastic matrix with stiff inclusions of variable size and is considered under non-
monotonic loading. The surrogate model is analyzed in terms of the number of basis functions of the
fluctuation displacement field N , number of basis functions of the weighted stress L and the ECM in-
tegration error tolerance ε. Subsequently, a two-scale problem involving a porous microstructure under
non-monotonic loading conditions and varying porosities is studied to illustrate the accuracy and speed-up
of PODECM in a two-scale setting.

All experiments are defined in two dimensions under plane strain conditions. The RVEs are assumed
to be of size [0, 1]2 and all quantities are assumed to be normalized and hence dimensionless. Since the
macroscopic deformation gradient F̄ can always be decomposed into a rotation R̄ and a symmetric stretch
tensor Ū with a polar decomposition, i.e., F̄ = R̄Ū , it is sufficient to generate training data for the stretch
tensor Ū , having only 3 independent components (6 in 3D).

To measure the quality of the approximation, the following error measures to compare the full FE
simulations against PODECM solutions are defined:

1. Error of effective stress

ϵP̄ =

∑K
k=1 ||P̄PODECM(Ūk)− P̄ FE(Ūk)||F∑K

k=1 ||P̄ FE(Ūk)||F
, (38)

where P̄PODECM(Ūk) and P̄ FE(Ūk) denote the effective stress obtained with PODECM and FE for
Ūk, || • ||F denotes the Frobenius norm, K is the total number of loading steps and Ūk is the applied
external load at load step k.
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2. Error of fluctuation field

ϵw =

∑K
k=1 ||wPODECM(Ūk)−wFE(Ūk)||V∑K

k=1 ||wFE(Ūk)||V
, (39)

where wPODECM and wFE denote the fluctuation displacement field obtained with PODECM and FE,
and || • ||2V = (•, •)V , c.f., Eq. (4). Recall that the integral in Eq. (4) is defined over the parameterized
domain Ωµ.

4.1. Elasto-Plastic Composite RVE With Random Stiff Inclusions

4.1.1. Problem Description

The considered RVE in this example consists of two phases, an elasto-plastic matrix and stiff elastic
inclusions. The geometry of the parent domain is shown in Fig. 2a, where the volume fraction of the
inclusions is 23.4%. For the geometrical parameterization, one geometrical parameter µ = {ζ} that scales
the size of the inclusions uniformly (and is proportional to the volume fraction of the inclusions) is introduced,
see Figs. 2b and 2c showing two example domains for distinct values of ζ. The simulation mesh is depicted
in Fig. 2d, where six-noded quadratic triangular elements are used in conjunction with three quadrature
points per element. In total, the mesh has 62194 degrees of freedom, 15450 triangular elements and 46350
quadrature points.

(a) Parent domain Ωp with ζ = 1 (b) Domain Ωµ1 with ζ = 1.2 (c) Domain Ωµ2 with ζ = 0.5 (d) Simulation mesh

Figure 2: Parent with two parameterized domains and simulation mesh. (a) The parent domain consists of a matrix material
(blue) with 23 random elliptical inclusions (orange). The problem has one geometrical parameter ζ that scales all ellipses
uniformly (ζ = 1 for parent domain). (b) A parameterized domain for ζ = 1.2 and (c) for ζ = 0.5. (d) The considered mesh
consists of six-noded triangular elements and contains in total 62194 degrees of freedom, 15450 triangular elements and 46350
quadrature points.

