595 research outputs found

    Two-Dimensional Fuzzy Sliding Mode Control of a Field-Sensed Magnetic Suspension System

    Get PDF
    This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system

    MR Fluid Damper and Its Application to Force Sensorless Damping Control System

    Get PDF
    Vibration suppression is considered as a keyresearch field in civil engineering to ensure the safety and comfort of their occupants and users of mechanical structures. To reduce the system vibration, an effective vibration control with isolation is necessary. Vibration control techniques have classically been categorized into two areas, passive and active controls. For a long time, efforts were made to make the suspension system work optimally by optimizing its parameters, but due to the intrinsic limitations of a passive suspension system, improvements were effective only in a certain frequency range. Compared with passive suspensions, active suspensions can improve the performance of the suspension system over a wide range of frequencies. Semi-active suspensions were proposed in the early 1970s [1], and can be nearly as effective as active suspensions. When the control system fails, the semi-active suspension can still work under passive conditions. Compared with active and passive suspension systems, the semi-active suspension system combines the advantages of both active and passive suspensions because it provides better performance when compared with passive suspensions and is economical, safe and does not require either higher-power actuators or a large power supply as active suspensions do [2]

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Review on smartphone sensing technology for structural health monitoring

    Get PDF
    Sensing is a critical and inevitable sector of structural health monitoring (SHM). Recently, smartphone sensing technology has become an emerging, affordable, and effective system for SHM and other engineering fields. This is because a modern smartphone is equipped with various built-in sensors and technologies, especially a triaxial accelerometer, gyroscope, global positioning system, high-resolution cameras, and wireless data communications under the internet-of-things paradigm, which are suitable for vibration- and vision-based SHM applications. This article presents a state-of-the-art review on recent research progress of smartphone-based SHM. Although there are some short reviews on this topic, the major contribution of this article is to exclusively present a compre- hensive survey of recent practices of smartphone sensors to health monitoring of civil structures from the per- spectives of measurement techniques, third-party apps developed in Android and iOS, and various application domains. Findings of this article provide thorough understanding of the main ideas and recent SHM studies on smartphone sensing technology

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Adaptive Magnetorheological Sliding Seat System for Ground Vehicles

    Get PDF
    Magnetorheological (MR) fluids (MRFs) are smart fluids that have reversible field dependent rheological properties that can change rapidly (typically 5 - 10 ms time constant). Such an MRF can be changed from a free flowing fluid into a semi-solid when exposed to a magnetic field. The rapid, reversible, and continuous field dependent variation in rheological properties can be exploited in an MRF-based damper or energy absorber to provide adaptive vibration and shock mitigation capabilities to varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. Electronically controlled electromagnetic coils are typically used to activate the MR effect and tune the damping force so that feedback control implementation is practical and realizable. MR devices have been demonstrated as successful solutions in semi-active systems combining advantages of both passive and active systems for applications where piston velocities are relatively low (typically < 1 m/s), such as seismic mitigation, or vibration isolation. Recently strong interests have focused on employing magnetorheological energy absorbers (MREAs) for high speed impact loads, such as in helicopter cockpit seats for occupant protection in a vertical crash landing. This work presents another novel application of MREAs in this new trend - an adaptive magnetorheological sliding seat (AMSS) system utilizing controllable MREAs to mitigate impact load imparted to the occupant for a ground vehicle in the event of a low speed frontal impact (up to 15 mph). To accomplish this, a non-linear analytical MREA model based on the Bingham-plastic model and including minor loss effects (denoted as the BPM model) is developed. A design strategy is proposed for MREAs under impact conditions. Using the BPM model, an MREA is designed, fabricated and drop tested up to piston velocities of 5 m/s. The measured data is used to validate the BPM model and the design strategy. The MREA design is then modified for use in the AMSS system and a prototype is built. The prototype MREA is drop tested and its performance, as well as the dynamic behavior in the time domain, is described by the BPM model. Next, theoretical analysis of the AMSS system with two proposed control algorithms is carried out using two modeling approaches: (1) a single-degree-of-freedom (SDOF) rigid occupant (RO) model treating the seat and the occupant as a single rigid mass, and (2) a multi-degree-of-freedom (MDOF) compliant occupant (CO) model interpreting the occupant as three lumped parts - head, torso and pelvis. A general MREA is assumed and characterized by the Bingham-plastic model in the system model. The two control algorithms, named the constant Bingham number or Bic control and the constant stroking force or Fc control, are constructed in such a way that the control objective - to bring the payload to rest while fully utilizing the available stroke - is achieved. Numerical simulations for both rigid and compliant occupant models with assumed system parameter values and a 20 g rectangular crash pulse for initial impact speeds of up to 7 m/s (15.7 mph) show that overall decelerations of the payload are significantly reduced using the AMSS compared to the case of a traditional fixed seat. To experimentally verify the theoretical analysis, a prototype AMSS system is built. The prototype seat system is sled tested in the passive mode (i.e. without control) for initial impact speeds of up to 5.6 m/s and for the 5th percentile female and the 95th percentile male. Using the test data, the CO model is shown to be able to adequately describe the dynamic behavior of the prototype seat system. Utilizing the CO model, the control algorithms for the prototype seat system are developed and a prototype controller is formulated using the DSPACE and SIMULINK real time control environments. The prototype seat system with controller integrated is sled tested for initial impact speeds of up to 5.6 m/s for the 5th female and 95th male (only the 95th male is tested for the Bic control). The results show that the controllers of both control algorithms successfully bring the seat to rest while fully utilizing the available stroke and the decelerations measured at the seat are substantially mitigated. The CO model is shown to be effective and a useful tool to predict the control inputs of the control algorithms. Thus, the feasibility and effectiveness of the proposed adaptive sliding seat system is theoretically and experimentally verified

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 41)

    Get PDF
    Abstracts are provided for 131 patents and patent applications entered into the NASA scientific and technical information system during the period Jan. 1992 through Jun. 1992. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application

    NASA Tech Briefs, March 2005

    Get PDF
    Topics covered include: Scheme for Entering Binary Data Into a Quantum Computer; Encryption for Remote Control via Internet or Intranet; Coupled Receiver/Decoders for Low-Rate Turbo Codes; Processing GPS Occultation Data To Characterize Atmosphere; Displacing Unpredictable Nulls in Antenna Radiation Patterns; Integrated Pointing and Signal Detector for Optical Receiver; Adaptive Thresholding and Parameter Estimation for PPM; Data-Driven Software Framework for Web-Based ISS Telescience; Software for Secondary-School Learning About Robotics; Fuzzy Logic Engine; Telephone-Directory Program; Simulating a Direction-Finder Search for an ELT; Formulating Precursors for Coating Metals and Ceramics; Making Macroscopic Assemblies of Aligned Carbon Nanotubes; Ball Bearings Equipped for In Situ Lubrication on Demand; Synthetic Bursae for Robots; Robot Forearm and Dexterous Hand; Making a Metal-Lined Composite-Overwrapped Pressure Vessel; Ex Vivo Growth of Bioengineered Ligaments and Other Tissues; Stroboscopic Goggles for Reduction of Motion Sickness; Articulating Support for Horizontal Resistive Exercise; Modified Penning-Malmberg Trap for Storing Antiprotons; Tumbleweed Rovers; Two-Photon Fluorescence Microscope for Microgravity Research; Biased Randomized Algorithm for Fast Model-Based Diagnosis; Fast Algorithms for Model-Based Diagnosis; Simulations of Evaporating Multicomponent Fuel Drops; Formation Flying of Tethered and Nontethered Spacecraft; and Two Methods for Efficient Solution of the Hitting- Set Problem
    corecore