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Abstract
Visual scenes in the natural world are highly correlated. To efficiently encode such an environment with a
limited dynamic range, the retina ought to reduce correlations to maximize information. On the other hand,
some redundancy is needed to combat the effects of noise. Here we ask how the degree of redundancy in
retinal output depends on the stimulus ensemble. We find that retinal output preserves correlations in a
spatially correlated stimulus but adaptively reduces changes in spatio-temporal input correlations. The latter
effect can be explained by stimulus-dependent changes in receptive fields. We also find evidence that
horizontal cells in the outer retina enhance changes in output correlations. GABAergic amacrine cells in the
inner retina also enhance differences in correlation, albeit to a lesser degree, while gylcinergic amacrine cells
have little effect on output correlation. These results suggest that the early visual system is capable of adapting
to stimulus correlations to balance the challenges of redundancy and noise.
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ABSTRACT

ADAPTATION OF THE RETINA TO STIMULUS CORRELATIONS

Kristina Diane Simmons

Vijay Balasubramanian

Visual scenes in the natural world are highly correlated. To efficiently encode such

an environment with a limited dynamic range, the retina ought to reduce correlations

to maximize information. On the other hand, some redundancy is needed to combat

the effects of noise. Here we ask how the degree of redundancy in retinal output

depends on the stimulus ensemble. We find that retinal output preserves correlations

in a spatially correlated stimulus but adaptively reduces changes in spatio-temporal

input correlations. The latter effect can be explained by stimulus-dependent changes

in receptive fields. We also find evidence that horizontal cells in the outer retina

enhance changes in output correlations. GABAergic amacrine cells in the inner retina

also enhance differences in correlation, albeit to a lesser degree, while gylcinergic

amacrine cells have little effect on output correlation. These results suggest that the

early visual system is capable of adapting to stimulus correlations to balance the

challenges of redundancy and noise.
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Chapter 1

Introduction

In this thesis, I seek to address two questions. First, does the retina adapt to stimulus

correlations? Second, seeing that such adaptation occurs, where in the retina does

it arise? In this chapter, I review the basic structure and function of the retina. I

then discuss what we know about the retina’s ability to adapt to stimuli and put

forward a motivation for this thesis using the framework of efficient coding theory.

In Chapter 2, I show that correlations in retinal output differ less than correlations

in input and explain this finding as a result of receptive field adaptation. In Chapter

3, I examine the circuitry underlying these effects and suggest a role for the outer

retina in combating noise. Finally, in Chapter 4, I discuss my findings in the context

of visual processing as we currently understand it and suggest a number of directions

for further study.

1.1 Overview of the retina

While there are many open questions about retinal circuitry and functional, its basic

structure and output are well understood. Here we provide a general introduction.

1



1.1.1 Organization

The retina has a highly organized laminar structure: incoming light is detected by

photoreceptors, which synapse onto bipolar cells in the outer plexiform layer. Bipolar

cells then synapse onto retinal ganglion cells (RGCs) in the inner plexiform layer. In

each of these stages, the feedforward signals are shaped by inhibition from horizontal

cells in the outer retina and amacrine cells in the inner retina. Details of each con-

nection will be discussed in Chapter 3; here we focus on the general structure and

the nature of signals as they travel through the retina.

The retina is able to achieve a great deal of image processing due in part to the

large number of cell subtypes. In the outer retina, photoreceptors come in two vari-

eties. Rods are responsible for vision in low light conditions, while cones allow vision

at higher background light levels. In most mammals, there are two types of cones

that differ in their spectral sensitivity, thus forming the basis of color vision. Humans

and other primates have a third type of cone that gives us red-green color vision.

Rods, on the other hand, only come in one subtype but are sensitive enough to detect

a single photon. All photoreceptors are depolarized in the dark and hyperpolarized in

response to light. At the first synapse, from photoreceptor to bipolar cell, the signal

is split into two pathways. ON bipolar cells depolarize in response to light onset,

whereas OFF bipolar cells hyperpolarize. The opposite happens at light offset: ON

cells hyperpolarize and OFF cells depolarize. Bipolar cells are further subdivided

into approximately 10 subtypes with different functions and synaptic connections

(Masland, 2001). Horizontal cells come in only two types, one that feeds back onto

cones only and one that sends feedback to cones and rods (Masland, 2001). As with

bipolar cells, there are between 10 and 15 types of ganglion cells (Wassle, 2004; Roska

et al., 2006). Many of these maintain the division into ON and OFF pathways, but

2



some ON-OFF ganglion cells respond to both light onset and light offset. There are

also about 30 types of amacrine cell that enhance the specific functions of each RGC

type. This diversity of bipolar, amacrine, and ganglion cells gives the retina a great

deal of flexibility in responding to a large number of stimulus features.

1.1.2 Ganglion cell responses

Different types of retinal ganglion cells respond very differently to stimuli, depending

on their inputs and intrinsic properties (Rockhill et al., 2002; Roska et al., 2006;

Segev et al., 2006). Within ON and OFF types, many RGCs can be grouped by how

quickly they respond to a stimulus and how long their responses last. For example,

brisk-transient cells respond quickly with a small number of spikes, whereas brisk-

sustained cells also have a short latency but respond with a longer train of action

potentials. Sluggish cells in turn have a slower response time. Other cells have a more

specialized purpose: direction-selective cells respond only to a stimulus moving in a

specific direction, while local edge detectors respond to borders but not to spatially

uniform stimuli. On the other hand, uniformity detectors respond well to a constant

stimulus and are silent following a change in stimulus.

1.2 Adaptation in the retina

Using the general structure and functions discussed above, the retina is able to adapt

its processing to a variety of stimulus features. In this section, we review such adap-

tation.

3



1.2.1 Adaptation to contrast

One of the most commonly studied forms of adaptation in the visual system is adap-

tation to contrast, or the range of intensities in a stimulus ensemble. When stimulus

contrast increases, ganglion cell firing rates increase at first and then gradually drop

(Smirnakis et al., 1997). Similarly, some ganglion cells show depolarization shortly

after a contrast increment, followed by slow hyperpolarization (Baccus and Meister,

2002). This adaptation can be examined in more detail by fitting responses to a

linear-nonlinear model (Chichilnisky, 2001). In this model, the visual stimulus is fil-

tered with a linear kernel and then the output is passed through a nonlinear transfer

function to generate a predicted firing rate (or membrane current if applicable). The

linear filter represents the spatio-temporal receptive field of the cell, and the nonlin-

earity encompasses any thresholding and saturation. The cell’s sensitivity to stimuli

can be incorporated into either stage as the amplitude of the kernel or the slope of the

nonlinearity. In this thesis, to avoid ambiguity, we will always take the linear filters to

be normalized so that all control of sensitivity is in the gain, or slope, of the nonlinear

transfer function. Typically, one will fit responses from different adaptation states

separately and compare the estimated filters and nonlinearities between adaptation

states.

After an increase in contrast, ganglion cell filters become faster and more biphasic

(Baccus and Meister, 2002; Demb, 2002; Smirnakis et al., 1997; Beaudoin et al., 2007;

Kim and Rieke, 2001; Chander and Chichilnisky, 2001; Zaghloul et al., 2005). In

other words, cells are more high-pass when signal strength is higher. When contrast

(and hence signal strength) is lower, filters are slower and ganglion cells integrate

over a longer time to counteract the effects of noise in the signal. In addition, the

gain decreases when contrast is higher, allowing the cell to use its full dynamic range

4



without saturating (Baccus and Meister, 2002; Demb, 2002; Beaudoin et al., 2007;

Kim and Rieke, 2001; Zaghloul et al., 2005).

1.2.2 Adaptation to complex stimulus features

Adaptation to stimulus features more complicated than contrast has been observed

but is less fully understood. Hosoya et al. (2005) found adaptation in retinal ganglion

cell filters when the stimulus alternated between horizontal and vertical gratings, but

they did not explore the nature of the changes. RGCs also adapt to spatial scale. After

a switch from a spatially uniform stimulus to a spatially modulated checkerboard,

some RGC firing rates immediately increase and then gradually decrease (Smirnakis

et al., 1997), and receptive fields display adaptation (Hosoya et al., 2005). The retina

can also adapt to temporal patterns. When Schwartz et al. (2007) displayed a series

of identical flashes, RGCs displayed high firing rates after the sequence ended. This

omitted stimulus response occurred at the time when another flash would be expected

and was stronger than responses to each of the flashes in the series. Thus, the retina is

able to adapt to a pattern of stimuli, as well as orientation and spatial scale. However,

the mechanisms and circuitry underlying such phenomena have not been identified.

1.3 Natural scenes and correlations

Natural scenes, unlike commonly used artificial stimuli, are highly correlated. This

striking feature leads us to ask whether the retina can adapt to stimulus correlations.

Here we review general properties of natural scenes and the current state of knowledge

about natural vision.
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1.3.1 Statistics of natural scenes

Natural visual stimuli vary greatly in content but typically have a scale-invariant

structure (for a review, see Geisler, 2008; Simoncelli and Olshausen, 2001). That is, in

a given image, the power spectrum does not change depending on the magnification or

viewing distance (Ruderman, 1997; Lee et al., 2001; Balboa et al., 2001). Specifically,

across natural scenes, the amplitude spectrum is approximately of the form 1/f , where

f is the spatial or temporal frequency (Burton and Moorhead, 1987; Field, 1987;

Ruderman and Bialek, 1994). The relatively high power at low spatial frequencies

may be due to nearby areas of a single object having a similar appearance. The fact

that illumination is usually somewhat constant (in space) within a scene is also likely

to induce large-scale correlations.

In addition to being highly correlated, natural images have a luminance distribu-

tion with a strong positive skew. Many pixels are darker than the mean luminance

and a smaller number are very bright (Brady and Field, 2000; Laughlin, 1981; Ruder-

man et al., 1998). Local contrast is generally of low magnitude (Tadmor and Tolhurst,

2000), presumably due to correlations between nearby points in the same object. In

addition, contrast and luminance are largely independent (Frazor and Geisler, 2006).

