10,956 research outputs found

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Interactive form creation: exploring the creation and manipulation of free form through the use of interactive multiple input interface

    Get PDF
    Most current CAD systems support only the two most common input devices: a mouse and a keyboard that impose a limit to the degree of interaction that a user can have with the system. However, it is not uncommon for users to work together on the same computer during a collaborative task. Beside that, people tend to use both hands to manipulate 3D objects; one hand is used to orient the object while the other hand is used to perform some operation on the object. The same things could be applied to computer modelling in the conceptual phase of the design process. A designer can rotate and position an object with one hand, and manipulate the shape [deform it] with the other hand. Accordingly, the 3D object can be easily and intuitively changed through interactive manipulation of both hands.The research investigates the manipulation and creation of free form geometries through the use of interactive interfaces with multiple input devices. First the creation of the 3D model will be discussed; several different types of models will be illustrated. Furthermore, different tools that allow the user to control the 3D model interactively will be presented. Three experiments were conducted using different interactive interfaces; two bi-manual techniques were compared with the conventional one-handed approach. Finally it will be demonstrated that the use of new and multiple input devices can offer many opportunities for form creation. The problem is that few, if any, systems make it easy for the user or the programmer to use new input devices

    Light on horizontal interactive surfaces: Input space for tabletop computing

    Get PDF
    In the last 25 years we have witnessed the rise and growth of interactive tabletop research, both in academic and in industrial settings. The rising demand for the digital support of human activities motivated the need to bring computational power to table surfaces. In this article, we review the state of the art of tabletop computing, highlighting core aspects that frame the input space of interactive tabletops: (a) developments in hardware technologies that have caused the proliferation of interactive horizontal surfaces and (b) issues related to new classes of interaction modalities (multitouch, tangible, and touchless). A classification is presented that aims to give a detailed view of the current development of this research area and define opportunities and challenges for novel touch- and gesture-based interactions between the human and the surrounding computational environment. © 2014 ACM.This work has been funded by Integra (Amper Sistemas and CDTI, Spanish Ministry of Science and Innovation) and TIPEx (TIN2010-19859-C03-01) projects and Programa de Becas y Ayudas para la Realización de Estudios Oficiales de Máster y Doctorado en la Universidad Carlos III de Madrid, 2010

    Reshaping the future

    Get PDF
    A 5.3 million pounds sterling refurbishment and new build library project was undertaken by Bournemouth University. First inception to latest adaptation spans 2000–2008. The project gave equal weight to the refurbishment and new build and the building was opened in 2003. The philosophy was one of seeking a design that would allow adaptation and change. Winning the SCONUL building award 2007 is testament to the success of designing and implementing space and service delivery in a way that is sympathetic to developing pedagogy, student expectations and the University’s plans

    Integrating passive ubiquitous surfaces into human-computer interaction

    Get PDF
    Mobile technologies enable people to interact with computers ubiquitously. This dissertation investigates how ordinary, ubiquitous surfaces can be integrated into human-computer interaction to extend the interaction space beyond the edge of the display. It turns out that acoustic and tactile features generated during an interaction can be combined to identify input events, the user, and the surface. In addition, it is shown that a heterogeneous distribution of different surfaces is particularly suitable for realizing versatile interaction modalities. However, privacy concerns must be considered when selecting sensors, and context can be crucial in determining whether and what interaction to perform.Mobile Technologien ermöglichen den Menschen eine allgegenwärtige Interaktion mit Computern. Diese Dissertation untersucht, wie gewöhnliche, allgegenwärtige Oberflächen in die Mensch-Computer-Interaktion integriert werden können, um den Interaktionsraum über den Rand des Displays hinaus zu erweitern. Es stellt sich heraus, dass akustische und taktile Merkmale, die während einer Interaktion erzeugt werden, kombiniert werden können, um Eingabeereignisse, den Benutzer und die Oberfläche zu identifizieren. Darüber hinaus wird gezeigt, dass eine heterogene Verteilung verschiedener Oberflächen besonders geeignet ist, um vielfältige Interaktionsmodalitäten zu realisieren. Bei der Auswahl der Sensoren müssen jedoch Datenschutzaspekte berücksichtigt werden, und der Kontext kann entscheidend dafür sein, ob und welche Interaktion durchgeführt werden soll

    Designing Hybrid Interactions through an Understanding of the Affordances of Physical and Digital Technologies