For the constitutive model of both matrix and inclusion the small-strain J2-plasticity model with linear
isotropic hardening is chosen and extended to large strains with the method presented in Cuitino and
Ortiz [33]. The small-strain model obeys:

σ = D : (ϵ− ϵpl), (40)

fyield = ||σ||mises − (σy0 +Hξ), (41)

r =
∂f

∂σ
=

√
3

2

Dev(σ)√
Dev(σ) : Dev(σ)

, (42)

ξ̇ = γ, (43)

ϵ̇pl = γr, (44)

γ ≥ 0, fyield ≥ 0, γfyield = 0, (45)

where ϵ is the small-strain tensor, ϵpl the plastic strain tensor, D is the fourth-order elasticity tensor that can
be fully specified by Young’s modulus E and Poisson’s ratio ν, and σ is the corresponding stress tensor; fyield
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defines the yield surface, Dev(•) takes the deviatoric part of a tensor (•), || • ||mises =

√
3

2
Dev(•) : Dev(•)

computes the von Mises stress, H is the hardening constant, σy0 yield stress, r the plastic flow direction, ξ
the equivalent plastic strain that defines the isotropic hardening of the yield surface, and γ is the consistency
parameter. For more information on the material model, see Simo and Hughes [34].

Following the procedure of [33], by employing a multiplicative split of the deformation gradient F =
F elF pl, the elastic logarithmic strain can be defined as

Cel
log := lnCel = ln((F el)TF el). (46)

By interpreting the elastic logarithmic strain as the small-strain tensor, the small-strain constitutive model
defined in Eqs. (40)–(45) is used to compute the stress tensor Ŝ on the intermediate configuration,

Ŝ := 2σ(Cel
log) :

∂Cel
log

∂Cel
, (47)

while the 1PK stress is recovered from Ŝ as

P = (F el)−1Ŝ (F pl)−T . (48)

Instead of evolving the plastic strain with Eq. (44), the plastic deformation gradient F pl is evolved according
to

Ḟ pl = exp(γr)F pl. (49)

For the matrix, the following material parameters are selected: E = 10, ν = 0.3, σy0 = 0.2 and H = 5. For
the inclusions, E = 100 and ν = 0.3 is selected, corresponding to a stiffness contrast ratio of 10. Since no
plastic deformation is assumed for the inclusions, its yield stress is set to a large value such that yielding
never occurs.

Three loading Ūxx, Ūxy, Ūyy and one geometrical ζ parameters are considered with bounds ζ ∈ [0.5, 1.2],
Ūxx ∈ [0.9, 1.1], Ūyy ∈ [0.9, 1.1] and Ūxy ∈ [−0.1, 0.1]. Through ζ, the volume fraction of the inclusions is
varied from 5.85% to 33.7%. The macroscopic stretch tensor is applied in K = 40 load steps. For the first
10 load steps the applied stretch increases linearly from 0 to Ū . In the next 20 steps, the applied loading
decreases linearly from Ū to −Ū , such that at k = 20 the applied stretch is 0. Finally, in the last 10 steps,
the stretch increases linearly from −Ū to 0. Even though only macroscopic strains of up to 10% are applied,
local strains reached values up to 83%. Evolution of the effective von Mises stress for an example with
ζ = 1.010, Ūxx = 1.1, Ūyy = 1.0, Ūxy = 0.0 is shown in Fig. 3, including the local von Mises stress fields at
steps k = {10, 20, 30, 40}.

4.1.2. Results

In total 20 samples are generated from a Sobol sequence to train PODECM whereas 100 testing samples
are generated from a uniform distribution to test PODECM. Each sample consists of 40 snapshots for each
load step.

The accuracy and speed-up of PODECM depends on the number of basis functions used for the fluctu-
ation displacement field N and the number of quadrature points Q. While N is typically chosen directly,
Q depends on the choice of the number of basis functions used for the weighted stress L and the ECM
integration error ε.

To study the influence of L on the resulting number of quadrature points Q and mean errors in effective
stress and fluctuation field on the testing dataset, several combinations of N and L for a fixed ε = 10−2

are tested, with resulting errors shown in the top row of Fig. 4. The projection error (for N basis functions
and using full integration) is shown as well. It can be clearly seen that the number of quadrature points Q
increases drastically with increasing N and L, as more information needs to be integrated accurately. For
the mean errors, a higher L leads to better results on average, although we observe that errors fluctuate
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Figure 3: Macroscopic von Mises stress σ̄mises plotted over k for ζ = 1.010, Ūxx = 1.1, Ūyy = 1.0, Ūxy = 0.0. At k =
{10, 20, 30, 40}, microstrucural von Mises stress fields σmises are shown. The von Mises stress is non-zero at k = {20, 40} due
to residual plastic deformation.