1.3.2 Visual responses to natural stimuli

Many studies have suggested that visual responses change as a result of changes in

stimulus correlation structure. In the fly eye, de Ruyter van Steveninck et al. (1997)

found that responses of the motion-sensitive neuron H1 to naturalistic motion could

not be predicted well by models based on responses to random stimuli, hinting at a

change in the basic processing in a fly eye depending on the stimulus.

In vertebrates, Nirenberg et al. (2010) found that some retinal ganglion cells
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whiten naturalistic stimuli. In addition, RGCs show only a weak surround when

probed with white noise (Chichilnisky and Kalmar, 2002), in contrast to the strong

surround measured by Derrington and Lennie (1982) using the more highly correlated

sine-wave gratings. This finding suggests that spatial correlations may already shape

receptive fields in retina.

Output of the lateral geniculate nucleus (LGN) of the thalamus is also whitened

in response to natural movies but has increased high-frequency power when presented

with white noise (Dan et al., 1996). Specifically, Lesica et al. (2007) recorded from

LGN in response to uncorrelated white noise stimuli and correlated natural scene

movies. They found that responses are faster and have lower gains and stronger

surrounds when probed with natural scenes (Lesica et al., 2007). Reliability and

sparseness also increase with stimulus correlations.

Similarly, Sharpee et al. (2006) measured responses of simple cell in primary visual

cortex (V1) to white noise and to natural scenes. The receptive fields measured

with each stimulus were better at predicting the response to that stimulus than to

the other ensemble. Moreover, receptive fields measured under natural stimuli had

increased sensitivity at high frequencies relative to white noise receptive fields, thus

compensating for the low stimulus power at these frequencies. This indicates that V1

can adapt to counteract changes in stimulus correlation structure. These differences

are stronger in the inhibitory portions of the receptive fields, suggesting that the

difference in stimulus structure has an effect on how the receptive fields act to reduce

redundancy (David et al., 2004). Thus, individual neurons in the early visual system

are able to adapt to natural scenes in a way that whitens the power spectra. These

results lead us to act whether the retina also adapts to such stimuli on a population

level.
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1.3.3 Correlations in retinal output

Retinal ganglion cells often show correlations in their spike trains. Seminal work by

Mastronarde (1983a,b,c, 1989) characterized these correlations in cat X- and Y-type

cells. In the absence of any modulated light stimulus, pairs of cells have narrow peaks

and wells in their cross-correlograms: a cell is more likely to fire if a nearby cell of the

same polarity fires and less likely to fire when a nearby cell of the opposite polarity

fires. These correlations appear to be mainly a result of common input, possibly

from spiking amacrine cells, but may also include a contribution from reciprocal

connections between ganglion cells. At low light levels, correlations with less temporal

precision are also seen (similar results have been measured in primate by Greschner

et al., 2011). These broad correlations are stronger between pairs of ON cells than

between pairs of OFF cells and may depend in part on tonic signals from bipolar

cells. Thus, it appears that correlations are stimulus-dependent and may depend on

multiple sites within the retinal circuitry.

Similarly, rabbit RGCs have cross-correlograms with a single peak at zero, adding

further support to Mastronarde’s conclusions that correlations are largely the result

of shared input. Reciprocal connections among OFF cells may also be important,

as OFF brisk-transient ganglion cells (analogous to Y-type cells) show two peaks in

correlation separated by a few milliseconds (DeVries, 1999). When time-varying stim-

uli are presented, temporally broad correlations between neurons in primate retina

increase (Greschner et al., 2011). The spatial extent of these correlations increases

with the extent of stimulus correlation, consistent with the idea that common input

contributes to correlations. At a fixed distance, however, the strength of correlations

does not precisely reflect the degree of input correlation. Rather, output correlations

are higher than stimulus correlations for white noise but lower than stimulus corre-
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lations for naturalistic stimuli, resulting in similar output correlation strengths for

the two stimulus categories (Pitkow and Meister, 2012). This stimulus dependence

of correlations could be in part due to changes in the timing of single-cell responses

relative to the stimulus such as those discussed above (Lesica et al., 2007).

Patterns in firing among more than two neurons have not been studied as exten-

sively, in part due to the exponential increase in the number of possible patterns.

However, computational models that incorporate pairwise correlations are able to

account for patterns of groups of cells (Shlens et al., 2008). Thus, characterizing

pairwise correlations may allow us to better understand structured responses of large

populations of RGCs.

1.4 Efficient coding

Why would we expect to see adaptation to stimulus correlations? As described below,

such adaptation would benefit an organism by reducing the redundancy of the visual

signal. This change may be needed to accommodate environments with different

correlation structures using the limited bandwidth of the optic nerve.

1.4.1 Theories of efficient coding

As a result of the strong correlations in natural scenes, visual signals are highly

redundant, with most information contained at points in space and time where the

stimulus changes (Attneave, 1954). However, the optic nerve has limited spatial and

energetic resources and so representations of the stimulus must be efficient (Niven and

Laughlin, 2008; Perge et al., 2009). Removing redundancy present in the stimulus

is one way to increase the amount of information conveyed with a limited capacity

(Atick, 1992).
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It has been speculated that an optimal sensory system would have evolved in a

way that accomplishes this task (Geisler, 2008; Barlow, 1961; Atick, 1992). Specif-

ically, neurons ought to maximize the mutual information between their responses

and the stimulus (Simoncelli and Olshausen, 2001). For example, a receptive field

with an excitatory center and an inhibitory surround could contribute to redundancy

reduction in sensory systems by decorrelating the signals of neighboring cells (Bar-

low, 1961). However, the optimal coding for a given environment depends on features

of the stimulus ensemble (Simoncelli and Olshausen, 2001; Deweese, 1996). Thus, it

would be advantageous for the retina to adapt its processing to maximize information

in each environment.

As an example, consider contrast adaptation. The range of stimuli to which

sensory systems are exposed is generally several orders of magnitude larger than the

dynamic range of any encoding neuron. To process the entire stimulus space with a

fixed coding scheme the neuron would have to either saturate for strong stimuli or

lose sensitivity to small changes. A better solution is to adapt to the recent history of

stimuli. If the variation of a stimulus increases, then a neuron encoding that stimulus

should decrease its gain, thereby using its limited output range to encode the full

range of input it is likely to receive. Similarly, environments with different spatial

structures could dictate different coding strategies.

While redundancy reduction appears to be an important goal, there are other

considerations in designing an optimal visual system. In particular, noise can obscure

the signal from a single unit. One way to compensate is to transmit the same signal

through multiple channels. The signal strength improves, while independent noise is

averaged out. Thus, the optimal degree of correlation between neurons depends on

the noise in the system (Tkačik et al., 2010). Similarly, in the temporal domain, an

optimal sensory system should attenuate the highest frequencies to minimize noise
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(Atick, 1992).

In addition, correlations in the noise present in nearby neurons can increase pre-

cision of spike timing. In midget ganglion cells responding to a repeated stimulus,

trial-to-trial noise in excitatory and inhibitory currents is correlated (Cafaro and

Rieke, 2010). Moreover, injecting these currents using dynamic clamp leads to spike

trains that have higher reliability when the injected excitatory and inhibitory con-

ductances are taken from a simultaneous recording rather than different recordings

using the same stimulus. Thus, correlations in inputs may play an important role in

shaping output. It is possible that the pattern of correlations in the retina similarly

provides a signal to downstream neurons.

1.4.2 Efficient coding in sensory systems

The predictions of efficient coding theory have been confirmed in a number of ex-

perimental systems. Much of this evidence demonstrates a match between stimulus

contrast and neural dynamic range (for a review, see Wark et al., 2007). For exam-

ple, in the fly eye, the contrast response function is very similar to the cumulative

distribution of contrast values in natural scenes (Laughlin, 1981). That is, the gain is

high for the range of contrasts that occurs frequently but low for rare contrasts. As a

result, the distribution of responses to a natural stimulus is uniform, using the entire

dynamic range effectively. Moreover, when a fly is exposed to a stimulus ensemble

in which the range of velocities suddenly increases, the motion-sensitive neuron H1

adapts by decreasing its gain. More precisely, the H1 input-output transfer function

in each condition is scaled by the standard deviation of the input velocity ensemble.

After compensating for this scaling, the transfer functions for the two stimulus veloc-

ities align (Brenner et al., 2000; Fairhall et al., 2001). The gain used by this system
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is the one that maximizes the entropy of the output firing rates. As the noise entropy

does not change between conditions, this amounts to maximizing the information.

The first synapse in the fly eye also seems to adapt to intensity changes in a way that

optimally reduces redundancy and noise (Laughlin, 1994).

In mammals, contrast responses in LGN and V1 appear to match the range of

contrasts seen in the natural world (Tadmor and Tolhurst, 2000). Contrast adapta-

tion is independent of luminance adaptation, matching the independence of the two

measurements in natural scenes (Mante et al., 2005). In rat barrel cortex, a change in

the distribution of vibrissa displacements leads to adaptation such that input-output

curves are scaled by standard deviation and, as a result, information transmission

is equal for the two variances (Maravall et al., 2007). Contrast adaptation could

be relevant to the processing of stimulus correlations in that variance normalization

can lead to statistical independence (Schwartz et al., 2001). Consider two neurons

A and B, where the variance of neuron A’s response is greater when neuron B has

a high average response. These two neurons could be uncorrelated on average but

clearly still convey redundant information. Their independence would be increased

if A’s responses were normalized by their variance (Simoncelli and Schwartz, 1999).

Such a transformation is thought to underlie contrast gain control, thus implicating

decorrelation as a possible purpose of contrast adaptation.

Direct measures of neural processing of stimulus correlations also appear consis-

tent with the redundancy reduction hypothesis. In particular, classical measurements

of retinal receptive fields show a center-surround structure (Kuffler, 1953). This struc-

ture can be modeled as a difference of two Gaussians: a narrow, excitatory center with

a broader, inhibitory surround (Enroth-Cugell and Robson, 1966; Rodieck, 1965). The

surround is thought to reduce redundancy by subtracting the mean luminance from

the intensity in the center so that the visual system encodes deviations from the mean

12



(Barlow, 1961). Srinivasan et al. (1982) and Atick (1992) computed theoretical re-

ceptive fields that would remove the spatio-temporal correlations in natural images.

