149 research outputs found

    Automatic Hotspots Detection for Intracellular Calcium Analysis in Fluorescence Microscopic Videos

    Get PDF
    In recent years, life-cell imaging techniques and their software applications have become powerful tools to investigate complex biological mechanisms such as calcium signalling. In this paper, we propose an automated framework to detect areas inside cells that show changes in their calcium concentration i.e. the regions of interests or hotspots, based on videos taken after loading living mouse cardiomyocytes with fluorescent calcium reporter dyes. The proposed system allows an objective and efficient analysis through the following four key stages: (1) Pre-processing to enhance video quality, (2) First level segmentation to detect candidate hotspots based on adaptive thresholding on the frame level, (3) Second-level segmentation to fuse and identify the best hotspots from the entire video by proposing the concept of calcium fluorescence hit-ratio, and (4) Extraction of the changes of calcium fluorescence over time per hotspot. From the extracted signals, different measurements are calculated such as maximum peak amplitude, area under the curve, peak frequency, and inter-spike interval of calcium changes. The system was tested using calcium imaging data collected from Heart muscle cells. The paper argues that the automated proposal offers biologists a tool to speed up the processing time and mitigate the consequences of inter-intra observer variability

    IOCBIO Sparks detection and analysis software

    Get PDF
    Analysis of calcium sparks in cardiomyocytes can provide valuable information about functional changes of calcium handling in health and disease. As a part of the calcium sparks analysis, sparks detection and characterization is necessary. Here, we describe a new open-source platform for automatic calcium sparks detection from line scan confocal images. The developed software is tailored for detecting only calcium sparks, allowing us to design a graphical user interface specifically for this task. The software enables detecting sparks automatically as well as adding, removing, or adjusting regions of interest marking each spark. The results of the analysis are stored in an SQL database, allowing simple integration with statistical tools. We have analyzed the performance of the algorithm using a large set of synthetic images with varying spark sizes and noise levels and also compared the analysis results with results obtained by software established in the field. The use of our software is illustrated by an analysis of the effect of isoprenaline (ISO) on spark frequency, amplitude, and spatial and temporal characteristics. For that, cardiomyocytes from C57BL/6 mice were used. We demonstrated an increase in spark frequency, tendency of having larger spark amplitudes, sparks with a longer duration, and occurrence of multiple sparks from the same site in the presence of ISO. We also show that the duration and the width of sparks with the same amplitude were similar in the absence and presence of ISO. The software was released as an open source repository and is available for free use and collaborative development

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF

    Compressed Sensing Beyond the IID and Static Domains: Theory, Algorithms and Applications

    Get PDF
    Sparsity is a ubiquitous feature of many real world signals such as natural images and neural spiking activities. Conventional compressed sensing utilizes sparsity to recover low dimensional signal structures in high ambient dimensions using few measurements, where i.i.d measurements are at disposal. However real world scenarios typically exhibit non i.i.d and dynamic structures and are confined by physical constraints, preventing applicability of the theoretical guarantees of compressed sensing and limiting its applications. In this thesis we develop new theory, algorithms and applications for non i.i.d and dynamic compressed sensing by considering such constraints. In the first part of this thesis we derive new optimal sampling-complexity tradeoffs for two commonly used processes used to model dependent temporal structures: the autoregressive processes and self-exciting generalized linear models. Our theoretical results successfully recovered the temporal dependencies in neural activities, financial data and traffic data. Next, we develop a new framework for studying temporal dynamics by introducing compressible state-space models, which simultaneously utilize spatial and temporal sparsity. We develop a fast algorithm for optimal inference on such models and prove its optimal recovery guarantees. Our algorithm shows significant improvement in detecting sparse events in biological applications such as spindle detection and calcium deconvolution. Finally, we develop a sparse Poisson image reconstruction technique and the first compressive two-photon microscope which uses lines of excitation across the sample at multiple angles. We recovered diffraction-limited images from relatively few incoherently multiplexed measurements, at a rate of 1.5 billion voxels per second

    Signal Processing and Machine Learning Techniques Towards Various Real-World Applications

    Get PDF
    abstract: Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have opened up new opportunities of research across various departments and this dissertation is a manifestation of it. Here, some unique studies have been presented, from which valuable inference have been drawn for a real-world complex system. Each study has its own unique sets of motivation and relevance to the real world. An ensemble of signal processing (SP) and ML techniques have been explored in each study. This dissertation provides the detailed systematic approach and discusses the results achieved in each study. Valuable inferences drawn from each study play a vital role in areas of science and technology, and it is worth further investigation. This dissertation also provides a set of useful SP and ML tools for researchers in various fields of interest.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    16th Annual Symposium of the School of Science, Engineering and Health