significantly, and for some values of N a worse approximation is obtained with a higher L. This occurs
since the ECM algorithm is a greedy algorithm, meaning that it does not necessarily find an optimal set
of integration points. When more basis functions are included into the algorithm, a completely different
set of points may be found that finally leads to a worse approximation. It can furthermore be observed
that the gap between the projection error and the PODECM solution grows larger for increasing N . This
is because the basis functions typically become more oscillatory and difficult to approximate with higher
N , see, e.g., [35, 36], and thus require significantly more quadrature points for a good approximation. It
is interesting that the gap for the errors in the fluctuation field are smaller than the ones in the effective
stress. This happens because the ECM integration rule used to compute the effective stress introduces an
additional approximation and hence also a source of error.

Several combinations of N and ε for a fixed L = 15 are next tested to study the influence of ε on
the number of quadrature points and approximation errors. Obtained results are shown in the bottom
row of Fig. 4. Similarly to the previous analysis, a lower ε leads to more quadrature points Q and a
lower mean error in the effective stress and fluctuation field on average, as the integrals are approximated
more accurately. Interestingly, lowering the tolerance from 0.01 to 0.001 does not significantly improve the
approximation quality, even though substantially more quadrature points are included, meaning that the
errors can be attributed to the higher modes of the weighted stress (the additional quadrature points barely
contain any information). Therefore, choosing a tolerance smaller than ε = 0.01 leads to no improvement.

From Fig. 4 we further observe that the errors of the fluctuation field are considerably higher (order of
magnitude) than the errors of the effective stresses. This results from the fact that the POD basis functions
aim to minimize the H1(Ω

p) error, and thus approximate the field accurately on average rather than locally,
suggesting a favorable approximation for averaged quantities such as the effective stress. In [37], the authors
showed a similar result for FFT: the effective stresses converge with an order of h, while the local fields
converge with h1/2, where h is the used voxel edge-length.

To conclude, the more basis functions N and L are used and the lower the integration error ε is chosen,
the more accurate the final result is. However, at the same time the surrogate model grows in size and the
speed-up decreases. A user must thus make a compromise between accuracy and cost. In our experience,
the speed-up correlates nearly linearly with Q, i.e., if the number of quadrature points is reduced by a factor
of 100, this results in a speed-up of roughly 100. In contrast, the number of basis functions N only plays a
minor role for the speed-up. For this example, use of N = 20, L = 20 and ε = 0.01 lead to a reduction in
the number of degrees of freedom from 62194 to 20 and quadrature points from 46350 to 212, suggesting a
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Figure 4: The left column shows the number of quadrature points Q obtained from ECM for different choices of number of
basis functions of fluctuation field N , number of basis functions of weighted stress L, and ECM integration error ε. The middle
and right columns show the average errors of the effective stress and the fluctuation field when tested on the testing data for
different choices of N , L and ε. The top row assumes a fixed ε = 0.01, while the bottom row assumes a fixed L = 15.

speed-up on the order of roughly 200.

4.2. Two-Scale Compression With Porous Microstructure

4.2.1. Problem Description

In the second example, the macroscopic structure, depicted in Fig. 5 together with the employed
simulation mesh, is compressed under an external loading T (x). Here, we assume H = 1, W = 2,