These predictions approximate the structure of visual receptive fields, including sur-

round inhibition. Moreover, receptive fields at different light levels can be predicted

by considering the effect of the signal-to-noise ratio on the optimal balance between

redundancy reduction and noise reduction (Atick et al., 1990; van Hateren, 1992).

As background intensity increases, the visual signal becomes stronger and noise re-

duction is less of a concern. Hence, the dominant effect is to remove redundancy by

increasing surround strength. One might also predict that correlations decrease with

light level, and his turns out to be the case (Greschner et al., 2011). Downstream

from the retina, receptive fields adapt to naturalistic stimuli, as discussed above.

Such adaptation increases mutual information between the stimulus and the response

(Sharpee et al., 2006).

Other features of the retina are consistent with information theoretic predictions

as well. For instance, the greater number of OFF cells gives the retina more resources

for processing negative contrast, which is more common than positive contrast (Bala-

subramanian and Sterling, 2009), and the level of overlap observed in dendritic fields

is optimal for maximizing information (Borghuis et al., 2008). Cell types vary in noise

level and information rate, but these two features compensate so that all types have

similar coding efficiency (Koch et al., 2006). Such examples suggest that efficient

coding is a driving force in the evolution of the visual system.

Thus, various lines of evidence lead us to believe that the retina may be able to

adapt its processing to optimally encode stimuli with different correlation structures.
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Chapter 2

Transformation of stimulus

correlations by the retina

The material in this chapter has been submitted for publication as Simmons et al.

(2013).

2.1 Abstract

Redundancies and correlations in the responses of sensory neurons seem to waste

neural resources but can carry cues about structured stimuli and may help the brain

to correct for response errors. To assess how the retina negotiates this tradeoff,

we measured simultaneous responses from populations of ganglion cells presented

with natural and artificial stimuli that varied greatly in correlation structure. We

found that pairwise correlations in the retinal output remained similar across stimuli

with widely different spatio-temporal correlations including white noise and natural

movies. Responding to more correlated stimuli, ganglion cells had faster temporal

kernels and tended to have stronger surrounds. These properties of individual cells,
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along with gain changes that opposed changes in effective contrast at the ganglion

cell input, largely explained the similarity of pairwise correlations across stimuli.

Meanwhile, purely spatial stimulus correlations tended to evoke concomitant increases

in response correlations.

2.2 Introduction

An influential theory of early sensory processing argues that sensory circuits should

conserve scarce resources in their outputs by removing correlations present in their

inputs (Barlow, 1961; Srinivasan et al., 1982; Atick, 1992). However, recent work has

clarified that some redundancy in retinal output is useful for hedging against noise

(Borghuis et al., 2008; Tkačik et al., 2010). Moreover, sensory outputs with varying

amounts of correlation can engage cortical circuits differently and thus result in a

different sensory “code” (Estebanez et al., 2012). Thus, some degree of redundancy

appears to be useful to the brain when dealing with response variability and making

decisions based on probabilistic input (Barlow, 2001). Indeed, correlations between

neurons in visual cortex are largely unchanged between unstructured and naturalistic

visual stimuli (Fiser et al., 2004). We therefore hypothesized that retina may adjust

to the spatio-temporal structure of stimuli not to decorrelate but to maintain a rela-

tively invariant degree of output correlation. Previous studies have examined pairwise

correlations amongst retinal ganglion cell spike trains in specific stimulus conditions

(Ganmor et al., 2011; Puchalla et al., 2005; Schneidman et al., 2003; Trong and Rieke,

2008; Greschner et al., 2011; Pitkow and Meister, 2012) but did not study the changes

in correlation for the same pairs across stimuli.

Are there mechanisms that might allow the retina to adjust its functional proper-

ties when stimulus correlations change? Traditionally, retinal ganglion cells (RGCs)
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have been described by a fixed linear receptive field followed by a static nonlinearity

(Rodieck, 1965), where surround inhibition acts linearly to suppress pairwise correla-

tions in natural visual input (Srinivasan et al., 1982; Atick, 1992). In this view, the

receptive field and nonlinearities might vary dynamically with stimulus correlations,

possibly by changing the strength of lateral inhibition to maintain a fixed amount of

output correlation. Indeed, correlation-induced changes in receptive fields have been

observed in the LGN and visual cortex (Lesica et al., 2007; Sharpee et al., 2006).

To test these ideas, we performed a series of experiments in which we presented

the retina with several stimuli with varying degrees of spatial and temporal correla-

tions. The retina never fully decorrelated its input; even for white noise stimuli some

correlations were present between pairs of retinal ganglion cell spike trains. Respond-

ing to natural movies, however, output correlations were only slightly greater than

they were while responding to white noise, despite the dramatic difference in input

correlations. We found a similar result for a spatio-temporal exponentially correlated

stimulus, with the increase in output correlations being smaller still. For stimuli with

high spatial (but not temporal) correlations, output correlation increased with input

correlation to a larger degree than in natural movies. Thus, pairwise output correla-

tions are similar over a broad range of spatio-temporal correlations but increase with

spatial correlation in the absence of temporal correlation. Additionally, we observed

a faster response timecourse and a skew towards stronger inhibitory surrounds in

response to correlated stimuli. These changes were sufficient to largely explain the

observed suppression of pairwise correlations in the retinal output.
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Figure 2.1: Natural and artificial stimuli vary in correlation structure.
(A) Spatial correlation functions from four natural images, in gray. Black line
shows average correlation function over a large database of natural images.
Although all images’ correlation functions have the same general shape, there are
clear differences between images. (B) Examples of the stimuli used in this work.
Traces above frames show the temporal correlation function of each stimulus.
Stimuli were displayed at 30 Hz in alternating 10-minute blocks.
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2.3 Results

2.3.1 Simultaneous measurements of ganglion cell responses

We used a multi-electrode array to measure simultaneous responses from groups of

∼40 retinal ganglion cells in guinea pig. Each recording interleaved 10-minute blocks

of white noise checkerboard stimuli with 10-minute blocks of correlated stimuli. Ex-

ample frames from each stimulus are shown in Figure 2.1B, together with their respec-

tive temporal correlation functions. We probed retinal responses to natural movies,

which allowed us to determine properties of ganglion cell population activity during

natural vision. However, natural movies contain strong correlations in time (trace un-

der “natural” stimulus in Fig. 2.1B) and space (Fig. 2.1A, B). There are challenges

with reliably estimating receptive fields from natural stimuli due to these strong cor-

relations as well as the highly skewed natural intensity distribution (see Methods).

We therefore also assessed the effect of spatio-temporal correlations in a more con-

trolled stimulus with short-range exponential correlations in time and space and a

binary intensity distribution (Fig. 2.1B, “spat-temp exponential”).

Additional stimuli allowed us to vary the spatial correlation over a broad range,

without temporal structure, in order to test the hypothesis that surround strength

adapts to remove correlations in nearby parts of an image. Thus, we examined spa-

tial correlations of increasing extent: spatially exponential, a “multiscale” naturalistic

stimulus featuring structure over many spatial scales, and full-field flicker (Fig. 2.1B,

bottom row). The multiscale stimulus was designed to mimic the scale invariance of

natural scenes in a controlled binary stimulus; featuring both small and large patches

of correlated checks (such as the white area near the center). Its construction is de-

tailed in Methods. In one experiment, we also compared responses to low-contrast

white and multiscale stimuli to their high-contrast versions. Finally, to control for
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the effect of the skewed natural intensity distribution, we also conducted experiments

presenting scrambled natural movies lacking spatial or temporal correlations but pre-

serving the intensity distribution. The mean luminance and single-pixel standard

deviation were matched across all stimuli other than low-contrast stimuli, which had

a mean matched to the others with half the standard deviation, and natural intact

and scrambled movies, which were matched to each other. Over 30 minutes of record-

ing in each stimulus condition, the typical cell fired ∼7000 spikes. This was sufficient

to assess spike train correlations and to measure receptive fields for the white and

exponentially correlated stimuli.

For preliminary analyses, we measured the spike-triggered average (STA) from

each ganglion cell’s response to white noise. The resulting receptive fields typically

gave good coverage of the sampled visual field (Fig. 2.2A) and clustered into types

on the basis of their response polarity and temporal properties (Fig. 2.2B; details

in Methods). The four basic types that we consistently identified across experiments

were fast-ON and fast-OFF, distinguished by the transient and biphasic nature of their

temporal filter, and slow-ON and slow-OFF, which had longer integration times and

often less prominent biphasic filter lobes. Separating cells by type did not qualitatively

change many of the results reported below; in these cases, we combined all cells to

improve statistical power.

To probe the effect of stimulus correlation on ganglion cell response properties

in detail, we applied a standard functional model, the linear-nonlinear (LN) model.

In this model, the visual stimulus is filtered with a linear kernel that represents

the spatio-temporal receptive field (STRF) of the cell. The filter output is then

passed through a nonlinear transfer function to generate a predicted firing rate. The

nonlinearity encompasses thresholding and saturation, as well as any gain on the

linear response. For white noise stimuli, the STA is a good estimator of the STRF
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Figure 2.2

20



Figure 2.2: Retinal ganglion cell receptive fields measured using a
multi-electrode array. (A) Receptive field locations of 31 cells recorded
simultaneously from guinea pig retina. Each curve shows the 70% contour line of
one receptive field. (B) Best-fitting temporal kernels for 75 cells, clustered into four
types. Types were obtained by manually clustering temporal filters on the basis of
the projection onto their first three principal components. (C) Maximum likelihood
estimates of spatio-temporal receptive fields (STRFs) for an example cell. STRFs
were computed separately using responses to white noise (left) or exponential
spatio-temporally correlated stimuli (right). Scale bar is 200 µm.

(Chichilnisky, 2001). However, this simple property does not hold for correlated stim-

uli, and so we fit the STRFs and other LN model parameters by maximum likelihood

estimation (see Methods). For the weakly correlated spatio-temporal exponential

stimulus, this technique reliably extracted receptive fields (Fig. 2.2C).

