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1. Introduction 

Vibration suppression is considered as a key research field in civil engineering to ensure the 

safety and comfort of their occupants and users of mechanical structures. To reduce the 

system vibration, an effective vibration control with isolation is necessary. Vibration control 

techniques have classically been categorized into two areas, passive and active controls. For 

a long time, efforts were made to make the suspension system work optimally by 

optimizing its parameters, but due to the intrinsic limitations of a passive suspension 

system, improvements were effective only in a certain frequency range. Compared with 

passive suspensions, active suspensions can improve the performance of the suspension 

system over a wide range of frequencies. Semi-active suspensions were proposed in the 

early 1970s [1], and can be nearly as effective as active suspensions. When the control system 

fails, the semi-active suspension can still work under passive conditions. Compared with 

active and passive suspension systems, the semi-active suspension system combines the 

advantages of both active and passive suspensions because it provides better performance 

when compared with passive suspensions and is economical, safe and does not require 

either higher-power actuators or a large power supply as active suspensions do [2]. 

In early semi-active suspension, many researches on variable orifice dampers had been done 

([3-4]). With these damper types, regulation on of the damping force can be achieved by 

adjusting the orifice area in the oil-filled damper, thus changing the resistance to fluid flow, 

but adjusting the speed is slow because of mechanical motion limitations. Another class of 

semi-active suspension uses controllable fluids. Two fluids that are viable contenders for 

development of controllable dampers are: electrorheological (ER) fluids and 

magnetorheological (MR) fluids. Although the discovery of both ER and MR fluids dates 

back to the late 1940’s, researchers have primarily concentrated on ER fluids for civil 

engineering applications ([5-8]). Recently developed MR fluids appear to be an attractive 

alternative to ER fluids for use in controllable fluid dampers [9-15].  
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(a) Without Magnetic Field (b)With Magnetic Field 

Figure 1. MR fluid – Working principle. 

The initial discovery and development of MR fluid can be credited to Jacob Rainbow at the 

US National Bureau of Standards in the late 1940s [9,10]. These fluids are suspensions of 

micron-sized, magnetizable particles in an appropriate carrier liquid [11-15]. Normally, MR 

fluids are free flowing liquids having consistency similar to that of motor oil. However, in 

the presence of an applied magnetic field, the iron particles acquire a dipole moment 

aligned with the external field which causes particles to form linear chains parallel to the 

field, as shown in Fig. 1. This phenomenon can solidify the suspended iron particles and 

restrict the fluid movement. Consequently, yield strength is developed within the fluid. The 

degree of change is related to the magnitude of the applied magnetic field, and can occur 

only in a few milliseconds. A typical MR fluid contains 20-40% by volume of relatively pure, 

soft iron particles, e.g., carbonyl iron. These particles are suspended in mineral oil, synthetic 

oil, water or glycol. A variety of proprietary additives similar to those found in commercial 

lubricant are commonly added to discourage gravitational settling and promote suspension, 

enhance lubricity, modify viscosity, and inhibit wear. The ultimate strength of an MR fluid 

depends on the square of the saturation magnetization of the suspended particles. The key 

to a strong MR fluid is to choose a particle with a large saturation magnetization. The best 

available particles are alloys of iron and cobalt that have saturation magnetization of about 

2.4 Tesla. Unfortunately, such alloys are prohibitively expensive for most practical 

applications. The best practical particles are simply pure iron, as they have saturation 

magnetization of 2.15 Tesla. Virtually all other metals, alloys and oxides have saturation 

magnetization significantly lower than that iron, resulting in substantially weaker MR fluids. 

Typically, the diameter of the magnetizable particles is 3 to 5 microns. Functional MR fluids 

may be made with larger particles; however, particle suspension becomes increasingly more 

difficult as the size increases. Smaller particles that are easier to suspend could be used, but the 

manufacture of such particles is difficult. Commercial quantities of relatively inexpensive 

carbonyl iron are generally limited to sizes greater than 1 or 2 microns. 

Due to the special behavior of MR fluid, it has been used for a vast of applications such as: 

dampers, shock absorbers, rotary brakes, clutches, prosthetic devices, polishing and 
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grinding devices, etc. Among them, MR fluid dampers, which utilize the advantages of MR 

fluids, are semi-active control devices that are widely used in the modern industry 

nowadays. A typical MR damper includes MR fluid, a pair of wires, a housing, a piston, a 

magnetic coil, and an accumulator as displayed in Fig. 2a. Here, the MR fluid is housed 

within the cylinder and flows through a small orifice. The magnetic coil is built in the piston 

or on the housing. When a current is supplied to the coil, the particles are aligned and the 

fluid changes from the liquid state to the semi-solid state within milliseconds. Consequently, 

a controllable damping force is produced. The force procedured by a MR damper depends 

on magnetic field induced by the current in the damper coil and the piston velocity as in Fig. 

2b. It is capable of generating a force with magnitude sufficient for rapid response in large-

scale applications [16-18], while requiring only a battery for power [13]. Additionally, these 

devices offer highly reliable operations and their performance is relatively insensitive to 

temperature fluctuations or impurities in the fluid [12]. As a result, there has been active 

research and development of MR fluid dampers and their applications [9-19,21-29,32,35,36].  

 
(a) Hardware structure 

 
(b) Working principle 

Figure 2. General configuration of a MR fluid damper. 

However, major drawbacks that hinder MR fluid damper applications are their nonlinear 

force/displacement and hysteretic force/velocity characteristics. Therefore, one of the 

challenges involved in creating high efficiencies for MR fluid damper applications, 

especially in damping control field is to develop an accurate model that can take full 

advantages of the unique features of this device and to design proper control algorithms in 

order to improve the system working performances.  

With MR fluid dampers modeling technologies, both parametric and non-parametric 

models have been built by researchers to describe the MR fluid damper behaviors. Savaresi 

et al [19] made a comparison of both the parametric and non-parametric methods and then 

developed a complete framework for the development of an accurate model of MR-

dampers. Parametric models based on mechanical idealizations have been proposed such as 

Bingham model, Bouc-Wen model, phenomenological model, and others [20-25]. The 

Bingham model [20] represents the dry-friction as a signum function on the damper velocity 

and may be considered as a simple model for describing the hysteresis characteristic. The 

Bouc-Wen model uses a differential equation to depict the non-linear hysteresis with 
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moderate complexity and is widely applied in building controls. Once the characteristic 

parameters of the Bouc-Wen model are determined, the model can obtain the linearity and 

the smoothness of the transition from the pre-yield to the post-yield region. One of the major 

problems in the Bouc-Wen model is the accurate determination of its characteristic 

parameters which is obtained by using optimization or trial error techniques. Consequently, 

these techniques demand high computational cost to generate the model parameters. 

Moreover, the fact that each set of constant parameters is valid only for single vibration 

conditions makes the Bouc-Wen model inappropriate for varying excitation environments. 

Therefore, many researches on how to develop a MR fluid damper model for higher 

accuracy and higher adaptability in estimating the behavior of the damper have been done. 

Spencer et al [21] successfully developed a phenomenological model to improve the model 

accuracy with an additional internal dynamical variable. Choi and Lee [22] designed a 

hysteresis damper model based on a polynomial and a curve fitting to predict better the 

damping force when compared with conventional models. Dominguez et al [23] proposed a 

methodology to find out the characteristic parameter of Bouc-Wen model and then designed 

a new non-linear model to simulate the behavior of the MR fluid dampers. Kwok et al 

designed a hysteretic model based on a particle swarm optimization [24] or using GA 

technique [25] to modify the Bonc-Wen model and identify the characteristic parameters of 

the models. The effectiveness of these models with their identification process was proved 

through the experimental test data. However, the parametric modeling methods require 

assumptions regarding the structure of the mechanical model that simulates the system’s 

behavior. These approaches could be divergent if the initial assumptions for the model 

structures are flawed or if the proper constraints are not applied to the parameters [24,25]. 