T (x) = T̄

(
1−

(
2x

W
− 1

)2
)
, x ∈ [0,W ], with T̄ the magnitude of the applied load. The simulation

mesh has 1322 degrees of freedom, 200 8-noded quadrilateral elements, and in total 800 quadrature points.
The structure is assumed to have a porous microstructure, modelled by the parameterized RVE, shown
in Fig. 6, and the same material model as the matrix material in the previous example Eqs. (40)–(49). Such
microstructures (with circular holes, i.e., a = b) have been considered in several works, see, e.g., [38, 39], due
to their auxetic behavior under compression, i.e., negative Poisson’s ratio. During compression, the center
part of the material starts to rotate, thus pulling the material from the sides inwards. In our work, we define
two independent parameters, namely the volume fraction of the voids, vvoid := 4πab, and the ratio of the
semi-major axis b to semi-minor axis a of each hole, κ := b/a. The semi-minor axis a and semi-major axis b
depend on vvoid and κ as

a(vvoid, κ) =
√

vvoid/(4πκ), (50)

b(vvoid, κ) = κ · a(vvoid, κ). (51)
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(a) Macroscopic structure (b) Macroscopic simulation mesh

Figure 5: Geometry (a) and mesh (b) of the considered macroscopic structure. The body is fixed on the bottom and an external
compression force T is applied on the top. The mesh consists of 1322 degrees of freedom, 200 8-noded quadrilateral elements
and 4 quadrature points per element.

(a) RVE (b) Simulation mesh

Figure 6: Geometry (a) and mesh (b) of the porous RVE. The elliptical holes have semi-minor axis a and semi-major axis b,
and are parameterized by the volume fraction of the pores vvoid and the κ = b/a. The employed simulation mesh has 21042
degrees of freedom, 4964 6-noded triangular elements and in total 14892 quadrature points. The parent domain corresponds
to κ = 1.25 and vvoid = 0.45.

Depending on the values of the parameters, the resulting effective properties change significantly. To
illustrate this, linear analyses of this RVE for different parameters have been carried out, similarly to [40],
where a small compression in the y-direction with ∆uy = 0.001 has been applied, while allowing the RVE
to contract freely in the x-direction. With the resulting displacement in the x-direction, ∆ux, the Poisson’s
ratio in the initial state can be estimated as

νeff = −∆ux

∆uy
. (52)

Similarly, the initial Young’s modulus is estimated as

Eeff =
P̄yy

∆uy
, (53)

where P̄yy is the yy-component of the effective stress. For parameter ranges vvoid ∈ [0.4, 0.5] and κ ∈
[1.01, 1.5], the estimated Poisson’s ratio and Young’s modulus are plotted in Fig. 7. It can be observed that
removing material (by increasing vvoid while keeping κ fixed) or increasing κ while keeping vvoid fixed both
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Figure 7: Initial effective Poisson’s ratio (a) and Young’s modulus (b) of RVE for different values of vvoid and κ.

lead to a softer response with lower Young’s modulus. While the Poisson’s ratio is barely affected by vvoid
for values of κ close to 1, the effect becomes apparent for larger values of κ. In particular, for κ ≥ 1.4, the
Poisson’s ratio changes from a positive value to a negative one. Therefore, by tuning vvoid and κ, the RVE
behavior can be significantly modified.

The parameters vvoid and κ are chosen to vary smoothly through the macrostructural domain as

κ(x, y) = 1.5− (1.5− 1.01)y, (54)

vvoid(x, y) = 0.4 + (0.5− 0.4)(1− x)2. (55)

The parent mesh is selected with κ = 1.25 and vvoid = 0.45. The external loading is applied in K = 50 load
steps. In the first 25 load steps, the applied load T̄ increases linearly from 0 to 0.2. In the next 25 steps T̄
is decreased linearly from 0.2 to 0.

4.2.2. Results

Several two-scale simulations with different PODECM surrogate models are run and compared to the
full reference FE2 solution. To compare the accuracy of the surrogate solutions, the compliance C :=∫
Γ
T (x)uy(x)dx, where Γ denotes the top horizontal edge of the macrostructure and uy its vertical dis-

placement, is computed at every load step. The compliance is an important quantity, often employed in
optimization problems. Subsequently, the relative error in compliance ϵC and the relative error averaged
over all load steps ϵ̄C are defined as