2.3.2 Output correlations in response to different stimuli

We computed the correlation coefficient between spike trains (binned at 33ms; see

Methods and Fig. 2.7B) for all pairs of simultaneously recorded neurons. In response

to natural movies, correlations between most pairs of cells increased in magnitude

when compared with the correlations between the same pairs when viewing white

noise (Fig. 2.3A). We quantified the size of this increase by finding the least-squares

best fit line (Fig. 2.3B, gray lines) and defining the “excess correlation” of a population

as the slope of this line minus one (see Methods). If all cell pairs had, on average, the

same correlation in both stimulus conditions, the excess correlation would be zero.

In the case of natural movies, the excess correlation was 0.32± 0.20 (95% confidence

interval computed using bootstrap resampling, as explained in Methods), modestly

different from zero.

Since the retinal ganglion cell output is a highly transformed representation of its

input, it is not trivial to formulate a näıve expectation for the magnitude of output
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Figure 2.3
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Figure 2.3: Retinal output correlations are largely constant between
stimulus conditions. (A) Instantaneous spike train correlation coefficients
between pairs of ganglion cells, comparing responses to natural movies and to white
noise. Dashed black line is the diagonal. Cell pairs of the same type are indicated by
colors in the legend. Different-type pairs are separated into ON-OFF (gray) and
ON-ON or OFF-OFF pairs (black). The excess correlation, δ, is the deviation of the
slope of the best fit line (gray) from the diagonal. (B) Same as A but for
spatio-temporal exponential stimulus. (C) Excess correlation measured from
ganglion cells responding to the indicated stimulus, compared to white noise.
Numbers below bars indicate the number of cell pairs in each condition; all recorded
cells are included. Error bars are 95% bootstrap confidence intervals computed over
50,000 random samples with replacement from the set of cell pairs. (D) Comparison
of measured excess correlation (white) to non-adapting model predictions (gray) for
the indicated stimuli. Model values were derived from LN neurons with parameters
fit to white noise data. Only cells whose receptive fields met a quality threshold are
used here.

correlation given an input correlation. We therefore chose to quantify this expectation

in a simple null model: the LN model fit to the white noise responses. This model

captures correlation due to receptive field overlap and simple nonlinear processing

while neglecting correlations due to shared circuitry and more complex nonlinear

behavior, such as adaptation. For cells which had sufficiently well-estimated white

noise LN model parameters (as described in Methods), we were able to compare the

excess correlation predicted by the model to that observed in the data. We adjusted

the threshold of each model neuron separately under each stimulus to match predicted

average firing rates to their empirical values, which differed between stimuli. All other

parameters, namely the spatio-temporal receptive field and the gain, were unchanged

between stimuli. This “non-adapting” model predicted a significantly larger excess

correlation in response to natural movies (gray bars in Fig. 2.3D and Fig. 2.4A),

suggesting that the low observed excess correlation value under natural stimulation

is a consequence of nontrivial processing in the retina.

In addition to strong correlations, however, natural stimuli are also characterized
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by a skewed distribution with many dark pixels and a few extremely bright pixels,

whereas our white noise stimulus included equal numbers of bright and dark pixels.

To disentangle effects of correlations from effects due to intensity distribution, we

presented the same retinae with a scrambled natural movie. In this stimulus, we

started with natural movies and randomly shuffled the pixels in space and time to

maintain the intensity distribution but remove correlations. The excess correlation

in response to this stimulus was consistent with zero in both the measured and sim-

ulated responses (Fig. 2.4A, left bars). Moreover, comparing the natural movie and

scrambled natural movie directly, we again found a small excess correlation consistent

with that in the natural movie vs. white noise case. The non-adapting model again

predicts that this low excess correlation is nontrivial (Fig. 2.4A, right bars). Thus,

the retina greatly suppresses increases in correlation when natural visual stimuli are

presented.

We found a similar set of results for the more weakly correlated spatio-temporal

exponential stimulus (Fig. 2.3B). In particular, the excess correlation was low (0.12±

0.05) whereas simulated responses from the non-adapting model showed an increase

(excess correlation of 0.67; Fig. 2.3C). We also examined the results of experiments in

which we presented stimuli with varying degrees of spatial correlation (see Table 2.1).

As shown in Figure 2.3C, many stimuli produced only a modest increase in output

correlations. Some stimuli with strong spatial correlations, particularly the multiscale

and full-field flicker stimuli, resulted in a clear increase in output correlations when

compared to white noise. For stimuli where we varied the contrast (namely white and

multiscale noise), output correlations decreased when the contrast was lowered while

all other stimulus properties were kept fixed. Thus, the degree of correlation in the

retinal output is not a reflection of stimulus correlations alone.

For further analysis, we focused on the subset of stimuli shown in Figure 2.3D, all
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Figure 2.4
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Figure 2.4: Analysis of pairwise correlations. (A) Excess correlations for
natural stimuli. Left and middle bars show excess correlation when scrambled
natural movies and intact natural movies, respectively, are compared to white noise
in the data and in a population of non-adapting model neurons. Right bars show
excess correlation when responses to natural movies are compared to scrambled
natural movies directly. A non-adapting model predicts larger changes in output
correlations than seen in the data in response to the correlated natural input. (B)
Output correlations under the spatio-temporal exponential stimulus compared with
white noise as predicted by LN models with parameters fit to the data. The two
leftmost bars (“data” and “WN model (no adaptation)”) reproduce the
spatio-temporal “data” and “model” bars in Figure 2.3D. (Note the difference in
scale.) For the other bars, we simulated a population of neurons using linear filters
measured from each stimulus but gains measured only from white noise (“filter
adaptation model”) or using experimentally derived estimates of both linear filters
and gains for each stimulus (“filter + gain adaptation model”). In the fully adapted
model, excess correlations are consistent with the data. (C) Pairwise output
correlation as a function of the distance between receptive field centers in the
natural movie (top) and spatio-temporal exponential (bottom) datasets. Each
dataset contained responses of the same cell population to white noise (left) and to
a correlated stimulus (middle). The difference in output correlation in the
correlated stimulus over the white noise stimulus is also shown for each cell pair
(right). Each point corresponds to one simultaneously recorded cell pair; the blue
lines are the median correlation within bins chosen to contain 30 cells each. Solid
lines are median correlations for same-polarity cell pairs; dashed lines are for
opposite-polarity pairs.

of which were presented in experiments where we also obtained robust estimates of

white noise receptive fields. Here we again simulated responses of an LN model using

fixed receptive fields measured under white noise. For all stimuli, the model neu-

rons showed changes in correlation at least as large as those observed in recordings.

However, unlike the spatio-temporally correlated exponential and natural stimuli dis-

cussed above, the stimuli which had correlations in space only (spatial exponential

and multiscale) or no correlations (scrambled natural movie) produced similar excess

correlation values in recorded cells and in our non-adapting model. This suggests that

a fixed linear filter, as in the non-adapting model, is largely sufficient to account for
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the effect of spatial stimulus correlations on output correlations, whereas higher-order

processing is necessary to suppress the impact of temporal stimulus correlations.

As discussed above, we were able to identify the cell types for many of our recorded

neurons. In response to spatio-temporal exponentially correlated noise and natural

movies, cell type had a modest effect on output correlations (Fig. 2.3A and 2.3B).

Cells with opposite ON- or OFF- polarities (gray points) tended to have negative

correlations, whereas cells of the same polarity (black and colored points) generally

had positive correlations. Moreover, pairs with opposite polarity showed a greater-

than-average excess correlation, particularly in response to natural movies. Under

natural movies, opposite-polarity pairs had an excess correlation of 1.5; under the

spatio-temporal exponential stimulus their excess correlation was 0.38. Within same-

type pairs, slow-ON and slow-OFF pairs (blue and yellow) tended to show a greater

excess correlation than fast-ON and fast-OFF pairs (red and green). Pairs of slow

cells had an excess correlation of 0.29 in the natural stimulus and 0.28 in the spatio-

temporal exponential, while fast pairs were measured as 0.01 and -0.02 for the two

stimuli, respectively. These type-dependent excess correlations are all small compared

to the overall non-adapting model predictions (excess correlations of 4.33 and 0.67 for

natural and spatio-temporal exponential stimuli). We also assessed the relationship

between receptive field separation and output correlation (Fig. 2.4C). Pairwise corre-

lations tended to decay with distance, but the change in output correlation between

the correlated and white stimulus was small for all receptive field separations.

2.3.3 Adaptation of temporal filters

We next sought to determine whether receptive fields adapt to stimulus correlations

and whether this adaptation can explain the observed pattern of output correlations.
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As noted above, we were able to obtain STAs from responses to white noise. STAs

computed in response to correlated stimuli, however, will be artificially blurred by the

stimulus correlations. To obtain a better estimate of the spatio-temporal receptive

field (STRF), we used maximum likelihood estimation to fit an LN model separately

for the white and exponentially correlated stimuli (Theunissen et al., 2001). Examples

of STRFs obtained in this way for one cell are shown in Figure 2.2C. The strongly

correlated structure of the multiscale stimulus and the natural movies precluded ro-

bust, unbiased STRF estimation with limited data (see Methods). For this reason, we

restricted any STRF computations to white noise and exponentially correlated noise.

The latter stimulus is only weakly correlated and thus we would expect at most weak

changes in the receptive fields between the conditions; indeed, receptive fields are

hard to distinguish by eye for many cells. Measuring such weak changes requires

high-quality receptive fields whose locations can be unambiguously determined, as

was the case for 75 neurons (∼60% of the neurons recorded under exponentially cor-

related conditions). Cells that did not meet this standard were likely to include types

that do not respond as well to checkerboard stimuli, e.g., direction selective ganglion

cells and uniformity detectors. We included such cells in the analysis of Figure 2.3C

in order to maximize the generality of our results and to allow for the possibility that

these neurons had qualitatively different output correlations. For the neurons that

did pass the quality threshold, we found that the parameters of the LN model (for

each neuron, a linear filter and a nonlinearity gain and threshold) changed with the

stimulus.