Unrealistic parameters such as negative mass or stiffness may be obtained [29].  

On the contrary, non-parametric methods could avoid these drawbacks of the parametric 

approaches for modeling both the linear, nonlinear, and hysteretic systems with high 

adaptability. For modeling MR fluid dampers, some researches have been done. Chang and 

Roschke [26] proposed a non-parametric model using multilayer perceptron neural network 

with optimization method for a satisfactory representation of a damper behavior. Schurter 

and Roschke [27] investigated the modeling of MR fluid dampers with an adaptive neuro-

fuzzy inference system. The fuzzy structure was simple for modeling; nevertheless, the 

training model process relied on input and output information on MR fluid dampers and 

took much computation time. Wang and Liao [28,29] explored the modeling of MR fluid 

dampers by using a trained direct identification based on recurrent neural network. 

Although, the designed models could predict the dynamic responses of the dampers with 

high precision, the model architectures and the training methods were complex. 

Once an accurate model for the MR fluid damper is built, it is very useful to investigate the 

damper characteristics before applying to suspensions. In addition, the well-done model can 

effectively function as a virtual sensor to estimate the damping force which is used for 

closed-loop damping control systems with a self-sensing behavior. Self-sensing describes 

the technique of using a transducer to both actuate and sense concurrently [30,31]. 

Compared to typical self-sensing damping control systems using separated or integrated 

actuators and sensors [32], this technique can offer several advantages. A reduction in the 
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number of sensing and actuation devices, and associated power, wiring and interfacing, 

immediately reduces cost and complexity. A sensorless damping control system can also 

offer higher robustness than the corresponding conventional system in which the failure 

occurs due to faults in sensor hardware, reading/wiring signal, or measurement noises. 

For these reasons and the current demands in MR fluid damper applications, this chapter 

includes mainly two contents: modeling and damping control technologies. The first one is to 

revise several typical MR fluid damper modeling methodologies as well as to develop an 

effective direct modeling method based on a so-called black-box model (BBM) [35,36]. This 

BBM using a self-tuning fuzzy system based on neural technique is designed to model simply 

MR fluid dampers and then can be apply to damping control systems as a virtual force sensor. 

The BBM built in the form of simple fuzzy mapping laws is considered to estimate directly the 

MR damping force with respect to the MR damper characteristics. In order to improve the 

accuracy of the suggested model, the back propagation learning rules based on gradient 

descent method was used to train the fuzzy parameters to minimize the modeling error 

function. Input information for the model training process is the current supplied for the MR 

fluid damper and its dynamic responses. The effectiveness of the BBM method as well as the 

self-sensing ability of a damping system using this model was clearly verified in a comparison 

with the other methods through modeling and experimental investigations on two damper 

test rigs. The comparison results show that the BBM has satisfactorily representative ability for 

the behavior of MR fluid damper with small computational requirement and it can be 

successfully used as the virtual force sensor for damping systems. The second content is to 

present a novel damping control methodology which is called force-sensorless damping 

control. This control technique is based on the developed BBM, and its inverse back-box 

model, IBBM, which were designed for any given MR fluid damper, to apply to general 

systems using this damper for damping control with force self-sensing behavior. The IBBM 

was derived from the optimized BBM and suggested for usage as an effective force controller. 

In addition, the IBBM structure is online adjusted with respect to the control error to improve 

the system performance. Consequently, the closed-loop force controller, based on the ‘virtual’ 

force sensor - BBM and the adaptive force controller – IBBM, was built for the force-sensorless 

damping system. Simulations and real-time experiments have been finally carried out to verify 

that the designed models have satisfactorily representative ability for the behavior of MR fluid 

damper with small computational requirement and they were successfully applied for force-

sensorless control of the damping systems. 

2. MR fluid damper analysis 

2.1. MR fluid damper 

For later discussions on modeling and control of MR fluid dampers, a MR fluid damper of the 

small size damper series, RD-1005-3, manufactured by LORD Corporation was used. The 

damper RD-1005-3 can be adapted to a wide variety of applications because of its simple 

design, quiet operation, and compact shock absorption with low voltage and current demands 

that allow for damping control. Specifications of this damper are displayed in Table 1. 
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The purpose of this research is to investigate the characteristics of the damper RD-1005-3 

which are then used to derive the accurate damper models as well as to design the force-

sensorless controller for damping systems using this damper. Therefore, a test rig 

employing the damper RD-1005-3, named as TR01, is needed for following tasks: 

- To perform a series of experiments on this rig for a full investigation of the damper 

working performance. 

- To acquire a set of experimental input/output data which is used to analyze, design and 

optimize the damper models in a comparison with some typical models.  

- Based on the optimized BBM model, the inverse model – IBBM is designed for damping 

control purpose. 

The optimized BBM model as well as the proposed force-sensorless control system based on 

BBM and IBBM models might be applied not only on this system but also on other damping 

systems using the same dampers. Consequently, the ability of using these models for 

modeling and damping control needs to be verified. Therefore, a second damping system, 

which is named TR02, is indispensable for following purposes: 

- This system functions as another typical damping system using the damper RD-1005-3 

as same as the one used in the first damping system. 

- The optimized BBM model is applied to this system for evaluating the effectiveness of 

the proposed self-sensing methodology. 

- The suggested force-sensorless control method is applied to this rig to evaluate the 

damping force control performance. 
 

LORD MR fluid damper – RD-1005-3 Series

Parameter Value

Compressed length (m) 0.155

Extended length (m) 0.208

Weight (kg) 0.800

Magneto-Rheological fluid

   Viscosity (N-s/m) at 40oC 

   Density (kg/m3) 

   Solids content by weight, %

MRF-132DG

   0.092 ± 0.015 

   2980-3180 

  80.98

Electrical characteristics:

   Maximum input current (A) 

   Input voltage (VDC)

2 

12

Mechanical characteristics:

   Maximum extension force (N) 

   Maximum operating temperature (deg)

4448 

71

Response time (s)

(amplifier & power supply dependent)

<0.025 (time to reach 90% of max level 

during 0-1A step input)

Table 1. Technical data for the MR fluid damper RD-1005-3 

Based on the dimensions and characteristics of the damper RD-1005-3 as well as the design 

purposes, the two testing systems were designed and set up as described below. 
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2.2. Test rig setup 

2.2.1. Test rig 01 (TR01) to build the BMM and IBBM models 

The schematic diagram of the test rig TR01 for the damper RD-1005-3 is depicted in Fig. 3a. 

In this system, a hydraulic actuator and a driving controller (VibMaster) manufactured by 

Park Electronics were employed to drive the damper. The end-effector of the actuator is a 

hydraulic cylinder with 0.035m diameter which is driven by a servo valve. The servo valve 

with a nominal operational frequency range of 0-50Hz, made by Moog Inc., was used as the 

final control target to adjust the actuator motion. A linear variable differential transformer 

(LVDT) was set up to measure the piston-rod displacement of the MR fluid damper. In 

addition, a compatible load cell with 5000N capacity made by Bongshin Corp. was attached 

in series with the damper rod to measure the damping force. A PC installed with the 

VibMaster control program was used to generate system vibrations, while the PC with a  
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(a) Diagram of TR01 

 
(b) Photograph of TR01 

Figure 3. Test rig 01 – TR01 using damper RD-1005-3. 
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current amplified circuit sent the current signal to adjust the damper characteristics. 

Consequently, the feedback signals measured by the LVDT and load cell were sent back to 

the PC through an Advantech A/D PCI card 1711 to perform a full input-output data 

acquisition. Finally, the load frame shown in Fig. 3a was designed and fabricated as shown 

in Fig. 3b for the purpose of obtaining the MR fluid damper responses. 