ϵC,k :=
|Ck − CFE2

k |
|CFE2

k |
, ϵ̄C :=

1

K

K∑
n=1

ϵC,k, (56)

where the subscript k denotes the k-th load step and CFE2

is the compliance computed with the full solution.
The tested PODECM RVE models are generated for different numbers of training samples Ntrain and

number of basis functions N . The training data is sampled from Ūxx ∈ [0.85, 1], Ūyy ∈ [0.85, 1], Ūxy ∈
[−0.15, 0.15], vvoid ∈ [0.4, 0.5] and κ ∈ [1.01, 1.5] with a Sobol sequence. Each sample consists of 50 load
steps, where the macroscopic stretch tensor is linearly increased for 25 load steps and then linearly decreased
to 0 in 25 steps. For the ECM algorithm, the number of basis functions for the weighted stress L and the
integration error ε are assumed as fixed with L = 20 and ε = 0.01 for all models. The exact settings for
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each surrogate model are summarized in Table 1, alongside the averaged relative error in compliance ϵ̄C ,
and the run time and speed-up in comparison to the full FE2 solution. For comparison, the total number
of degrees of freedom and quadrature points of the full FE model of the RVE are also provided. As can be
seen, for all surrogate models the number of quadrature points are reduced by a factor of up to 100 which
results in high speed-ups up to 100 times, while errors are below 5% for all models. By increasing N from
10 to 50 for rom 1 to rom 5, the error decreases from 4.74% to 1.54%, whereas the speed-up reduces from 92
to 26. Including more training samples with the same number of basis functions N = 50 (from Ntrain = 20
for rom 5 to Ntrain = 100 for rom 6) improves the error from 1.54% to 0.65% while the speed-up remains
roughly the same. This means that by increasing the sample size, the first 50 basis functions contain more
general information that result in a better approximation.

Table 1: Summary of results for full FE2 and different PODECM surrogate models. Reduced order models are generated for
different numbers of training samples Ntrain and basis functions of the displacement N . The number of quadrature points Q
follow from the ECM algorithm with a fixed number of basis functions of the weighted stress field L = 20 and an integration
error of ε = 0.01. All reduced order models achieve errors less than 5% with speed-ups up to 100 times. By generating more
training data and maintaining the same N (rom 5 and rom 6), better results are achieved.

Ntrain N Q ϵ̄C run timea speed-up
full - 21042 14892 - 12573s -

rom 1 20 10 132 4.74% 136s 92.45
rom 2 20 20 259 4.66% 205s 61.33
rom 3 20 30 372 2.28% 284s 44.27
rom 4 20 40 490 2.19% 385s 32.66
rom 5 20 50 595 1.54% 488s 25.76
rom 6 100 50 577 0.65% 496s 25.34

aAll computations are executed using 20 cores of an Intel Platinum 8260.

In Fig. 8 the force displacement curve is shown for the FE2 and a few selected surrogate solutions.
The displacement is defined as the vertical displacement at the mid point of the top edge (which is also
the maximal displacement). It can be observed that all surrogate models underpredict the displacement,
indicating that the surrogate models overpredict the stiffness of the macrostructure.

Figure 8: Force-displacement curve of two-scale simulations. The displacement ũ is defined as the vertical displacement of the
mid point on the top edge, cf. Fig. 5a. The structure starts deforming plastically for T̄ > 0.07 and a residual displacement
of roughly ũ = 0.04 remains after unloading. All surrogate models achieve accurate results, although they generally predict a
slightly stiffer response than the full FE2 solution.

The relative error in compliance is plotted over the load steps k in Fig. 9. For all models, the error slowly
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increases over k. The reason for this behavior is that all training samples are generated for simple loading
cases, where the macroscopic stretch tensor is linearly varied in only one direction throughout the entire
simulation. In the macroscopic simulation, the macroscopic stretch tensor for one integration point generally
does not evolve along one direction, but changes its direction continuously, leading to highly complicated
deformation paths and histories that are not included in the training data. To tackle this problem, random
loading paths during training could be used, as performed in, e.g., [41, 42], to generate a more general
surrogate model. Solely increasing the number of samples from 20 to 100 (rom 5 to rom 6) also decreases
the observed errors to less than 1% for all load steps. This shows that PODECM generalizes well to loading
paths that are not part of the training data.