    Get PDF
    In this 16th Annual Symposium of the School of Science, Engineering, and Health, our faculty, staff and students continue the strong tradition of showcasing student and faculty innovation, creativity, and productivity in our academic departments. Basic and applied research in science and health fields stem from curiosity, acquired skill, and a desire to test and improve processes from foundational principles. The outcomes of scientific research expand intellectual understanding and have tremendous impact on quality of life, environmental health, and human flourishing. Angela C. Hare, Ph.D. Dean of the School of Science, Engineering and Healt

    Cardiac Calcium-Induced Calcium Release Failure Recordings, Analysis and Its Prevention

    Get PDF

    Adaptation of the Retina to Stimulus Correlations

    Get PDF
    Visual scenes in the natural world are highly correlated. To efficiently encode such an environment with a limited dynamic range, the retina ought to reduce correlations to maximize information. On the other hand, some redundancy is needed to combat the effects of noise. Here we ask how the degree of redundancy in retinal output depends on the stimulus ensemble. We find that retinal output preserves correlations in a spatially correlated stimulus but adaptively reduces changes in spatio-temporal input correlations. The latter effect can be explained by stimulus-dependent changes in receptive fields. We also find evidence that horizontal cells in the outer retina enhance changes in output correlations. GABAergic amacrine cells in the inner retina also enhance differences in correlation, albeit to a lesser degree, while gylcinergic amacrine cells have little effect on output correlation. These results suggest that the early visual system is capable of adapting to stimulus correlations to balance the challenges of redundancy and noise

    From condition-specific interactions towards the differential complexome of proteins

    Get PDF
    While capturing the transcriptomic state of a cell is a comparably simple effort with modern sequencing techniques, mapping protein interactomes and complexomes in a sample-specific manner is currently not feasible on a large scale. To understand crucial biological processes, however, knowledge on the physical interplay between proteins can be more interesting than just their mere expression. In this thesis, we present and demonstrate four software tools that unlock the cellular wiring in a condition-specific manner and promise a deeper understanding of what happens upon cell fate transitions. PPIXpress allows to exploit the abundance of existing expression data to generate specific interactomes, which can even consider alternative splicing events when protein isoforms can be related to the presence of causative protein domain interactions of an underlying model. As an addition to this work, we developed the convenient differential analysis tool PPICompare to determine rewiring events and their causes within the inferred interaction networks between grouped samples. Furthermore, we present a new implementation of the combinatorial protein complex prediction algorithm DACO that features a significantly reduced runtime. This improvement facilitates an application of the method for a large number of samples and the resulting sample-specific complexes can ultimately be assessed quantitatively with our novel differential protein complex analysis tool CompleXChange.Das Transkriptom einer Zelle ist mit modernen Sequenzierungstechniken vergleichsweise einfach zu erfassen. Die Ermittlung von Proteininteraktionen und -komplexen wiederum ist in großem Maßstab derzeit nicht möglich. Um wichtige biologische Prozesse zu verstehen, kann das Zusammenspiel von Proteinen jedoch erheblich interessanter sein als deren reine Expression. In dieser Arbeit stellen wir vier Software-Tools vor, die es ermöglichen solche Interaktionen zustandsbezogen zu betrachten und damit ein tieferes Verständnis darüber versprechen, was in der Zelle bei Veränderungen passiert. PPIXpress ermöglicht es vorhandene Expressionsdaten zu nutzen, um die aktiven Interaktionen in einem biologischen Kontext zu ermitteln. Wenn Proteinvarianten mit Interaktionen von Proteindomänen in Verbindung gebracht werden können, kann hierbei sogar alternatives Spleißen berücksichtigen werden. Als Ergänzung dazu haben wir das komfortable Differenzialanalyse-Tool PPICompare entwickelt, welches Veränderungen des Interaktoms und deren Ursachen zwischen gruppierten Proben bestimmen kann. Darüber hinaus stellen wir eine neue Implementierung des Proteinkomplex-Vorhersagealgorithmus DACO vor, die eine deutlich reduzierte Laufzeit aufweist. Diese Verbesserung ermöglicht die Anwendung der Methode auf eine große Anzahl von Proben. Die damit bestimmten probenspezifischen Komplexe können schließlich mit unserem neuartigen Differenzialanalyse-Tool CompleXChange quantitativ bewertet werden
    corecore