Spike trains with sparse, transient firing events tend to be more decorrelated

(Pitkow and Meister, 2012). Motivated by this finding, together with our observation

that spatio-temporally correlated stimuli yielded high excess correlation in the non-

adapting model, we analyzed adaptation in the temporal filtering properties of retinal
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Figure 2.5: Adaptation of the linear temporal filter. (A) Temporal filters
are faster under exponentially correlated noise (C) than white noise (W). (B) Power
spectrum of correlated noise input (C, black dashed line) has more low frequency
power than white noise (W, gray dashed line). The power spectrum of the temporal
filter for correlated noise (C, black solid line) has more high frequency power than
the filter for white noise (W, gray solid line). (C) Power spectra of filter outputs:
White-noise filter acting on white stimulus (solid gray); White-noise filter acting on
correlated stimulus (dashed); Adapting correlated-noise filter acting on correlated
stimulus (solid black). In adapted cases, output power spectra are similar between
stimuli — i.e., temporal kernels compensate to maintain invariant output
autocorrelation. (D) The difference in normalized filter power spectra between the
correlated and white stimuli, for spatio-temporal (top) and spatial (bottom)
exponential experiments. The power spectra of all filters in each stimulus were
normalized by removing the DC component and dividing by the sum of squared
amplitudes. The population change in temporal filters shows a consistent increase in
high-frequency power relative to low-frequency power for the spatio-temporal, but
not the spatial, stimulus. (E) Total power above 5 Hz divided by total power below
5 Hz for filters computed in response to correlated vs. white noise stimuli shows a
shift towards high-pass signaling across the population. (F) Same analysis as in E
applied to the filter output as in C. Points near the diagonal indicate near-complete
compensation for stimulus changes; points below the diagonal indicate incomplete
compensation.

ganglion cells. To isolate changes in temporal processing, we examined each neuron’s

STRFs (estimated separately under the white and exponentially correlated stimulus

conditions) and extracted the temporal components (see Methods). These temporal

profiles were faster for the correlated stimulus than for white noise (Fig. 2.5A). To

quantify this difference, we computed the power spectrum of each neuron’s temporal

filter under each stimulus (Fig. 2.5B and 2.5D, top) and found a systematic increase

in high frequencies under the correlated stimulus, indicating a shift toward high-

pass filtering (Fig. 2.5E). As the correlated stimulus had relatively more power at

low frequencies compared to the white stimulus (Fig. 2.5B), this form of adaptation

compensates for differences in the power spectrum and, hence, tends to equalize

output auto-correlations. In contrast, a non-adapting model with a filter estimated

31



from white noise acting on the correlated stimulus predicts large changes in the output

power spectrum (Fig. 2.5C). Indeed, this compensation was nearly exact for many

cells (Fig. 2.5C), though generally incomplete over the full population (Fig. 2.5F).

Next, we found separate temporal profiles for the center and surround and com-

puted the latency, measured as time to peak, of each. Surround latencies did not

differ between white noise and spatio-temporally exponentially correlated noise (t-

test, p = .7, N = 75). However, center latencies l were shorter for correlated noise.

We quantified the shift in terms of an adaptation index (lcorr − lwhite)/(lcorr + lwhite).

The histogram of the adaptation index (Fig. 2.6A; mean = −0.03, std = 0.03; t-test

p < 10−12, N = 75; Wilcoxon signed rank text p < 10−10) showed a robust tail toward

shorter center latency for correlated stimuli (skewness = −0.53). Moreover, almost

every cell from which we obtained receptive fields had a longer latency for white noise

than for correlated noise (Fig. 2.6B; mean change = 6.1 ms). This was true across

cell types.

To determine whether these changes in temporal filtering were due to the pres-

ence of temporal correlations in this particular stimulus (unlike many of the other

stimuli we examined), we also measured receptive fields from a separate population of

ganglion cells responding to white noise and to a stimulus that was exponentially cor-

related in space but not in time. In this case, filters did not show a systematic change

in power spectra (Fig. 2.5D, bottom), but the center latencies were still shorter for

the correlated stimulus (Fig. 2.6B; mean change = 7.2 ms). Again, computing adap-

tation indices indicated that this effect was significant (mean = −0.04, std = 0.03;

t-test p < 10−10, N = 37; Wilcoxon signed rank test p < 10−7). Thus, spatial cor-

relations in the stimulus affect the temporal filtering properties of neurons, albeit

to a lesser degree than spatio-temporal correlations. These results, combined with

those of Pitkow and Meister (2012), may indicate that the observed consistency of
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correlations is produced in part by an increase in response transience when stimulus

correlations increase.

2.3.4 Adaptation of spatial receptive fields

The conventional view of retinal circuitry suggests that adaptive decorrelation arises

from stronger or wider surround inhibition induced by viewing correlated stimuli. We

thus computed the amplitudes of the surround and center components of each neu-

ron’s STRFs in both white noise and spatio-temporal exponentially correlated noise.

Defining the relative surround strength, k, as the ratio of surround amplitude to cen-

ter amplitude (details in Methods), we computed an adaptation index for each cell as

(kcorr − kwhite)/(kcorr + kwhite). This adaptation index has a modestly positive mean

(Fig. 2.6D; mean = 0.075, std = 0.24; two-tailed t-test, p = 0.008, N = 75; Wilcoxon

signed rank test p = .008), as do the changes in surround strength themselves (Fig.

2.6E). In addition, the cells with the greatest degree of surround adaptation had

a robust tendency to increase in surround strength (skewness = 0.15). There was

no discernible dependence on cell type. Interestingly, the surround strength showed

only a marginally significant change when spatial correlations (but not temporal cor-

relations) were added to white noise (Fig. 2.6F; mean adaptation index = −0.087,

std = 0.26; two-tailed t-test, p = 0.05, N = 37; Wilcoxon signed rank test p = .02).

Thus, while we do find some evidence for an increase in surround strength with stim-

ulus correlation, the effect is subtle. This outcome is surprising given the prevailing

view since the work of Barlow (Barlow, 1961; Srinivasan et al., 1982) that surround

inhibition is primarily responsible for decorrelation of visual stimuli. However, it is

possible that the exponential stimulus that permitted us to estimate receptive fields

is too weakly correlated to evoke strong lateral inhibition.
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Figure 2.6: Adaptation of the spatio-temporal receptive field and gain.
(A) Center latency l (time to peak of the temporal kernel) is shorter for
spatio-temporal exponentially correlated noise. Histogram shows adaptation indices
(lcorr − lwhite)/(lcorr + lwhite) for center latency. (B, C) Changes in center latency
lcorr − lwhite for spatio-temporally correlated (B) and temporally correlated (C)
stimuli, in milliseconds. Almost all cells have a decreased time to peak when
responding to a correlated stimulus. (D) Adaptation indices
(kcorr − kwhite)/(kcorr + kwhite) for relative surround strength k (surround/center
ratio) show a slight skew toward a stronger surround for spatio-temporally
correlated noise. (E, F) Difference in surround strength kcorr − kwhite for the
spatio-temporal (E) and spatial (F) exponential stimuli. (G) Gain adaptation.
Gains were defined as the slope of the LN model nonlinearity and were obtained
separately for the response to white noise and to the spatio-temporally correlated
exponential stimulus. Effective contrast σ, the standard deviation of the linear filter
output, was similarly measured in both stimuli. The difference in gain gcorr − gwhite
is plotted against the difference in effective contrast σcorr − σwhite. Increases in
effective contrast tend to invoke compensating decreases in gain. N = 75 cells.

2.3.5 Adaptation of nonlinearity gain

We also examined the gain g of each neuron, defined as the maximum slope of the

logistic nonlinearity fit to each neuron’s response (see Methods). Since the gain enters

the nonlinearity after the stimulus passes through the linear filter, we normalized

the filter to unit euclidean norm in order to obtain an unambiguous definition of

g. We found that the gains of individual neurons changed when the stimulus was

more correlated, but there was not a systematic change between stimuli. Recall

that the gain of many sensory neurons, including retinal ganglion cells, is known to

change with the contrast of the stimulus (Smirnakis et al., 1997; Baccus and Meister,

2002). To test for a possibly related mechanism at work in our data, we first defined

“effective contrast,” σwhite and σcorr, as the standard deviation of the normalized linear

filter output in each stimulus, respectively. This notion of effective contrast roughly

captures the variability of the ganglion cells’ input, taking presynaptic processing

into account. Any nonlinear gain control mechanism in the ganglion cell layer should
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therefore be sensitive to this quantity. For some cells σcorr exceeded σwhite, while

for others the reverse was true. Measuring the gains in both stimulus conditions

(gwhite and gcorr), however, we found systematic adaptation opposing the change in

effective contrast: gain tended to increase when effective contrast decreased and vice-

versa. Specifically, the quantities ∆g = gcorr − gwhite and ∆σ = σcorr − σwhite were

significantly anticorrelated (Fig. 2.6G; Spearman’s ρ = −0.54, p = 10−6, N = 75).

2.3.6 Output correlations in an adapting model

Finally, we assessed whether the receptive field changes reported above could account

for the observed similarity of output correlations between white noise and the spatio-

temporal exponential stimulus. For experiments using these two stimuli, we measured

the adaptation in LN model parameters fit to each stimulus as discussed above. We

then separately examined the effect of adaptation in different parameters on the

excess correlations predicted by the LN models. Including adaptation of the linear

filters, but not the gain, produced a significantly improved match between the model

and the data (Fig. 2.4B, “filter adaptation model”). Additionally allowing the gain

to adapt produced output correlations consistent with the data (Fig. 2.4B, “filter

+ gain adaptation model”). The contribution of gain adaptation to decorrelation is

interesting in light of our observation that output correlations are lower for stimuli

with lower contrast (Fig. 2.3C). Low contrast stimuli generally evoke lower firing

rates, which could result in decreased pairwise correlations absent any change in

linear filtering properties. (See Methods for a derivation of this result.) At the

same time, changes in contrast lead to gain control, wherein gain is higher for lower

stimulus contrast. This gain adaptation could also affect output correlations, as in

Figure 2.4B. It would be interesting to know how gain control interacts with changes

36



in other properties, such as the nonlinearity threshold and the shape of the linear

filter, to set the correlations in the retinal response.

Note that the LN model is fit to each neuron independently, without taking corre-

lations between neurons into account. Its successful prediction of the change in pair-

wise correlations, without explicit introduction of inter-neural interactions, is there-

fore noteworthy. We conclude that observed adaptation in receptive fields and gains

is adequate to explain the output correlations in responses to a spatio-temporally

correlated stimulus.