0 10 20 30 40 50
k

10−2

10−1

ε C

rom 2

rom 3

rom 5

rom 6

Figure 9: Relative error ϵC in compliance over load step k. All surrogate models (specified in Table 1) begin with a lower error
which slowly grows with k. By increasing the sample size of the training data (comparing rom 5 and rom 6), the prediction
becomes more accurate for the same number of basis functions; the errors for all load steps for rom 6 are below 1%.

5. Conclusions

In this work, we developed a reduced order model, termed PODECM, by combining the proper orthogonal
decomposition (POD), the empirical cubature method (ECM) and a geometrical transformation method.
This method is designed to accelerate microscopic computations within two-scale simulations, parameterized
by material and geometrical parameters, hence enabling PODECM to be used for two-scale optimization
problems. We showed how to compute the effective stress and the corresponding consistent effective stiffness
for this model, as required by the macroscopic solver, and how to obtain the effective sensitivities with respect
to geometrical parameters. The framework was first tested on a single-scale problem involving an RVE of
a composite microstructure that consisted of a soft elasto-plastic matrix with stiff inclusions of variable
size, controlled by a single geometrical parameter. With PODECM, the number of degrees of freedom and
integration points was reduced to a fraction of the full FE model while maintaining a high accuracy in
effective stress. The performance of PODECM was further evaluated for a two-scale simulation, in which
a porous microstructure, characterized by two geometrical parameters, was considered. Both geometrical
parameters were varied throughout the macrostructure, and depending on their values, the effective Poisson’s
ratio changed from positive to negative. For this example, different PODECM models were constructed with
good accuracies (of errors less than 1%), while achieving speed-ups up to 100. Even though highly accurate
and fast solutions were obtained with the proposed method, several open questions prevail. For instance,
optimality and accuracy of the ECM integration rule cannot be ensured and thus needs to be further analyzed
and understood.

An attractive feature of the proposed framework is its versatility and generality. Moreover, since the
underlying microscopic PDE still needs to be solved, only very little training data is required to construct
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a good approximation of the full model with no special treatment of history-dependent material behavior,
which makes this framework viable for two-scale shape optimization problems.

Data availability

The data that support the findings of this study are available from the corresponding author upon
request.
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[12] K. Matouš, M. G. D. Geers, V. G. Kouznetsova, A. Gillman, A review of predictive nonlinear theories for multiscale
modeling of heterogeneous materials, Journal of Computational Physics 330 (2017) 192–220. doi:10.1016/j.jcp.2016.

10.070.
URL https://linkinghub.elsevier.com/retrieve/pii/S0021999116305782

[13] C. Miehe, A. Koch, Computational micro-to-macro transitions of discretized microstructures undergoing small strains,
Archive of Applied Mechanics (Ingenieur Archiv) 72 (4-5) (2002) 300–317. doi:10.1007/s00419-002-0212-2.
URL http://link.springer.com/10.1007/s00419-002-0212-2