 
(a) Diagram of TR02 

 
(b) Photograph of TR02 

Figure 4. Test rig 02 – TR02 using damper RD-1005-3. 
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2.2.2. Test rig 02 (TR02) to verify the self-sensing behavior and force-sensorless controller 

In order to evaluate the ability of using the proposed self-sensing method and force-

sensorless controller for any damping system using the same MR fluid damper, the second 

test rig (TR02) was set up as depicted in Fig. 4a. The system consists of the MR fluid damper 

investigated in the TR01 and a pneumatic actuator. The end-effector of this actuator is a 

pneumatic cylinder with 0.063m diameter which is driven by a 5/3-way proportional valve 

manufactured by Festo Corp. to generate the vibration for the damping system. The spool 

motion of this servo valve is proportional to its control signal sent from the PC through a 

D/A converter of the Advantech card 1711. A linear transducer (Novotechnik TR 100) was 

fixed on the TR02 base and this sensor slider was in contact with the cylinder end-position 

to feed back the vibration information to the PC. In addition, a loading system was installed 

in series with the damper rod to create the working environment. Here, the load can be 

manually varied while the compatible load cell with 5000N capacity made by Bongshin 

Corp. was chosen to measure and feedback the actual damping force in order to compare 

with the force predicted by the BBM and, consequently, to evaluate the self-sensing method. 

In addition, the proposed force-sensorless controller is applied to the TR02 to drive the MR 

fluid damper to follow desired force targets for controller verification. 

For safety when doing experiments on the TR02, two limit bars were positioned at two sides 

of the loading system to restrict the piston movement, consequently, protecting the load cell 

and MR fluid damper from damages. A photograph of the TR02 configuration is described 

in Fig. 4b. 

2.3. Experiments on the TR01and data analysis 

2.3.1. Experimental data obtained from the TR01 

To obtain the data used to characterize the RD-1005-3 MR fluid damper behavior, a series of 

experiments on the rig TR01 was conducted under various sinusoidal displacement excitations 

while simultaneously altering the magnetic coil in a varying current range. The output of each 

test was the force generated by the damper. The setting parameters for experiments are listed 

in Table 2. During all the experiments, the damping force response was measured together 

with the variation of piston displacement and supplied current for the damper at each step of 

time, 0.002 second. Fig. 5 depicts an example of relationship between the piston velocity, 

applied current and dynamic response of the damper corresponding to a sinusoidal excitation 

with 1Hz of frequency and 0.005m of amplitude applied to the damper. 

 

Test No. 
Displacement – Sine wave MR fluid damper 

current (A) Amplitude (m) Frequency (Hz)

01 to 06 0.005 1.0 (0,0.5, 0.75, 1.0, 1.25, 1.5) 

07 to 12 0.005 1.5 (0,0.5, 0.75, 1.0, 1.25, 1.5) 

13 to 18 0.005 2.0 (0,0.5, 0.75, 1.0, 1.25, 1.5) 

19 to 24 0.005 2.5 (0,0.5, 0.75, 1.0, 1.25, 1.5) 

Table 2. Setting parameters for experiments on the test rig TR01 
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Figure 5. Performance curves for the RD-1005-3 MR fluid damper for a sinusoidal excitation at 

frequency 1Hz and  amplitude 0.005m, and supplied current in range (0, 1.5A) 
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Figure 6. Experimental data measured at sinusoidal excitations (frequency range (1, 2.5)Hz, and 

amplitude 0.005m), and supplied current in range (0, 1.5)A. 
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2.3.2. MR fluid damper characteristic analysis 

Remark 1 (affecting factors). In order to design the MR fluid damper models, an investigation 

into factors which affect the dynamic responses of the damping system has been done. The 

first affecting factor is the applied displacement/velocity on the piston rod of the damper. 

Fig. 6 displays a comparison between damping results under various sine excitations with 

0.005m amplitude and frequency range from 1Hz to 2.5Hz while the supplied current level 

was in range from 0 to 1.5A. The results show that at fixed current level applied to the 

damper, the damping force varies due to the piston rod velocity which is caused by the 

simultaneous change of frequency and/or amplitude of the applied excitation. The second 

factor affecting the damper behavior is the change in current applied to the damper coil. Fig. 

7 shows an example of measurement results in plots of force-time, force-displacement, and 

force-velocity relations with respect to a 2.5Hz sinusoidal excitation and 0.005m of 

amplitude while the current supplied to the damper was in range between 0 and 1.5A. From 

these figures, it is readily apparent that: 

• The force produced by the damper is not centered at zero. This effect is due to the effect of 

an accumulator containing high pressure nitrogen gas in the damper. The accumulator 

helps to prevent cavitations in the fluid during normal operation and accounts for the 

volume of fluid displaced by the piston rod as well as thermal expansion of the fluid.  

 

Figure 7. Experimental data measured at sinusoidal excitation (frequency 2.5Hz, and amplitude 

0.005m), and supplied current in range (0.5, 1.5)A. 
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• The greater current level, the greater damping force. 

• The change rate of force is faster at lower current levels because of the effect of 

magnetic field saturation. 

Based on the above analyses, it is clear that the damping force of the MR fluid damper 

depends on the displacement/velocity of the damper rod and the current supplied for the 

coil inside the damper. 

3. MR damper modeling technologies 

3.1. Typical parametric models 

3.1.1. Bingham model 

The stress-strain behavior of the Bingham visco-plastic model [37] is often used to describe 

the behavior of MR fluid. In this model, the plastic viscosity is defined as slop of the 

measured shear stress versus shear strain rate data. For positive values of the shear rate, γ , 

the total stress is given: 

 ( )y fieldτ τ ηγ= +   (1) 

where ( )y fieldτ is the yield stress induced by the magnetic field and η is the viscosity of the 

fluid. 

 

Figure 8. Bingham model of a MR fluid damper. 

Based on this model, an idealized mechanical model referred to as the Bingham model was 

proposed to estimate the behavior of an MR fluid damper by Standway et al [20]. This model 

consists of a Coulomb friction element placed in parallel with a viscous damper as depicted 

in Fig. 8. Here, for nonzero piston velocities, x , the force F generated by the device is given 

by: 

 ( ) 0 0signcF f x c x f= + +   (2) 

where c0 is the damping coefficient; fc is the frictional force related to the fluid yield stress; 

and an offset in the force f0 is included to account for the nonzero mean observed in the 

measured force due to the presence of the accumulator. Note that if at any point the velocity 

of the piston is zero, the force generated in the frictional element is equal to the applied 

force. 
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Figure 9. Comparison between experimental data and the predicted damping forces for a 2.5Hz 

sinusoidal excitation with amplitude 5mm while current supplied to the damper is 1.5A. 

To present the damper behavior, the characteristic parameters of the Bingham model in 

equation (2) need to be chosen to fit with the experimental data of the damping system. For 

example, those parameters were chosen as c0 = 50Ns/cm; fc = 950N and  f0 = 75N for a 2.5Hz 

sinusoidal excitation with amplitude 5mm while the current supplied to the damper was 

1.5A. Consequently, the predicted damping force by using the Bingham model was 

compared with the experimental response as plotted in Fig. 9.  

From the results, although the force-time and force-displacement behavior were 

reasonably modeled, the predicted force-velocity relation was not captured, especially for 

velocities that were near zero. By using this model, the relationship between the force and 

velocity was one-to-one, but the experimentally obtained data was not one-to-one. 

Furthermore, at zero velocity, the measured force had a positive value when the 

acceleration was negative (for positive displacements), and a negative value when the 

acceleration was positive (for negative displacements). This behavior must be captured in 

a mathematical model to adequately characterize the device. Hence, Gamota and Filisko 

[38] developed an extension of the Bingham model, which is given by the viscoelastic-

plastic model shown in Fig. 10.  
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Figure 10. Extened Bingham model of a MR fluid damper. 

