175 research outputs found

    Wave Optics Approach to Solar Cell BRDF Modeling with Experimental Results

    Get PDF
    Light curve analysis is often used to discern information about satellites in geosynchronous orbits. Solar panels, comprising a large part of the satellite’s body, contribute significantly to these light curves. Historically, theoretical bidirectional reflectance distribution functions (BRDFs) have failed to capture key features in the scattered light from solar panels. In recently published work, a new solar cell BRDF was developed by combining specular microfacet and “two-slit” diffraction terms to capture specular and periodic/array scattering, respectively. This BRDF was experimentally motivated and predicted many features of the solar cell scattered irradiance. However, the experiments that informed the BRDF were limited to a single laser wavelength, single beam size, and single solar cell sample. In addition, the BRDF was not physics based and therefore, physical insight into what causes certain features in the scattered irradiance was not evident. In this work, we examine solar cell scattering from first principles and derive a simple physics-based expression for the scattered irradiance. We analyze this expression and physically link terms to important scattering features, e.g., out-of-plane phenomena. In addition, we compare our model with experimental data and find good agreement in the locations and behaviors of these features. Our new model, being more predictive by nature, will allow for greater flexibility and accuracy when modeling reflection from solar cells in both real-world and experimental situations

    Data Driven Investigation into the Off-Axis BRDF to Develop an Algorithm to Classify Anisotropicity

    Get PDF
    The Bi-directional Reflectance Distribution Function (BRDF) is used to describe reflectances of materials by calculating the ratio of the reflected radiance to the incident irradiance. While it was found that isotropic BRDF microfacet models maintained symmetry about ɸs = π, such symmetry was not maintained about the θs = θi axis, except for close to the specular peak. This led to development of a novel data-driven metric for how isotropic a BRDF measurement is. Research efforts centered around developing an algorithm that could determine material anisotropy without having to fit to models. The algorithm developed here successfully classified the degree of anisotropicity in 4 out of 5 samples

    Ab initio Calculations of Multilayer Relaxations of Stepped Cu Surfaces

    Full text link
    We present trends in the multilayer relaxations of several vicinals of Cu(100) and Cu(111) of varying terrace widths and geometry. The electronic structure calculations are based on density functional theory in the local density approximation with norm-conserving, non-local pseudopotentials in the mixed basis representation. While relaxations continue for several layers, the major effect concentrates near the step and corner atoms. On all surfaces the step atoms contract inwards, in agreement with experimental findings. Additionally, the corner atoms move outwards and the atoms in the adjacent chain undergo large inward relaxation. Correspondingly, the largest contraction (4%) is in the bond length between the step atom and its bulk nearest neighbor (BNN), while that between the corner atom and BNN is somewhat enlarged. The surface atoms also display changes in registry of upto 1.5%. Our results are in general in good agreement with LEED data including the controversial case of Cu(511). Subtle differences are found with results obtained from semi-empirical potentials.Comment: 21 pages and 3 figure

    A Composite BRDF Model for Hazy Gloss

    Get PDF
    International audienceWe introduce a bidirectional reflectance distribution function (BRDF) model for the rendering of materials that exhibit hazy reflections, whereby the specular reflections appear to be flanked by a surrounding halo. The focus of this work is on artistic control and ease of implementation for real-time and off-line rendering. We propose relying on a composite material based on a pair of arbitrary BRDF models; however, instead of controlling their physical parameters, we expose perceptual parameters inspired by visual experiments [VBF17]. Our main contribution then consists in a mapping from perceptual to physical parameters that ensures the resulting composite BRDF is valid in terms of reciprocity, positivity and energy conservation. The immediate benefit of our approach is to provide direct artistic control over both the intensity and extent of the haze effect, which is not only necessary for editing purposes, but also essential to vary haziness spatially over an object surface. Our solution is also simple to implement as it requires no new importance sampling strategy and relies on existing BRDF models. Such a simplicity is key to approximating the method for the editing of hazy gloss in real-time and for compositing

    Multiple-bounce Smith Microfacet BRDFs using the Invariance Principle

    Full text link
    Smith microfacet models are widely used in computer graphics to represent materials. Traditional microfacet models do not consider the multiple bounces on microgeometries, leading to visible energy missing, especially on rough surfaces. Later, as the equivalence between the microfacets and volume has been revealed, random walk solutions have been proposed to introduce multiple bounces, but at the cost of high variance. Recently, the position-free property has been introduced into the multiple-bounce model, resulting in much less noise, but also bias or a complex derivation. In this paper, we propose a simple way to derive the multiple-bounce Smith microfacet bidirectional reflectance distribution functions (BRDFs) using the invariance principle. At the core of our model is a shadowing-masking function for a path consisting of direction collections, rather than separated bounces. Our model ensures unbiasedness and can produce less noise compared to the previous work with equal time, thanks to the simple formulation. Furthermore, we also propose a novel probability density function (PDF) for BRDF multiple importance sampling, which has a better match with the multiple-bounce BRDFs, producing less noise than previous naive approximations

    Un modèle de BRDF bi-échelle combinant : Diffraction et Micro-facettes

    Get PDF
    National audienceWe present a Two-Scale BRDF model combining Microfacet and Diffraction theories. This new model explains better the different BRDF measurements compared to previous approaches

    Growth and surface alloying of Fe on Pt(997)

    Full text link
    The growth of ultra-thin layers of Fe on the vicinal Pt(997) surface is studied by thermal energy He atom scattering (TEAS) and Auger electron spectroscopy (AES) in the temperature range between 175K and 800K. We find three distinct regimes of qualitatively different growth type: Below 450K the formation of a smooth first monolayer, at and above 600K the onset of bulk alloy formation, and at intermediate temperature 500K - 550K the formation of a surface alloy. Monatomic Fe rows are observed to decorate the substrate steps between 175K and 500K. The importance of the high step density is discussed with respect to the promotion of smooth layer growth and with respect to the alloying process and its kinetics

    Enhanced BRDF Modeling Using Directional Volume Scatter Terms

    Get PDF
    Accurate Bidirectional Reflectance Distribution Function (BRDF) models provide critical scatter behavior for computer graphics and remote sensing performance. The popular microfacet class of BRDF models is geometric-based and computationally inexpensive compared to wave-optics models. Microfacet models commonly account for surface scatter and Lambertian volume scatter, but not directional volume scatter. This work proposes directional volume scatter modeling for enhanced performance over all observation regions. Five directional volume models are incorporated into the modified Cook-Torrance microfacet model. Additionally, a semi-empirical directional volume term is presented based on the Beckmann microfacet distribution and a modified Fresnel reflection term. High fidelity, low density data from 15 datasets are fit to each hybrid model using a recursive optimization method then compared to the baseline Cook-Torrance model. By including a directional volume term, analysis shows fit quality is improved based on the square of the mean standard error (MSE2) by as much as 78% and backscatter agreement is improved by as much as 92%. Including the semi-empirical, Oren-Nayar, or Beard-Maxwell directional volume term reduced backscatter MSE2 across datasets exhibiting high volume scatter by an average of 52%, 46%, and 26% respectively. Directional volume terms showed statistically insignificant improvement for low volume scatter materials, while full model improvements were apparent across all high volume scatter visually diffuse materials. Results suggest directional volume scatter modeling can consistently improve full model fit quality with emphasized model agreement for backscatter observations. These results validate directional volume scatter significance and are expected to lead to enhanced remote sensing and scene generation
    corecore