19

https://linkinghub.elsevier.com/retrieve/pii/S0377042709005536
https://linkinghub.elsevier.com/retrieve/pii/S0377042709005536
https://doi.org/10.1016/j.cam.2009.08.077
https://doi.org/10.1016/j.cam.2009.08.077
https://linkinghub.elsevier.com/retrieve/pii/S0377042709005536
http://link.springer.com/10.1007/s004660000212
http://link.springer.com/10.1007/s004660000212
https://doi.org/10.1007/s004660000212
http://link.springer.com/10.1007/s004660000212
https://onlinelibrary.wiley.com/doi/10.1002/nme.1620320604
https://doi.org/10.1002/nme.1620320604
https://onlinelibrary.wiley.com/doi/10.1002/nme.1620320604
https://linkinghub.elsevier.com/retrieve/pii/S0045782509002643
https://linkinghub.elsevier.com/retrieve/pii/S0045782509002643
https://doi.org/10.1016/j.cma.2009.06.023
https://doi.org/10.1016/j.cma.2009.06.023
https://linkinghub.elsevier.com/retrieve/pii/S0045782509002643
https://linkinghub.elsevier.com/retrieve/pii/S0045782597002181
https://linkinghub.elsevier.com/retrieve/pii/S0045782597002181
https://doi.org/10.1016/S0045-7825(97)00218-1
https://doi.org/10.1016/S0045-7825(97)00218-1
https://linkinghub.elsevier.com/retrieve/pii/S0045782597002181
https://linkinghub.elsevier.com/retrieve/pii/S0021999116301863
https://linkinghub.elsevier.com/retrieve/pii/S0021999116301863
https://doi.org/10.1016/j.jcp.2016.05.041
https://linkinghub.elsevier.com/retrieve/pii/S0021999116301863
https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0063
https://doi.org/10.1098/rspa.1992.0063
https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0063
https://linkinghub.elsevier.com/retrieve/pii/S0020768303003469
https://doi.org/10.1016/S0020-7683(03)00346-9
https://linkinghub.elsevier.com/retrieve/pii/S0020768303003469
http://dx.doi.org/10.1016/j.cma.2016.04.004
http://dx.doi.org/10.1016/j.cma.2016.04.004
https://doi.org/10.1016/j.cma.2016.04.004
https://doi.org/10.1016/j.cma.2016.04.004
http://dx.doi.org/10.1016/j.cma.2016.04.004
https://linkinghub.elsevier.com/retrieve/pii/S0045782519300982
https://doi.org/10.1016/j.cma.2019.02.027
https://linkinghub.elsevier.com/retrieve/pii/S0045782519300982
https://linkinghub.elsevier.com/retrieve/pii/S0927025699000774
https://doi.org/10.1016/S0927-0256(99)00077-4
https://linkinghub.elsevier.com/retrieve/pii/S0927025699000774
https://linkinghub.elsevier.com/retrieve/pii/S0021999116305782
https://linkinghub.elsevier.com/retrieve/pii/S0021999116305782
https://doi.org/10.1016/j.jcp.2016.10.070
https://doi.org/10.1016/j.jcp.2016.10.070
https://linkinghub.elsevier.com/retrieve/pii/S0021999116305782
http://link.springer.com/10.1007/s00419-002-0212-2
https://doi.org/10.1007/s00419-002-0212-2
http://link.springer.com/10.1007/s00419-002-0212-2


[14] A. Quarteroni, A. Manzoni, F. Negri, Reduced Basis Methods for Partial Differential Equations, Vol. 92 of UNITEXT,
Springer International Publishing, Cham, 2016. doi:10.1007/978-3-319-15431-2.
URL http://link.springer.com/10.1007/978-3-319-15431-2

[15] J. S. Hesthaven, G. Rozza, B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations,
SpringerBriefs in Mathematics, Springer International Publishing, Cham, 2016. doi:10.1007/978-3-319-22470-1.
URL http://link.springer.com/10.1007/978-3-319-22470-1

[16] J. Yvonnet, Q.-C. He, The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic
media at finite strains, Journal of Computational Physics 223 (1) (2007) 341–368. doi:10.1016/j.jcp.2006.09.019.
URL https://linkinghub.elsevier.com/retrieve/pii/S0021999106004402

[17] A. Radermacher, B. A. Bednarcyk, B. Stier, J. Simon, L. Zhou, S. Reese, Displacement-based multiscale modeling of fiber-
reinforced composites by means of proper orthogonal decomposition, Advanced Modeling and Simulation in Engineering
Sciences 3 (1) (2016) 29. doi:10.1186/s40323-016-0082-8.
URL http://amses-journal.springeropen.com/articles/10.1186/s40323-016-0082-8