The model consists of the Bingham model in series with a standard model. The governing 

equations for this model are given as followings 

 

( ) ( )
( )

( )

1 2 1 1 2 1 0

0 1 1 0

2 3 2 0

sign ,c c

F k x x c x x f

c x f x f F f

k x x f

= − + − +


= + + >


= − + 

 

   (3) 

 
( )
( )

1 2 1 1 2 0

2 3 2 0

, c

F k x x c x f
F f

k x x f

= − + + 
≤

= − + 


 (4) 

where c0 is the damping coefficient associated with the Bingham model; k1, k2 and c1 are 

associated with the linear solid material.  

This model can present the force-displacement behavior of the damper better the Bingham 

model. However, the governing equations (3), (4) are extremely stiff, making them difficult 

to deal with numerically [21]. Therefore, the Bingham model or extended Bingham model 

are normally employed in case there is a significant need for a simple model. 

3.1.2. Bouc-Wen model 

One model that is numerically tractable and has been extensively used for modeling 

hysteretic systems is Bouc-Wen model. This model contains components from a viscous 

damper, a spring and a hysteretic component. The model can be described by the force 

equation and the associated hysteretic variable as given 

 
0F cx kx z fα= + + +  (5) 

 
1n n

z x z z x z xγ β δ
−

= − − +     (6) 

where: F is the damping force; f0 is the offset force; c is the viscous coefficient; k is the 

stiffness, x and x are the damper velocity and displacement; α is a scaling factor; z is the 

hysteretic variable; and , , ,nγ β δ are the model parameters to be identified. Note that when α 

= 0, the model represents a conventional damper.  

In order to determine the Bouc-Wen characteristic parameters predicting the MR fluid 

damper hysteretic response, Kwok et al [25] proposed the non-symmetrical Bouc-Wen 

model with following modifications 
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 ( )( ) 0signF c x z kx z fµ α= − + + +  (7) 

 ( ){ }sign
n

z zx z xγ β δ = − + +     (8) 

where µ  is the scale factor for the adjustment of the velocity. 

As the optimization results for the test rig applied the damper RD-1005-3 by using GA in 

[25], the relationships between the Bouc-wen parameters and the supplied magnetization 

current, i, were given as 

 

3 3 3 3 3 3

0

5 5 6 6 6 6

2.65 10 2.05 10 ; 1.99 10 5.57 10 ; 2.11 10 1.68 10

0.6 12.43; 0.02 1.25; 0.12 1.58

0.5 10 2.5 10 ; 0.45 10 3.18 10 ; 0.39 10 3.6 10

c i k i i

f i i n i

i i i

α

µ

δ β γ

= × + × = × + × = × + ×

= − = − + = +

= × + × = − × + × = × + ×

 (9) 

Because of using the same researched damper, the Bouc-Wen model built from equations 

from (7) to (9) was tested for modeling the damping force in this study. As a result, the 

predicted force was plotted as the ‘dash-dot’ line in Fig. 9 for a 2.5Hz sinusoidal excitation 

with amplitude 5mm while the current supplied to the damper was 1.5A. The estimated 

damping performance when compared with the real damping performance shows that the 

proposed Bouc-wen model in [25] could not represent for the damping behavior in the 

TR01. It is because that the model parameters in equation (9) were only optimized for the 

damping system using the damper RD-1005-3 in [25]. From the result, it is clearly that to 

obtain good predicted behavior of a MR fluid damper in a specific system, the Bouc-Wen 

parameters must be tuned again by using optimization or trial error techniques which 

causes high computational cost to obtain the optimal parameters. 

Furthermore, to obtain better modeling performance, some modified Bouc-Wen models 

have been proposed. The research results in [21] show that the modified Bouc-Wen model 

improves the modeling accuracy. However, the model complexity is unavoidably increased 

with an extended number of model parameters (14 parameters need to be identified in [21]) 

which may impose difficulties in their identification and take much time for optimization 

process [27]. 

3.1.3. A hysteretic model 

For a simple model, Kwok et at [24] proposed a hysteretic model to predict the damping 

force of the MR fluid damper RD-1005-3 as illustrated in Fig. 11. The model can be 

expressed as following equations 

 0F cx kx z fα= + + +  (10) 

 ( )( )tanh signz x xβ δ= +  (11) 
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where: c and k are the viscous and stiffness coefficients; α is the scale factor of the 

hysteresis; z is the hysteretic variable given by the hyperbolic tangent function; f0 is the 

damper force offset; and ,β δ are the model parameters to be identified. 

 

Figure 11. Hysteretic model of a MR fluid damper. 

As the results in [24], the parameters in equations (9) and (10) were given:  

 
2

01929 1232; 1700 5100; 244 918 32; 18 57

100; 0.3 0.58

c i k i i i f i

i

α

β δ

= + = − + = − + + = − +

= = +
 (12) 

However, to obtain the parameters as in equation (12), a swam optimization [24] must be 

used to select the most suitable values with respect to each specific system using the damper 

RD-1005-3. Hence, when using the set of resulting parameters in [24] to apply to the test 

system of the MR fluid damper RD-1005-3 in this study, the hysteretic model cannot present 

well the damper behavior. For example, the modeling result by using the hysteretic model, 

for a 2.5Hz sinusoidal excitation with amplitude 5mm while the current supplied to the 

damper was 1.5A, is depicted in Fig. 9 as the ‘short dash’ line. The result proves that 

although the estimated force in this case was better than in case of using Bingham or Bouc-

Wen model, the nonlinear characteristic of the damper could not be described well. 

Moreover, the swam optimization also requires training time to generate the parameters of 

the hysteretic model. 

3.2. Proposed non-parametric model 

It is known that the typical parametric models show their possibility to be applied for the 

MR fluid damper identification. However, the decisive parameters of parametric models 

need to be tuned by using optimization or trial error techniques which causes high 

computational cost to generate their suitable values. In addition, those models only adapt 

with specific damping systems. For a new system using the same MR fluid damper series, 

the optimization process must be done again for a full prediction of the damper behavior 

[35,36]. Therefore, a non-parametric method based on intelligent techniques, for example, is 

an effective solution to estimate directly the MR fluid damper behavior with high precision. 

Fuzzy system is an intelligent tool imitating the logical thinking of human and then is 

capable of approximating any continuous function. However, there is no systematic method 
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to design and examine the number of rules, input space partitions and membership 

functions (MFs). Meanwhile, neural network mimics the biological information processing 

mechanisms. This technique modifies its behavior in response to the environment, and is 

ideal in case that the expected mapping algorithm is un-known and the tolerance to faulty 

input information is required. Hence an identification system using fuzzy and neural 

network theories can be easily selected as an effective method for directly modeling MR 

fluid dampers purpose. 

3.2.1. BBM model design 

As mentioned in section 2.3, the MR fluid damper force is affected by the rod 

displacement/velocity and supplied current. Therefore, the designed BBM contains two 

parts: one is the neural-fuzzy inference (NFI) that is used to estimate the damping force 

caused by the displacement of the damper rod, and the other is the scheduling gain fuzzy 

inference (SGFI) which is used to switch between the damping force levels with respect to 

the current levels supplied for the damper coil. Consequently, the estimated damping force 

(fMR_est) is computed as a multiplication of the NFI estimated force and the SGFI gain as: 

 _MR estf K U= ×  (13) 

where: K is the damping force level corresponding to the current level supplied for the 

damper coil; U is the damping force caused by the displacement applied to the damper rod. 