    Get PDF
    Two recent technological advances have extended the diversity of domains and social contexts of Human-Computer Interaction: the embedding of computing capabilities into physical hand-held objects, and the emergence of large interactive surfaces, such as tabletops and wall boards. Both interactive surfaces and small computational devices usually allow for direct and space-multiplex input, i.e., for the spatial coincidence of physical action and digital output, in multiple points simultaneously. Such a powerful combination opens novel opportunities for the design of what are considered as hybrid interactions in this work. This thesis explores the affordances of physical interaction as resources for interface design of such hybrid interactions. The hybrid systems that are elaborated in this work are envisioned to support specific social and physical contexts, such as collaborative cooking in a domestic kitchen, or collaborative creativity in a design process. In particular, different aspects of physicality characteristic of those specific domains are explored, with the aim of promoting skill transfer across domains. irst, different approaches to the design of space-multiplex, function-specific interfaces are considered and investigated. Such design approaches build on related work on Graspable User Interfaces and extend the design space to direct touch interfaces such as touch-sensitive surfaces, in different sizes and orientations (i.e., tablets, interactive tabletops, and walls). These approaches are instantiated in the design of several experience prototypes: These are evaluated in different settings to assess the contextual implications of integrating aspects of physicality in the design of the interface. Such implications are observed both at the pragmatic level of interaction (i.e., patterns of users' behaviors on first contact with the interface), as well as on user' subjective response. The results indicate that the context of interaction affects the perception of the affordances of the system, and that some qualities of physicality such as the 3D space of manipulation and relative haptic feedback can affect the feeling of engagement and control. Building on these findings, two controlled studies are conducted to observe more systematically the implications of integrating some of the qualities of physical interaction into the design of hybrid ones. The results indicate that, despite the fact that several aspects of physical interaction are mimicked in the interface, the interaction with digital media is quite different and seems to reveal existing mental models and expectations resulting from previous experience with the WIMP paradigm on the desktop PC

    Human-document interaction systems: a new frontier for document image analysis

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.All indications show that paper documents will not cede in favour of their digital counterparts, but will instead be used increasingly in conjunction with digital information. An open challenge is how to seamlessly link the physical with the digital – how to continue taking advantage of the important affordances of paper, without missing out on digital functionality. This paper presents the authors’ experience with developing systems for Human-Document Interaction based on augmented document interfaces and examines new challenges and opportunities arising for the document image analysis field in this area. The system presented combines state of the art camera-based document image analysis techniques with a range of complementary technologies to offer fluid Human-Document Interaction. Both fixed and nomadic setups are discussed that have gone through user testing in real-life environments, and use cases are presented that span the spectrum from business to educational applications.Peer ReviewedPostprint (author's final draft

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Understanding user interactions in stereoscopic head-mounted displays

    Get PDF
    2022 Spring.Includes bibliographical references.Interacting in stereoscopic head mounted displays can be difficult. There are not yet clear standards for how interactions in these environments should be performed. In virtual reality there are a number of well designed interaction techniques; however, augmented reality interaction techniques still need to be improved before they can be easily used. This dissertation covers work done towards understanding how users navigate and interact with virtual environments that are displayed in stereoscopic head-mounted displays. With this understanding, existing techniques from virtual reality devices can be transferred to augmented reality where appropriate, and where that is not the case, new interaction techniques can be developed. This work begins by observing how participants interact with virtual content using gesture alone, speech alone, and the combination of gesture+speech during a basic object manipulation task in augmented reality. Later, a complex 3-dimensional data-exploration environment is developed and refined. That environment is capable of being used in both augmented reality (AR) and virtual reality (VR), either asynchronously or simultaneously. The process of iteratively designing that system and the design choices made during its implementation are provided for future researchers working on complex systems. This dissertation concludes with a comparison of user interactions and navigation in that complex environment when using either an augmented or virtual reality display. That comparison contributes new knowledge on how people perform object manipulations between the two devices. When viewing 3D visualizations, users will need to feel able to navigate the environment. Without careful attention to proper interaction technique design, people may struggle to use the developed system. These struggles may range from a system that is uncomfortable and not fit for long-term use, or they could be as major as causing new users to not being able to interact in these environments at all. Getting the interactions right for AR and VR environments is a step towards facilitating their widespread acceptance. This dissertation provides the groundwork needed to start designing interaction techniques around how people utilize their personal space, virtual space, body, tools, and feedback systems
    corecore