2.4 Discussion

Our principal finding is that the retina maintains a moderate, and relatively con-

stant, level of output correlation across a wide range of spatio-temporally correlated

stimuli ranging from white noise to natural movies. Our data also suggest a differ-

ential effect of spatial vs. temporal correlations on the functional properties of the

retinal output. We focused here on spatial variations in our control stimuli, but it

would interesting to design future studies to explore the space-time differences more

systematically. In response to exponentially correlated noise, where the receptive

fields could be estimated, we showed that the relative invariance of output correla-

tions is largely accounted for by the observed changes in the linear receptive field

(faster temporal kernels and slightly stronger surround inhibition for more correlated

stimuli) and by changes in the nonlinear gain (anti-correlated to changes in effective

contrast). While the latter findings give an interpretation of the results in terms of a

conventional functional model (here a linear-nonlinear cascade), the measurement of

output correlations is model-independent.

Classifying cells into types revealed a slight dependence of excess correlation on
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cell type: most robustly, opposite polarity ON-OFF pairs showed the greatest in-

crease in correlation magnitude when stimulus correlation increased. Indeed, if the

retinal output is split across parallel functional channels, redundancy is likely to be

highest within a channel due to shared circuit inputs. It may thus be advantageous,

from an information encoding perspective, for decorrelation to act within a channel,

with residual correlations across types signaling relevant relationships between the

information in different channels for use by downstream areas.

Pitkow and Meister (2012) showed that the retina partly decorrelates naturalistic

inputs but that the response to white noise is more correlated than the input, in part

due to receptive field overlap between ganglion cells. Consistent with their results, we

found that changes in output correlations were often smaller than changes in input

correlations. We also extended their findings by showing that this partial decorrela-

tion occurs in individual pairs of neurons. Pitkow and Meister (2012) suggested that

the linear receptive field measured from white noise was insufficient to explain the

amount of decorrelation seen for naturalistic stimuli and the bulk of the decorrelation

was attributed to changes in the threshold of a functional model of ganglion cells.

However, the authors did not directly measure the (possibly different) receptive fields

of ganglion cells responding to correlated stimuli, nor did they follow particular cell

pairs across different stimuli. Our measurements suggest that the nonlinear process-

ing proposed in Pitkow and Meister (2012) can be described in terms of adaptation

of the linear receptive field and nonlinear gain with the net effect that output cor-

relations are roughly constant for each cell pair across a range of correlated stimuli,

as was observed in visual cortex by Fiser et al. (2004). Our results also recall those

of Lesica et al. (2007), David et al. (2004), Sharpee et al. (2006), and Touryan et al.

(2005), who showed that receptive fields in LGN and primary visual cortex differ in

structure when probed with natural movies versus random stimuli.
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We also found that the gain of retinal ganglion cells responding to correlated stim-

uli changes with “effective contrast” σwhite and σcorr, i.e. with the standard deviation

of the input to the nonlinearity in a linear-nonlinear model of ganglion cells. In classi-

cal contrast gain control, firing rates and response kinetics adapt to temporal contrast

and to the spatial scale of stimuli (Smirnakis et al., 1997; Baccus and Meister, 2002).

As increased stimulus correlation may produce a qualitatively similar input to the

inner plexiform layer as increased contrast, some of the cellular mechanisms underly-

ing contrast adaptation might also contribute to the phenomena we have uncovered.

This provides an avenue for future study of the functional mechanisms underlying

adaptation to correlations.

We have focused in the present work on the failure of a non-adapting linear-

nonlinear model to capture the small scale of observed excess correlations and have

seen that adaptation in the linear filter might remedy this discrepancy. Alternatively,

shared circuitry in the population of neurons may be engaged by correlated inputs

and require explicit inclusion in any functional model of retinal responses to different

classes of correlated stimuli (Ganmor et al., 2011; Pillow et al., 2008). Such shared

circuitry leads to noise in one neuron being passed to multiple nearby neurons and is

thus measured by “noise correlations.” While addition of fixed, stimulus-independent

noise correlation would not greatly change our results, a change in noise correlation

with stimulus would provide a different candidate mechanism to account for our data

(Granot-Atedgi et al., 2013). This is another avenue for future work.

We have focused here on the effects of spatial correlations in an experimental

design where we could compare receptive fields computed from responses to two dif-

ferent stimuli. Thus, we used relatively weak exponential correlations to ensure that

we were not measuring artifacts of the stimulus correlations themselves. Recovering

receptive fields from strongly correlated stimuli can require long recording times; be-
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cause our experimental design involved comparisons between several different stimuli,

we were only able to recover receptive fields for moderately correlated stimuli. Future

work could simply present each stimulus for a longer duration to assess receptive field

changes at a population level rather than analyzing multiple stimuli in one experi-

ment. Further work could also include parallel studies with stimuli including temporal

correlations only to complement our findings on responses to spatial correlations.

Finally, it would be interesting to determine the timecourse of the adaptations

observed here. Knowing whether a change in stimulus correlations induces changes

in receptive fields and output correlations within seconds, tens of seconds, or longer

would help to clarify the relationship between processing of correlations and adapta-

tion to other stimulus features such as contrast. Again, the design of our experiments

precluded making these measurements – we focused on long segments to measure

steady-state processing of correlations, whereas assessing the timecourse of changes

requires finer and more systematic sampling of transitions between stimuli.

Why would the retina need to adapt, in the behaving animal, to variations in

spatial correlations? While natural scenes are scale-invariant on average, the specific

correlations do vary depending on the scene and the viewing distance (see Fig. 2.1A).

Barlow originally suggested that sensory systems should decorrelate their inputs to

make efficient use of limited neural bandwidth (Barlow, 1961). Consistent with this

idea, we found that retina removes redundancies, in spatio-temporally correlated

stimuli, but also that the retinal output is not completely decorrelated. Rather, the

output correlations are reduced to an approximately fixed level, roughly matching

correlations in responses to white noise checkerboards. What drives this tradeoff?

Recall that redundancy can be useful to protect against noise, to facilitate down-

stream computations, or to enable separate modulation of information being routed

to distinct cortical targets. Thus, it may be that a certain degree of output correlation
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between retinal ganglion cells represents a good balance of the benefits of decorre-

lation with the benefits of redundancy (Tkačik et al., 2010). Sensory outputs with

varying amounts of correlation may also be decoded differently by cortex (Estebanez

et al., 2012), in which case maintaining a fixed visual code might require that retinal

output correlations are within the range expected by downstream visual areas. In

these interpretations, it makes sense that the retina adapts to maintain correlation

within a narrow range across stimulus conditions, as we have found.

2.5 Methods

Ethics statement. All procedures were in keeping with the guidelines of the Uni-

versity of Pennsylvania, the NIH, and the AVMA.

Neural recording. We recorded retinal ganglion cells from Hartley guinea pig

using a 30-electrode array (30 µm spacing, Multi Channel Systems MCS GmbH,

Reutlingen, Germany). After anesthesia with ketamine/xylazine (100/20 mg/kg) and

pentobarbital (100 mg/kg), the eye was enucleated and the animal was euthanized

by pentobarbital overdose. The eye was hemisected and dark adapted. The retina

was separated from the pigment epithelium, mounted on filter paper, and placed onto

the electrode array, ganglion cells closest to the electrodes. Extracellular signals were

recorded at 10 kHz. Spike times were extracted with the spike-sorting algorithm

described in Appendix A; briefly, a subset of data was manually clustered to generate

spike templates that were then fit to the remaining data using a Bayesian goodness-

of-fit criterion.

Stimulus generation. We displayed checkerboard stimuli (see Fig. 2.1B) at 30 Hz

on a Lucivid monitor (MicroBrightField, Inc., Colchester, VT) and projected the im-
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age onto the retina. The mean luminance on the retina was 9000 photons/s · µm2 (low

photopic) for most stimuli; each check occupied an area between 50 µm x 67 µm and

100 µm x 133 µm. To make white noise and exponentially correlated stimuli, we first

produced random checkerboards with intensities drawn from a Gaussian distribution.

Spatio-temporally correlated stimuli were produced by filtering the Gaussian stimulus

with an exponential filter with a time constant of three stimulus frames (99 ms) and

a space constant of one check to match the scale of typical receptive fields. Stimuli

with only spatial exponential correlations were constructed similarly, but with a time

constant set to zero. To create the multiscale stimulus, we first generated gaussian

white noise checkerboards at several power-of-two scales. The largest scale consisted

of a single check filling the entire stimulus field, the next largest was a 2 x 2 checker-

board (with check size equal to half the stimulus field), the third largest was a 4 x 4

checkerboard (check size one quarter of the stimulus field), and so on. The checker-

boards at all scales were then summed and thresholded to obtain a binary stimulus

qualitatively mimicking the scale-invariant structure of spatial correlations in natural

scenes (Fig. 2.1B). This stimulus did not contain temporal correlations.

Natural movies of leaves and grasses blowing in the wind were collected with

a Prosilica GE 1050 high-speed digital camera with a 1/2” sensor (Allied Vision

Technologies GmbH, Stadtroda, Germany) connected to a laptop running StreamPix

software (NorPix Inc., Montreal, Canada) to grab frames at 60 fps. The camera

resolution was set to 512 x 512 pixels, and movies were filmed from a fixed tripod

about 5 feet from the trees and grass. Natural light was used to illuminate our outdoor

scenes, and exposure time was set (300 − 3000 µs) to capture variation in shadows

and avoid saturation of our 8-bit luminance depth. Videos were collected for up to

30 minutes; 10 second to 5 minute segments with continuous motion were selected.

Videos were downsampled to match the resolution and frame rate of our stimulus
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monitor and normalized to have a mean luminance of 2800 photons/s · µm2 with a

standard deviation of 1700 photons/s · µm2 (overall contrast of 48%). To produce

a scrambled control for natural movies, pixels were randomly shuffled in space and

time to remove all correlations. All stimuli other than natural movies (intact and

scrambled) were thresholded at the median to fix the mean luminance and single-

pixel variance and to maximize contrast. This binarization did not affect the power

spectra significantly. For low-contrast stimuli, all deviations from the mean luminance

were halved to give an overall contrast of 50%. Typically, we alternated 10-minute

blocks of white noise with 10-minute blocks of a correlated stimulus.