 
1;1

;
0;1

SGFI

NFI

kK k

U u u

α

α

  ∈ − =   
 

=  ∈   
 (14) 

where: and SGFIk α  are the SGFI output and a scale factor chosen from the current range for 

the MR fluid damper coil, respectively; and NFIu α  are the NFI output and a scale factor 

chosen from the MR fluid damper specifications, respectively. 

To evaluate the accuracy of the BBM model, an error function (E) was derived from the 

difference between the damping force (fMR_est) estimated from the MR model and the actual 

damping force (fMR) when the input conditions (current and displacement/velocity) for both 

the model and real MR fluid damper system are the same. Therefore, the error function is 

defined as following equation: 

 2
_0.5( )MR est MRE f f= −  (15) 

Based on the Remark 2, the overall structure of the proposed BBM to model the MR fluid 

damper is shown in Fig. 12a while the internal structure of the NFI system is described in 

Fig. 12b. For all of the fuzzy designs, triangle membership functions are used to represent 

for partitions of fuzzy inputs and outputs. Fuzzy control is applied using local inferences. 

That means each rule is inferred and the inferring results of individual rules are then 

aggregated. The most common inference method (aggregation-fuzzy implication operators) 
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- max-min method, which offers a computationally nice and expressive setting for constraint 

propagation, is used. Finally, a defuzzification method is needed to obtain a crisp output 

from the aggregated fuzzy result. Popular defuzzification methods include maximum 

matching and centroid defuzzification. The centroid defuzzification is widely used for fuzzy 

control problems where a crisp output is needed, and maximum matching is often used for 

pattern matching problems where the output class needs to be known. Hence in this 

research, the fuzzy reasoning results of outputs are gained by aggregation operation of 

fuzzy sets of inputs and designed fuzzy rules, where max-min aggregation method and 

centroid defuzzification method are used. 

 
(a) Block diagram for training BBM model 

i1

i2

O

&

&

&

&

Input IF Rules THEN Output

Output

u

Input

in2

Input

in3

Learning

Mechanism

Input

e

Neural-Fuzzy Inference (NFI)

 
(b) Internal structure of NFI system 

Figure 12. Structure of identification for a MR fluid damper using proposed BBM. 
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3.2.1.1. Neural-Fuzzy inference (NFI) 

The NFI system takes part in estimating the damping force caused by the applied 

displacement/velocity to the damper. As seen in Fig. 12, the NFI fuzzy set was therefore 

designed with two inputs (in2, and in3) and one output (u). The ranges of these inputs were 

from -1 to 1, which were obtained from the applied displacement, and its derivative 

(velocity) through scale factors chosen from the range of displacement and specifications of 

the MR fluid damper. The fuzzy output range was also set from -1 to 1. Consequently, the 

estimated force can be obtained by multiplying the NFI output and the suitable scale factor 

NFIα  (see equation (2)). The input/output ranges need to be divided into several partitions 

in order to construct the fuzzy rule map. Based on design experience obtained from the 

previous researches [33,34], five triangle MFs were used for each the NFI fuzzy input/output 

for smooth estimating the damping force while it does not require much calculating time 

consumption. 

 
(a) NFI inputs: in2(t), in3(t) 

  
(b) NFI output: u(t) 

Figure 13. Initial MFs of the NFI inputs and output. 

For each input variable, five triangle MFs ( )(.) 0,1µ  ∈   were designed and named as “NB”, 

“NS”, “ZE”, “PS” and “PB” which mean “Negative Big”, “Negative Small”, “Zero”, 

“Positive Small” and “Positive Big”, respectively. These MFs and their centroids were 

initially set with a same shape size and at same intervals, respectively, in Fig. 13a. Because 

all of the MFs are triangle shapes, so we can express these MFs as follows: 
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 1 2

2 3

1 2
( ) , 1,2......... , 1or 2,

i ji

j i
ji

x a x in
x j N i

x inb
µ

− −  ≡
= = = 

≡
 (16) 

where aj and bj are the centre and width of the jth triangle MF; N is the number of triangles  

(N = 5).  

The fuzzy reasoning result of the NFI output is gained using an aggregation operation of 

fuzzy sets of the inputs and designed fuzzy rules, where the max-min aggregation and 

centroid defuzzification methods are used. For a pair of inputs (in2, in3), the NFI output can 

be computed as: 

 

( )

( )

1

1

M

k k
k

M

k
k

w w

u

w

µ

µ

=

=

=



 (17) 

where: wk and μ(wk) are the weight and its height of the NFI output, respectively; M is the 

number of fuzzy output sets (M = 5). The height μ(wk)  is computed by using the fuzzy 

output function: 

 ( ) ( )
,

k ij k
i j

w wµ µ=  (18) 

where μij(wk)is defined as the consequent fuzzy output function when the first and second 

NFI input are in the i and j class, respectively: 

 ( )ij k ij ijwµ δ µ=  (19) 

where ijδ  is an activated factor which is active when the input in2 is in class i, and the input 

in3 is in class j; ijµ  is the height of the consequent fuzzy function obtained from the input 

class i and j: 

 ( ) ( ) ( ) ( )1 2 2 3min , min ,ij i j i jx x in inµ µ µ µ µ   = ≡     (20) 

where ( ) ( )2 3andi jin inµ µ are obtained from equation (16). 

The output u of the NFI system contains five single output values: “NB”, “NS”, “ZE”, “PS”, 

and “PB”, within the range from -1 to 1, with the same meaning as the MFs of the inputs. 

The initial output weights were decided from the experimental results with constant 

supplied current where the damping force values were caused by the corresponding points 

of input displacement and velocity [35,36]. Consequently, the output weights were initially 

set at the different intervals as in Fig. 13b.  

By using the above fuzzy sets of input/output variables, experimental data, damper 

behavior, and experience, the fuzzy rules for the NFI part of the MR model are established 



 
MR Fluid Damper and Its Application to Force Sensorless Damping Control System 

 

403 

in Table 3. Five MFs for the each input were used to decide the total twenty five rules by 

using an IF-THEN structure. Here, one fuzzy rule is composed as follows: 

RULE i: IF displacement (in2) is Ai and velocity (in3) is Bi THEN MR force (u) is Ci (i=1,2, .., 25) 

where Ai, Bi, and Ci are the ith fuzzy sets of the input and output variables used in the fuzzy 

rules. Ai, Bi, and Ci are the linguistic variable values in2, in3, and u, respectively. 

 

NFI output 

u 

NFI input 02 - Scaled velocity - in3 

NB NS ZE PS PB 

NFI input 01 - 

Scaled 

displacement - 

in2 

NB NB NB NS ZE PB 

NS NB NS NS PS PB 

ZE NB NS ZE PS PB 

PS NB NS PS PS PB 

PB NB ZE PS PB PB 

Table 3. Rules table for the neural-fuzzy inference of the black box model 

As the above description, the fuzzy MFs and rules were dependent on the characteristics of 

the damper which were investigated from the experimental data. These MFs and rules were 

then determined from both the intuition and practical experience. There is no systematic 

method for designing and examining the input space partitions, MFs, and rules which affect 

directly the modeling quality. As a result, an optimization methodology was indispensible 

to be used for tuning the NFI structure to fit with the damping behaviors.  

Remark 2 (model optimization). In order to improve the identification quality of the proposed 

models, a learning mechanism using neural network methodology, including the back-

propagation algorithm and gradient descent method, has been used to adjust the fuzzy 

structures of the BBM and IBBM models. The back-propagation algorithm is a first order 

approximation of the steepest descent technique in the sense that it depends on the gradient 

of the instantaneous error surface. The algorithm is therefore stochastic in nature which 

means that it has a tendency to zigzag its way about the true direction to a minimum on the 

error surface. The basic idea of using the proposed method to optimize the fuzzy designs is 

to use the back-propagation to tune the input as well as output MF shapes of the models 

during the system operation process in order to minimize a defined error cost function.  