[18] Y. Maday, N. Cuong Nguyen, A. T. Patera, S. H. Pau, A general multipurpose interpolation procedure: the magic points,
Communications on Pure & Applied Analysis 8 (1) (2009) 383–404. doi:10.3934/cpaa.2009.8.383.
URL http://aimsciences.org//article/doi/10.3934/cpaa.2009.8.383

[19] S. Chaturantabut, D. C. Sorensen, Nonlinear Model Reduction via Discrete Empirical Interpolation, SIAM Journal on
Scientific Computing 32 (5) (2010) 2737–2764. doi:10.1137/090766498.
URL http://epubs.siam.org/doi/10.1137/090766498

[20] C. Farhat, P. Avery, T. Chapman, J. Cortial, Dimensional reduction of nonlinear finite element dynamic models with finite
rotations and energy-based mesh sampling and weighting for computational efficiency, International Journal for Numerical
Methods in Engineering 98 (9) (2014) 625–662. doi:10.1002/nme.4668.
URL https://onlinelibrary.wiley.com/doi/10.1002/nme.4668

[21] D. Ryckelynck, Hyper-reduction of mechanical models involving internal variables, International Journal for Numerical
Methods in Engineering 77 (1) (2009) 75–89. doi:10.1002/nme.2406.
URL https://onlinelibrary.wiley.com/doi/10.1002/nme.2406

[22] M. Yano, A. T. Patera, An LP empirical quadrature procedure for reduced basis treatment of parametrized nonlinear PDEs,
Computer Methods in Applied Mechanics and Engineering 344 (2019) 1104–1123. doi:10.1016/j.cma.2018.02.028.
URL https://linkinghub.elsevier.com/retrieve/pii/S0045782518301087

[23] J. Hernández, M. Caicedo, A. Ferrer, Dimensional hyper-reduction of nonlinear finite element models via empirical cuba-
ture, Computer Methods in Applied Mechanics and Engineering 313 (2017) 687–722. doi:10.1016/j.cma.2016.10.022.
URL https://linkinghub.elsevier.com/retrieve/pii/S004578251631355X

[24] J. Hernández, J. Oliver, A. Huespe, M. Caicedo, J. Cante, High-performance model reduction techniques in computational
multiscale homogenization, Computer Methods in Applied Mechanics and Engineering 276 (2014) 149–189. doi:10.1016/
j.cma.2014.03.011.
URL https://linkinghub.elsevier.com/retrieve/pii/S0045782514000978

[25] D. Soldner, B. Brands, R. Zabihyan, P. Steinmann, J. Mergheim, A numerical study of different projection-based model
reduction techniques applied to computational homogenisation, Computational Mechanics 60 (4) (2017) 613–625. doi:

10.1007/s00466-017-1428-x.
URL http://link.springer.com/10.1007/s00466-017-1428-x

[26] A. Radermacher, S. Reese, POD-based model reduction with empirical interpolation applied to nonlinear elasticity, Inter-
national Journal for Numerical Methods in Engineering 107 (6) (2016) 477–495. doi:10.1002/nme.5177.
URL https://onlinelibrary.wiley.com/doi/10.1002/nme.5177

[27] M. Caicedo, J. L. Mroginski, S. Toro, M. Raschi, A. Huespe, J. Oliver, High Performance Reduced Order Modeling
Techniques Based on Optimal Energy Quadrature: Application to Geometrically Non-linear Multiscale Inelastic Material
Modeling, Archives of Computational Methods in Engineering 26 (4) (2019) 771–792. doi:10.1007/s11831-018-9258-3.
URL http://link.springer.com/10.1007/s11831-018-9258-3

[28] M. Raschi, O. Lloberas-Valls, A. Huespe, J. Oliver, High performance reduction technique for multiscale finite element
modeling (HPR-FE2): Towards industrial multiscale FE software, Computer Methods in Applied Mechanics and Engi-
neering 375 (2021) 113580. doi:10.1016/j.cma.2020.113580.
URL https://doi.org/10.1016/j.cma.2020.113580
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