Cell typing. We used reverse correlation to compute the spike-triggered average

(STA) for each cell responding to white noise. We performed principal component

analysis (PCA) on the best-fitting temporal kernels and split cells into two clusters

based on the sign of the first component; the clusters were identified as ON and OFF

types based on the sign of their temporal kernels. (Our under-sampling of OFF cells,

relative to the findings of Borghuis et al., 2008, and Ratliff et al., 2010, may be due

to electrode bias, as individual OFF cells are smaller and therefore less likely to be

detected by our electrode array.) PCA was repeated for the ON and OFF groups

separately. We manually identified clusters based on the projections onto the first

three principal components; in this way we identified four functional types, including

slow-OFF, fast-OFF, fast-ON, and slow-ON (see Fig. 2.2B).

Maximum likelihood estimation of linear-nonlinear models. In order to ob-

tain spatio-temporal receptive fields (STRFs) for both white and exponentially cor-

related stimuli, we used publicly available code (strflab.berkeley.edu; Theunissen et

al., 2001) to carry out maximum likelihood estimation. We parameterized the model
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by a linear filter acting on the stimulus and a logistic nonlinearity, so that firing prob-

ability is p(s) = 1/(1 + exp(−g ∗ (s− b))), where s represents the linear filter output,

and g and b are gain and offset parameters. Gradient ascent with early stopping

was used to compute a maximum likelihood estimate of the linear filter that best

fit the data. We initialized the algorithm for each neuron using the spike-triggered

average recorded in response to white noise so that any incomplete fitting would bias

our results towards a null effect. Many cells do not yield clear receptive fields when

probed with white noise, either because this stimulus does not evoke a sufficiently

strong response or because the response is not well modeled as a single linear filter.

To avoid potential artifacts that could arise from including such cells in our receptive

field and model analyses, we selected cells whose receptive fields had clearly visible

centers. This classification of receptive fields as high-quality was done before any

other data analysis in order to avoid biasing the selection. In datasets where we ob-

tained receptive fields for both white noise and a correlated stimulus the designations

of high-quality agreed between the two stimuli for 98% of cells. The subset of cells

identified in this way also had center locations that were clearly delineated by our

automated receptive field analysis, giving confirmation of our visual threshold.

The STRF baseline was poorly constrained by the maximum likelihood procedure,

since an additive change in the STRF has a similar effect to a proportional shift in

the offset parameter of the nonlinearity. We therefore normalized the STRFs by

subtracting an estimate of the baseline: we allowed the fit to include components

extending 100 ms after the spike — where the true filter must be zero by causality

— and subtracted the mean of these frames. Inclusion of these post-spike frames

also allowed us to verify that the temporal autocorrelations in our stimuli did not

produce any acausal artifacts in the recovered STRFs. We normalized the estimated

linear filters to have unit Euclidean norm (square root of the sum of squares of
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filter values) and then used gradient ascent to separately fit the gain and offset of a

logistic nonlinearity. Since the likelihood function in this case is convex, there was

no possibility of local maxima. While we were able to compute unbiased estimates

of STRFs from responses to stimuli with exponential correlations, our multiscale and

natural movie stimuli were too correlated to estimate unbiased receptive fields with

the number of spikes we were able to obtain in a single recording.

Correlation analysis. Correlations were measured as the correlation coefficient

between pairs of simultaneously recorded neurons. Spike trains were divided into 33

ms bins; we assigned a bin a 1 if it had one or more spikes and a zero otherwise. The

results reported above did not change if we used spike counts in each bin rather than

binarizing. Indeed, 98% of timebins had one or fewer spikes and less than 0.05% had

more than three spikes. In addition, using more finely grained binning did not change

our results (Fig. 2.7B) We summarized the results by finding the best fit line of the

form ρcorr = (1+δ)ρwhite, where ρwhite and ρcorr are the pairwise correlations under the

white and correlated stimuli, respectively. We refer to δ as the excess correlation; we

estimated δ by the total least squares regression method and computed 95% bootstrap

confidence intervals from 50,000 bootstrap resamples of the set of ganglion cell pairs.

Such instantaneous correlations are thought to combine slow stimulus-driven ef-

fects with fast intrinsic effects due to shared noise (Greschner et al., 2011). To verify

that this did not affect our results, we isolated the stimulus-driven component, by

noting that our cross-correlation functions can feature a short-timescale peak riding

on a slow component and extracting the latter. Specifically, we binned the spike

trains into 1 ms bins and computed cross-covariance functions between pairs. To

isolate the stimulus-induced component, we smoothed the cross-covariance functions

by fitting a cubic B-spline curve with knots spaced at 20 ms to suppress the fast noise
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Figure 2.7: Correlation measurement controls. (A) As a control on the
quality of the non-adapting LN model, we examined the difference between its
predicted pairwise correlations under the white noise stimulus (the stimulus to
which the model was fit) and the observed correlations. Since the model is a
single-neuron model that does not attempt to capture pairwise correlations, we do
not expect it to reproduce these correlations perfectly. Nevertheless, many cell pairs
are well-predicted, indicating that their correlation is largely due to receptive field
overlap. There is, however, a slight tendency for the model to underestimate
correlations: this is likely due to its neglect of noise correlations. We note that such
a bias will not effect the model’s predicted excess correlation, unless it is very
different in the two stimulus conditions. But such an effect would represent a form
of non-trivial processing in its own right. (B) Our correlation measurements were
based on binned spike trains. We measured excess correlation, in the
spatio-temporal exponential dataset, for a variety of bin sizes. Its value is largely
independent of bin size. Error bars represent 95% bootstrap confidence intervals.
All correlations reported in the main text were estimated from spike trains binned
at 33 ms.
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component. We then found the shift, within a 200 ms window, which maximized the

absolute value of the smoothed cross-covariance and estimated the correlation coeffi-

cient as the cross-covariance at this shift normalized by the product of the standard

deviations. This gave excess correlation values consistent with those reported above

(not shown).

To put the observed correlations in context, we also measured the correlations in

the output of model neurons. For each each recorded neuron form which we obtained

a robust STRF estimate, we produced unadapted model responses by passing each

stimulus through the STRF derived from white noise and a nonlinearity function

where the gain was estimated from white noise and the offset from the corresponding

stimulus. That is, for a correlated stimulus, we chose the offset to match each cell’s

firing rate in response to the correlated stimulus. We did this so that our simulations

would represent the correlation we would expect given overall stimulus-dependent

activity levels. For some stimuli, we also produced adapted model neurons in which

the STRF and/or gain used to simulate correlated stimulus responses were estimated

from recorded responses to the correlated stimulus. As shown in Figure 2.7A, the

correlations in our model population were within the physiological range of true retinal

output.

We also computed the power spectra of the stimuli, the best-fitting temporal

kernels, and the filter outputs (i.e. stimulus power spectra multiplied by filter power

spectra). We summarized each power spectrum by computing the total power above

5 Hz divided by the total power below 5 Hz.

Measures of receptive field characteristics. Given a STRF estimated for one

cell under one of the stimulus conditions, we first performed principal component

analysis on the timecourses of the individual pixels. From the resulting set of “princi-
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pal timecourses” we selected the one most similar to the timecourse of the pixel that

achieves the peak value in the full STRF. The complete linear filter was collapsed into

a single frame by finding the projection of each pixel onto this principal timecourse.

This procedure is equivalent to finding the best (least squares) spatio-temporally sep-

arable approximation to the STRF: K(x, t) = k(x)w(t), where k(x) and w(t) are

the spatial and temporal components of the approximation. From the single frame

k(x), we extracted the center and surround regions. To find the center, we began

with the peak pixel and then recursively expanded the region in a contiguous patch

to include any pixels whose timecourses had at least a 50% correlation with already

included pixels. We ended the recursive process after the first pass in which no pixels

were added to the center. At this point, all pixels not included in the center were

considered part of the surround for the purpose of assessing the surround strength.

Taking the center defined in this way as a mask for the full STRFs, we summed

all pixel values within the center at each time point to generate a temporal profile for

the central receptive field. To obtain temporal kernels with greater precision than the

30 Hz time scale of our STRFs, we used cubic spline interpolation with knots spaced

every 33 ms. From the interpolated timecourses, we measured the time to peak under

each stimulus for the center. The peak value of the temporal profile was taken to be

the center weight of the receptive field. Similar computations yielded the surround

time to peak and surround weight. We then quantified the relative surround strength

as the ratio of surround weight to center weight.

In addition, we measured the gain g of each neuron under each stimulus con-

dition. To test for contrast gain control, we defined “effective contrast,” σ, as the

standard deviation of the linear filter output. To avoid ambiguity between linear filter

amplitude and gain, we normalized each STRF to have unit Euclidean norm before

computing the gain and the effective contrast.
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Model validation of receptive field analysis. To validate our STRF analysis

methods, we generated synthetic data using a linear-nonlinear (LN) model. We then

applied STRF extraction and analysis methods identical to those applied to real data

to check that the known LN parameters were extracted in an unbiased fashion. The

linear filter was chosen to be spatio-temporally separable, with the temporal com-

ponent taken from measured ganglion cell responses. The spatial filter was modeled

as a difference-of-Gaussians, where the size and strength of the surround Gaussian

relative to the center Gaussian were chosen to mimic receptive fields of real neurons.

We ran five separate simulations, each of which included 100 model neurons whose

parameters were chosen independently. The results are summarized in Table 2.2.

In our first simulation, the surround radius (relative to center radius) was chosen

from a Gaussian distribution with mean 2 and standard deviation 0.3, the relative

surround strength from a Gaussian distribution with mean 1 and standard deviation

0.1, and the offset coordinates from Gaussian distributions with mean 0 and standard

deviation 2 (“Standard model” in Table 2.2). For each model neuron, the same

filter was applied to the exponentially correlated and uncorrelated stimuli in order to

simulate cases without adaptation. Across the population, our model neurons showed

only a slight bias in center latency between the two stimuli (Fig. 2.8A). While this

effect reaches significance (for α = .05), the effect size is orders of magnitude smaller

than that seen in the data and thus could not explain our experimental results. We

also observed a tendency toward a slightly stronger relative surround strength under

white noise than under correlated noise (Fig. 2.8B). Note that this is opposite the

effect observed in our experimental results (Fig. 2.6D–F). Thus, if anything our

results may be stronger than reported in the main text.