The ability of using the training mechanism based on the back-propagation algorithm and 

gradient descent method for optimizing the fuzzy scheduling systems were clearly proved 

in previous researches [33,34]. As Remark 2, the proposed optimization method is used to 

tune the input MF shapes and output weights of the NFI system during the system 

operation process in order to minimize the modeling error function (15). Consequently, the 

decisive factors in the inputs MFs aji, bji, and the output weights wk were automatically 

adjusted by computing efficiently partial derivatives of the error function E realized by the 

model network with respect to all these decisive elements. A following set of equations 

shows the back-propagation algorithm based on the gradient descent method for updating 

the decisive factors at a step of time (t+1)th: 
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 (21) 

where  and  are the learning rate which determine the speed of learning; E is the error 

function defined by (15). 

With the self learning of neural network technique and the decreasing of the modeling error, 

the optimized NFI system works more effectively with high accuracy when compared to the 

real damping response. 

3.2.1.2. Scheduling gain fuzzy inference (SGFI) 

This section provides a description of the scheduling gain fuzzy inference which works as 

an intelligent switch to tune the damping force levels (k) with respect to the current levels 

supplied for the MR fluid damper. The SGFI system was then designed with a single input 

(in1) and a single output (k) (see Fig. 12). 

The range of the input was from 0 to 1, which was obtained from the supplied current 

through a scale factor chosen from the current range for the MR fluid damper coil. Five 

triangle MFs, “Z”(Zero), “VS”(Very Small), “S”(Small), “M”(Medium), and “B”(Big), were 

used for this input variable. These MFs and their centroids were initially set with a same 

shape size and at same intervals, respectively, in Fig. 14a. These MFs can be then expressed 

in the same form as in (16). By using the same fuzzy design method as that of the NFI 

system in section 3.2.1a to design the SGFI, the output gain (k) corresponding to an input 

value (in1) can be computed as 

 

( )

( )

1

1

Q

q q
q

Q

q
q

w w

k

w

µ

µ

=

=

=




 (22) 

where: wq and μ(wq) are the weight and its height of the SGFI output, respectively. Q is the 

number of fuzzy output sets (Q = 5). 

For the output k of the SGFI system, five MFs were used. Here, “VS”, “S”, “M”, “B”, and 

“VB” are “Very Small”, “Small”, “Medium”, “Big”, and “Very Big”, respectively. The output 

range was set from 0 to 1. The estimated damping force level is then obtained by 

multiplying the SGFI output and the suitable scale factor SGFIα  (see equation (14)). The 

output weights were decided based on the experimental results and characteristics of the 
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MR fluid damper [35,36]. Therefore, the output weights were set as in Fig. 14b. By using the 

above fuzzy sets of input and output variables, the fuzzy rules for the SGFI part in the BBM 

model are established in Table 4 by using the IF-THEN structure. 

 
(a) SGFI input: in1(t) 

 
(b) SGFI output: k(t) 

Figure 14. MFs of the SGFI inputs and output. 

 

SGFI input – Scaled supplied 

current (in1) 
Z VS S M B 

SGFI output (k) VS S M B VB 

Table 4. Rules table for the scheduling gain inference of the black box model 

Finally, the output of the proposed black-box model (fMR_est) can be computed from the NFI 

output (u) and SGFI output (k) using equations (13) and (14). 

3.2.2. BBM model verification 

3.2.2.1. Comparison between modeling results and experimental data on the TR01 

From [35,36], the model training process and simulations have been carried out to find out 

the BBM model with optimized parameters and to evaluate the ability of the optimized BBM 

model when comparing with the measured dynamic responses of the damper, respectively. 
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As the result, the BBM with parameters optimized by the leaning mechanism with respect to 

the modeling error cost function was found. Fig. 15 shows the MFs of the BBM system after 

training to obtain high accuracy in estimating force of the MR fluid damper. The optimized 

BBM model was then evaluated in the comparison with the actual measurement data. 

Fig. 16 displays the modeling results of the proposed BBM model in a comparison with the 

real damping behavior for a 2.5Hz sinusoidal displacement. The results show that with the 

designed modeling method, the nonlinear characteristic of the MR fluid damper can be 

directly estimated with high accuracy for both the force/time, force/displacement, and 

force/velocity relations despite the variation in applied current for the damper. 

 
(a) NFI input in2(t) after training 

 
(b) NFI input in3(t) after training 

 
(c) NFI output u(t) after training 

Figure 15. MFs of the NFI inputs and output after training. 
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Figure 16. Comparison between the estimated force and actual damping force for an applied current 

range (0, 1.5)A at a sinusoidal excitation (frequency 2.5Hz and amplitude 0.005m). 

Secondly, displacement excitations with a continuous variation of the frequency were 

generated to fully check the ability of the designed modeling method in case of varying 

excitation environments. In addition, experimental data were measured from the damping 

system, rig TR01, with the chirp displacement excitations of which the frequencies were 

varied from 1Hz to 2.5Hz. Figures 17 and 18 depict the comparisons of the real damping 

responses and the estimated forces using the different models in cases: 0A and 1.5A of the 

applied current for the MR fluid damper coil. As seen in figures 17a and 18a, the damping 

behavior could not be modeled by using the Bingham model, Bouc-Wen model, or 

Hysteretic model. Here, the Bingham model could only predict the relation between 

damping force and time/ or displacement/or velocity as the one-to-one relation. Meanwhile, 

the Bouc-wen and Hysteretic models can only predict force for a particular damping system 

as the TR01 when their parameters are optimized with respect to this system. In contrast to 

the unfavorable modeling results in figures 17a and 18a, figures 17b and 18b show a good 

damping force prediction using the designed BBM model. From these results, it is clearly 

that with the self-tuning ability, the BBM has enough strength to describe well the nonlinear 

behavior of the damper under various excitation environments, especially in case of low 

supplied current levels. 
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3.2.2.2. Investigation of self-sensing behavior of the TR02 using the optimized BBM 

In this section, the ability of optimized BBM model is investigated when it is applied as a 

virtual force sensor to any damping system using the same MR fluid damper, such as the rig 

TR02, for the self-sensing behavior. 

In the test rig TR02, the vibration was generated by the pneumatic cylinder and proportional 

valve of which the control signal was a voltage signal. This signal was a sinusoidal of which 

the frequency was in a range from 1 to 2.0 Hz while the amplitude was 3V as: 

 ( )sin 2 ; 3 ; 1,2.0ValveControlSignal A ft A V f Hzπ  = = ∈    (23) 

There were two cases of working load: 3kg and 9kg while the supplied current for the MR 

fluid damper was changed from 0 to 2A in order to create different test conditions. 

Consequently, setting parameters for experiments on the TR02 system are shown in Table 5. 

 

Test No. 
Working 

load (kg) 

Displacement – Sine wave MR fluid 

damper 

current (A) 
Amplitude (V) Frequency (Hz) 

Case 01 9 3.0 1.0 0.0 

Case 02 3 3.0 1.5 1.0 

Case 03 3 3.0 2.0 2.0 

Table 5. Test conditions on the TR02 for verification of the BBM with self-sensing behavior 

A testing program for the BBM model verification using the rig TR02 was built in Simulink 

with the real-time toolbox of MATLAB as shown in Fig. 19. Experiments had been done on 

the TR02 in which the vibration was created as in Table 5 by using the program in Fig. 19. 

During the system operations, the real damping force caused by the vibration was measured 

by the load cell in order to make the comparison with the damping force ‘measured’ by the 

virtual force sensor - BBM. Consequently, the evaluation results of self-sensed force with 

respect to the test conditions are depicted on figures from 20a to 20c. 

As seen in these figures, the predicted performances using the BBM model were mostly 

close to the real damping performances. However, there were some predicting errors at the 

limits of damper compressions which can be seen in Fig. 20 as the tips of excitations. There 

are some reasons for these errors. The first reason is that the BBM model was optimized 

using experimental investigations on the rig TR01 of which the hardware included 

compliances and the control system included measuring noises. In addition, the rig TR02 is 

a damping system activated by using the pressurized pneumatic cylinder. Consequently, the 

changing of the generated excitations was fast, especially when the cylinder was extracted 

and then retracted which caused the damper compression limits. Therefore, there were 

some small errors in the estimated damping force near the damper compression limits. 

From the results in Fig. 20, it is clear that the proposed self-sensing methodology based on 

the BBM model has strong ability to apply to damping control systems without using the 

force sensor. 
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(a) Modeling results using the conventional models 
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(b) Modeling results using the proposed BBM Model 

Figure 17. Comparison between estimated forces and actual damping force for an applied current 0A at 

a chirp excitation (frequency range (1, 2.5)Hz and amplitude 5mm). 
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(a) Modeling results using the conventional models 
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(b) Modeling results using the proposed BBM Model 

Figure 18. Comparison between estimated forces and actual damping force for an applied current 1.5A 

at a chirp excitation (frequency range (1, 2.5)Hz and amplitude 5mm). 
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Figure 19. Simulink program for verification of the BBM sensor with self-sensing behavior. 
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(a) Case 01 (Working load: 9kg; Vibrating control signal: (3V, 1Hz); 

Damper applied current: 0.0A) 
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(b) Case 02 (Working load: 3kg; Vibrating control signal: (3V, 1.5Hz); Damper applied 

current: 1.0A) 
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(c) Case 03 (Working load: 3kg; Vibrating control signal: (3V, 2.0Hz); Damper applied 

current: 2.0A) 

Figure 20. Comparisons between the real and estimated damping forces of the TR02 system using the 

self-sensing method based on the optimized BBM. 
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4. Force sensorless damping control system design 

In this section, the force sensorless control technique, combined from the BBM and IBBM 

models, is developed to be applied to systems using this damper for damping control with 

force self-sensing behavior. The BBM model, which uses a self-tuning fuzzy system 

optimized by neural network technique, was designed to overcome the disadvantages of 

conventional models. The BBM built in the form of the simple fuzzy mapping laws is 

considered to estimate directly the damping force output with respect to the characteristics 

and inputs of the MR damper. In order to improve the accuracy of the suggested model, the 

back-propagation learning rule based on the gradient descent method has been used to train 

the fuzzy parameters to minimize a defined modeling error function. Next, the IBBM model 

is derived from the optimized BBM and suggested to use as an effective force controller. In 

addition, the IBBM structure is online adjusted with respect to the control error to improve 

the system performance.  

Finally, the proposed controller based on the BBM and IBBM is built for the force sensorless 

damping system as shown in Fig. 21. Here, the BBM model works as a virtual force sensor 

while the IBBM takes part in direct damping control without using other control techniques. 

 

Figure 21. Structure of the proposed force sensorless damping control system. 

4.1. Design of IBBM model for the proposed force-sensorless damping control 

method 

Remark 3 (inverse model selection). Based on the advantages of the direct modeling method 

for the MR fluid damper using the black-box model, the inverse black-box model has been 

derived as the damping force controller. The BBM optimized by using neural network 

technique has been used to set initial parameters for the IBBM controller. The proposed 

inverse model estimates current levels should be applied to the MR fluid damper to create 

desired damping forces. 

Remark 4 (force-sensorless control solution and model optimization). The proposed control 

method is designed for damping systems without using any force sensor. Hence, the 

optimized BBM is integrated in the control system as a virtual force sensor to estimate the 

generated damping force. This estimated force with the desired force are fed back to the 

IBBM controller to compute a control signal (current signal) to supply the MR fluid damper 

and, subsequently, to perform a closed-loop force-sensorless controller. In order to improve 

the control performance using the inverse model, the self-learning mechanism based on 
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neural network technique is also integrated into the IBBM of which the parameters are 

continuously adjusted during the damping control process with respect to the control error 

minimization. 

 

Figure 22. Structure of proposed force-sensorless damping control system based on BBM and IBBM. 

Consequently, the force-sensorless control system is suggested as in Fig. 22. As seen in this 

figure, the proposed IBBM model contains two parts. The first part is a neural-fuzzy 

inference (NFI*), which was derived from NFI system of the optimized BBM, to estimate the 

damping force (u) caused by the damper rod displacement/velocity. The second part is an 

inverse scheduling gain fuzzy inference (ISGFI) which was developed from SGFI system of 

the optimized BBM. The ISGFI selects the current (IMR_est) level needed to supply for the MR 

fluid damper for obtaining the damping force level (k). This damping force level can be 

computed from the damping force (fMR_est) estimated by using the BBM and the estimated 

damping force (u) caused by the damper rod displacement/velocity (see Fig. 22) as: 

 _ / 0

0 0

MR estf u if u
k

if u

 ≠
= 

=
 (24) 

For improving the IBBM control accuracy, an error function (E*) was derived from the 

difference between the damping force (fMR_est) measured by the BBM sensor and the desired 

force (fMR_ref). Therefore, the error function is defined as following equation: 

 * 2
_ _0.5( )MR est MR refE f f= −  (25) 
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4.1.1. Neural-Fuzzy inference (NFI*) 

The NFI in the optimized BBM was used to construct the inverse model. Hence, the 

structure of the NFI* in the IBBM is the same as the descriptions in section 3.2.1a except the 

initial MFs of the fuzzy inputs/output (Fig. 13). In the IBBM, these initial MFs of the NFI* are 

set as the optimized MFs of the NFI in the BBM which were shown in Fig. 15 of section 3.2.2. 

Furthermore in the IBBM, the decisive factors of the NFI* input MFs, aj, bj, and the weights of 

NFI* output, wj, are automatically online-trained by using neural network technique during 

the damping force control process. Therefore, these affecting factors are updated as follows 

 

*
*

1

*
*

1

*
*

1

ji ji a
t t

ji t

ji ji bt t
ji

t

k k wt t
k t

E
a a
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E
b b

b

E
w w

w

η

η

η

+

+

+

∂ = −
∂ 


∂ 

= − 
∂ 


∂ 

= − ∂ 

 (26) 

where and are the learning rate which determine the speed of learning;  

E* is the error function defined by (25). 

The factor 
*

k

E

w

∂

∂
 in equation (25) can be calculated as  

 
* *

_ _

_ _

MR est MR est

k MR est MR est k

f IE E k u

w f I k u w

∂ ∂∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂
 (27) 

where: 

 ( ) ( ) ( )
*

*
_ _

_
MR est MR ref

MR est

E
e t f t f t

f

∂
= = −

∂
 (28) 

 _ _

_ _

MR est MR est

MR est MR est t

f f

I I

δ

δ

∂
≈

∂
 (29) 

 _ _MR est MR est

t

I I

k k

δ

δ

∂
≈

∂
 (30) 

 
( )
( )

_

2

MR estfk t

u t u

∂
= −

∂
 (31) 
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∂  
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 (32) 

The next factors 
*

ji

E

a

∂

∂
in (26) can be computed by: 

 
( )

( )* *
j i

ji jij i

xE E u

a u ax

µ

µ

∂∂ ∂ ∂
=

∂ ∂ ∂∂
 (33) 

where: 

*E

u

∂

∂
 is calculated by using equations from (28) to (31). 

 
( ) ( )

( )( )

( )

1
2

1

M

l k l
l

Mj i k

l
l

w w w
u u

x w
w

µ

µ µ
µ

=

=

−
∂ ∂

= =
∂ ∂  

  
 




 (34) 

 
( ) 2

( )
j i

i ji
ji ji

x
sign x a

a b

µ∂
= −

∂
 (35) 

The final factor 
*

ji

E

b

∂

∂
 in (26) can be found by: 

 
( )

( )* *
j i

ji jij i

xE E u

b u bx

µ

µ

∂∂ ∂ ∂
=

∂ ∂ ∂∂
 (36) 

where: 

*E

u

∂

∂
 and 

( )j i

u

xµ

∂

∂
 are calculated by using equations from (28) to (31), and (34), respectively. 

 
( )

2

2 i jij i

ji ji

x ax

b b

µ −∂
=

∂
 (37) 

By using the above self-learning algorithm (from (26) to (37)), the NFI* can work more 

precisely in estimating the damping force (u) with respect to the applied 

displacement/velocity. 
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4.1.2. Inverse scheduling gain fuzzy inference (ISGFI) 

The ISGFI system, designed with a single input (k) and a single output (IMR_est), works as an 

intelligent switch to select the current (IMR_est) level needed to supply for the MR fluid 

damper with respect to the damping force level (k). This fuzzy system was obtained from 

the SGFI mechanism of the BBM design (section 3.2.1) in which the SGFI input/output 

became the ISGFI output/input. Consequently, the input/output MFs and rule table of the 

ISGFI system were set as in Fig. 23 and Table 6, respectively. 

 
(a) ISGFI input: k(t) 

 
(b) ISGFI output: IMR_est(t) 

Figure 23. MFs of the ISGFI inputs and output. 

 

Damping Force Gain (k) VS S M B VB 

Estimated Supplied Current (IMR_est) Z VS S M B 

Table 6. Rules table for the inverse scheduling gain inference of the inverse black box model 

4.2. Verifications 

4.2.1. Checking the control ability of a damping system using the designed IBBM 

As the descriptions for the proposed force-sensorless control method, the designed IBBM 

controller was firstly examined by simulations before its application to the real-time 

damping control. Therefore, a simulating scheme for the IBBM controller validation was 

built in Simulink/MATLAB as in Fig. 24. As seen in this figure, the validating damping 
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control system contains three main blocks. The two blocks labeled as ‘BBM1’ and ‘BBM2’ are 

similar and represent for the optimized BBM model which was obtained in section 3.2. 

These blocks then function as the actual MR fluid dampers. The remained block is the IBBM 

controller which was designed from section 4.1. 

 

Figure 24. Simulation program for testing the IBBM controller. 

The goal of the validation process is using the IBBM controller to control the second damper 

model, BBM2, to create the damping force to follow the reference force given from the first 

damper model, BBM1. Therefore, a displacement/velocity signal was generated and input 

into both the two damper models and the force controller. A current command signal was 

applied to the first damper model, BBM1. The output of this model, called the first 

simulated damping force, was used as a reference force signal for the damping system based 

on the second damper model, BBM2, and the IBBM controller. Hence, corresponding to a 

force command sent from the BBM1, the IBBM generated a simulated current command to 

control the damper model BBM2. This simulated current was then fed into the BBM2 

together with the applied displacement/velocity to produce the second simulated damping 

force. As a result, the validation process carried out the comparison between the reference 

current command and simulated current command obtained from the IBBM, and the 

comparison between the first and second simulated damping forces.  

The simulation results are displayed in Fig. 25. The results show that almost not only the 

simulated current command coincided with the reference current command, but also the 

simulated damping force of the BBM2 coincided with the simulated damping force obtained 

from the BBM1. As the result, it points out that the damping system using the self-learning 

IBBM controller with the optimized BBM virtual sensor can control accurately the MR fluid 

damper for a good tracking force performance. In the next section, experiments on the test 

rig TR02 have been carried out in order to verify the real-time control ability of the proposed 

force-sensorless damping control method. 
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Figure 25. Comparison of simulation results between estimated current command with given current 

command corresponding to the damping force output. 

4.2.2. Verification of the force-sensorless control system based on the BBM and IBBM 

Based on the advanced characteristics of the designed BBM and IBBM models which were 

proven to be effective in the previous sections, the proposed force-sensorless control 

methodology was applied to the system TR02 for the real-time damping force control. Here, 

a harmonic excitation was applied to the damping system through the pneumatic cylinder 

controlled by the proportional valve. Meanwhile, a desired force performance was given in 

order to validate the damping control ability. Therefore, the control signal (voltage) for the 

pneumatic valve and the reference damping force were given as equations (38) and (39), 

respectively. 

 ( )( )ValveControlSignal 5sin / 2t Vπ π= +  (38) 

 ( )( )ReferenceForce sinA t Nπ=  (39) 

here: the amplitude A of the reference force signal was set at two values: 500N and 1000N to 

perform two testing cases. The working load condition was set with a 9kg of load. 
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The control program for the damping system TR02 was built in Simulink with the real-time 

toolbox of MATLAB as shown in Fig. 26. The program contained two main blocks in which 

the first one is the motion generating block to generate the system displacement while the 

second one is the damping control system to ensure that the system could track the desired 

damping force by only using the IBBM controller and BBM sensor, without using the 

mechanical force sensor (load cell). In this control system, the optimized BBM estimated the 

damping force and fed back to the self-learning IBBM controller to create the current control 

signal for the MR fluid damper. In order to evaluate the control performance, the load cell 

was used separately with the controller to measure the actual damping force. 

Experiments on the TR02 controlled by the system in Fig. 26 had been done under the 

testing conditions as shown in (38) and (39). Consequently, the validating results for the 

force-sensorless damping control system based on the BBM and IBBM corresponding to the 

two testing cases, 500N and 1000N of the desire force amplitude, are shown in figures 27a 

and 27b, respectively. The figures show that the system using the IBBM controller with the 

virtual sensor BBM tracked the desired damping force well. From the results, it strongly 

indicates that the damping force can be completely controllable by this proposed control 

methodology. 

 

Figure 26. Simulink program for damping force control based on IBBM controller and BBM sensor. 
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(a) Case 1 (Working load: 9kg; Vibrating control signal: (5V, 0.5Hz, 90°); Reference damping 

force: (500N, 0.5Hz, 0°)) 
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(b) Case 2 (Working load: 9kg; Vibrating control signal: (5V, 0.5Hz, 90°); Reference damping 

force: (1000N, 0.5Hz, 0°)) 

Figure 27. Damping force control performance using IBBM controller and BBM sensor. 
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5. Conclusions 

In this chapter, physical phenomena of a MR fluid damper have been carefully investigated 

through both experimental data and modeling methodologies. Furthermore, a novel force-

sensorless control method was proposed and successfully applied to the damping system 

using the MR fluid damper and without using any mechanical force sensor. The designed 

force control system is based on the optimized BBM model, functioning as the virtual force 

sensor, and the IBBM model, functioning as the self-learning force controller.  

The two test rigs using the MR fluid damper have been fabricated in order to design the 

models as well as to evaluate the proposed controller. The BBM model is built as the simple 

direct modeling method and optimized by using neural network technique. The IBBM 

controller is the direct inverse model of the optimized BBM. In addition, the IBBM has the 

online self-learning ability by using neural network, consequently, improving the system 

performance. As the result, the optimized BBM and IBBM models have a strong ability to be 

applied to damping systems using the MR fluid damper as a virtual force sensor and a 

simple direct controller, respectively.  

The modeling as well as control validation process has been done by both the simulations 

and real-time experiments. Based on the simulation and experimental results, it is clear that 

the optimized BBM can predict the force-displacement behavior of the MR damper with 

high precision while the IBBM can control the damping system to follow the desired 

damping force well. As a result, the proposed force-sensorless damping control 

methodology can become an effective and economical solution for practical MR fluid 

damper applications in the near future. 
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