To further validate our analysis we ran simulations with an even wider range of

model parameters. We first constructed model neurons with surround radii measured
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from Gaussian distributions with means of 1 (“Small surround radius” in Table 2.2)

or 3 (“Large surround radius”), both with standard deviation 0.3, and all other pa-

rameters the same as in our original simulation. In separate simulations, we kept the

mean surround radius at 2 but chose the relative surround strength from a Gaussian

distribution with mean 0.5 (“Small surround weight”) or 2 (“Large surround weight”),

both with standard deviation 0.1. As with our original set of parameters, the models

recovered from STRF analysis had at most slight biases toward weaker surrounds and

shorter center times to peak under correlated noise.

Tests of robustness. We used the analysis method described above because it gave

the most robustly unbiased results in our simulations, but we also wanted to verify

that our results did not change dramatically with slightly different methods. To this

end, we made a series of modifications to our receptive field extraction method and

repeated the analyses described above for each modification.

In our experiments, we alternated white noise and correlated stimuli. The retina is

known to adapt to a variety of stimulus features on timescales ranging from hundreds

of milliseconds to a few seconds. Thus, it is possible that estimating receptive fields

using the entire trials confounds different states of adaptation. To control for this

possibility, we repeated our analyses leaving out the first 10 seconds of each trial and

found that the results did not change.

In addition, we varied the details of the analysis method, as summarized in Table

2.3. We first considered the possibility that we were including too many pixels in

the surround. To address this, we repeated our analysis but placed a threshold

criterion on the surround so that only pixels positively correlated with the peak

surround pixel were included. Including only these pixels, center latency was still

shorter for correlated noise than for white noise (Fig. 2.8C; “Surround threshold”

51



Figure 2.8
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Figure 2.8: Receptive field results are validated with model neurons and
are robust to analysis method changes. (A) Center time to peak for a
population of non-adapting model neurons, plotted as in Figure 2.6A. Receptive
fields were constructed as a difference of Gaussians. Surround radii (relative to
center radii) had a mean of 2 and a standard deviation of 0.3. Surround weights
(relative to center weights) had a mean of 1 and a standard deviation of 0.1. The
model neurons do not show a large difference between stimuli in center time to peak.
(B) Model neurons described in A show a slight bias toward smaller recovered
relative surround strength under correlated noise compared to white noise. (C)
Center time to peak is longer for white noise than for correlated noise when the
surround only includes non-center pixels whose time courses are positively correlated
with the time course of the peak negative pixel. (D) Relative surround strengths is
marginally higher for correlated noise than for white noise under the same analysis
as in C. (E) Center time to peak is longer for white noise than for correlated noise
when the center is not required to form a single contiguous component. The figure
omits a few outliers that lie outside the range of the horizontal axis and have longer
time courses under correlated noise. (F) Relative surround strengths is marginally
higher for correlated noise than for white noise under the same analysis as in E.

in Table 2.3), while the increase in surround strength became more robust than in

the original analysis (Fig. 2.8D). We then tested whether requiring the center to be

contiguous was too stringent. Removing this criterion did not change our overall

results, although the center time to peak statistics are skewed by a few outliers (Fig.

2.8E, F; “Disconnected center”).

When we computed STRFs, we included three frames after every spike so that we

could measure any baseline offset in the estimated STRFs. We generally subtracted

the mean of these three frames from each STRF, but skipping this step did not affect

our results (“No mean subtraction”). As an additional check, we collapsed the full

STRF into a single frame by projecting onto the first principal timecourse rather than

the principal timecourse most similar to the peak pixel. Making this change does not

affect our results (“First principal component”). (We obtained similar results when

we chose the principal timecourse corresponding to the peak surround pixel rather
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than the peak center pixel.)

To investigate whether the changes we measured in receptive fields came from

a change in the size or location of the receptive field center and surround or from

a change in the receptive field strength at individual points in space, we repeated

our standard analysis with the same masks for both stimuli. That is, for each cell

we first found the center region based on the STRF measured from white noise and

then computed the time courses of this region under each stimulus condition from

the full STRFs. The surround time courses were computed similarly (“Masks from

white noise”). We then did the reverse, finding the center and surround regions from

correlated noise STRFs and applying them to both stimuli (“Masks from correlated

noise”). In either case, the center latencies were still larger for white noise, indicating

that the time courses of individual pixels differ when stimulus correlations change.

On the other hand, the relative surround strength adaptation indices were centered

around zero when masks were kept fixed. Thus, any changes in surround strength

observed in our main analysis were likely due to a subset of pixels switching from

center to surround or vice versa.

Dependence of output correlation on gain and firing rate. In the main text

we found that gain adaptation contributes to decorrelation in a population of model

LN neurons. To gain further insight into why this should be the case, consider a pair

of simplified LN neurons with logistic nonlinearity,

Pi(spike|s) = 1/ (1 + exp (−gi (si − bi))) (2.1)

and small firing probabilities in each time bin. For neuron i, the gain of the model

is gi, the linear filter output is si, and bi is an offset that will be adjusted to fix the
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average firing rate. Assuming a small firing probability amounts to assuming that

gi(si − bi) � 0 with high probability. Thus, the exponential term in Pi(spike|s)

dominates, and the stimulus-dependent firing probability simplifies to Pi(spike|s) =

exp(gi(si − bi)). The average firing probability of one neuron is now

Pi = 〈exp(gi(si − bi))〉 , (2.2)

where the average is over the distribution of the filter output si, which can be approx-

imated by the central limit theorem as a zero-mean Gaussian. (A nonzero mean could

simply be absorbed into a redefinition of bi.) Using standard properties of Gaussian

integrals, the averaging gives

Pi = exp
[
1/2(giσi)

2 − gibi
]
, (2.3)

where σi is the standard deviation of si. Note that, by the low firing probability

assumption, P1 � 1 and P2 � 1.

The average probability of simultaneous firing of two neurons is then given by

P12 = 〈exp(g1(s1 − b1)) exp(g2(s2 − b2))〉 (2.4)

= 〈exp(g1s1 + g2s2 − g1b1 − g2b2)〉 . (2.5)

Assuming that the filter outputs are jointly Gaussian with correlation ρs, the variance

of g1s1 + g2s2 is (g1σ1)
2 + (g2σ2)

2 + 2(g1σ1)ρs(g2σ2) . The expectation can therefore
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be computed as

P12 = exp
[
1/2((g1σ1)

2 + (g2σ2)
2 + 2(g1σ1)ρs(g2σ2))− g1b1 − g2b2

]
(2.6)

= P1P2 exp [(g1σ1)ρs(g2σ2)] . (2.7)

The variance in firing of each neuron is Pi(1 − Pi), and the covariance between the

two is P12−P1P2. The correlation coefficient of the two spike trains is then given by

ρ =
P12 − P1P2√

P1(1− P1)P2(1− P2)
, (2.8)

which, using the above result for P12 and taking the limit of small Pi, simplifies to

ρ =
√
P1P2

(
e(g1σ1)ρs(g2σ2) − 1

)
. (2.9)

Thus there are three ways to reduce output correlations in this simple model: lower

the overall firing rates, decrease ρs by filter adaptation, or lower the rescaled gains

giσi.
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Chapter 3

Lateral inhibition maintains

differences in stimulus correlations

3.1 Abstract

We showed in Chapter 2 that changes in stimulus correlations do not produce equal

changes in output correlations. Here we ask how the retinal circuitry achieves this

relative invariance in correlation. We first examine outer retina processing and deter-

mine that feedback from horizontal cells enhances stimulus correlations. Moving to

inner retina, we find that feedforward GABAergic inhibition onto ganglion cells may

also enhance strong correlations in the input, while feedback inhibition onto bipolar

cells does not affect output correlations. These results show that, contrary to näıve

expectations, lateral inhibition in the retina does not necessarily act to decorrelate

visual signals.
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3.2 Introduction

Processing of visual stimuli by the retina, from photoreceptors to bipolar cells to

ganglion cells, is shaped by several mechanisms of lateral information flow. Here we

review the connections at each stage of processing.

3.2.1 Outer retina mechanisms

Visual processing begins in the outer plexiform layer, where photoreceptors convert

light into a chemical signal passed to bipolar cells. This signal transmission is shaped

by glutamate receptors on bipolar cells and by lateral connections, mainly via hori-

zontal cells.

Feedforward signaling to bipolar cells. In the dark, photoreceptors chronically

release glutamate from ribbon synapses. In response to a light stimulus, glutamate

release is decreased. Glutamate is detected differently by OFF and ON bipolar cells.

OFF bipolar cells have ionotropic glutamate receptors that produce membrane de-

polarization in the presence of glutamate. ON bipolar cells, on the other hand, have

the metabotropic glutamate receptor mGluR6. Activation of mGluR6 by glutamate

results in hyperpolarization of the bipolar cell. Thus, at light onset, photoreceptors

hyperpolarize and release less glutamate. As a result, OFF bipolar cells also hy-

perpolarize, while ON bipolar cells depolarize. The opposite pattern occurs at light

offset: photoreceptors depolarize, resulting in depolarization of OFF bipolars and

hyperpolarization of ON bipolars.

Photoreceptor coupling. The first lateral connections in the retina occur be-

tween photoreceptors. Mammalian cones are electrically coupled through gap junc-

tion channels, which allow current to flow directly between connected cells (DeVries
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et al., 2002). These gap junctions, formed by connexin-36 in cone pedicles (Lee et al.,

2003; Feigenspan et al., 2004), spread the signal in each cone to its neighbors. This

coupling can reduce acuity through blurring but also greatly increases signal strength

by diluting photoreceptor noise that is not shared between neighboring cones. Rods

are also coupled to each other and to cones to decrease noise and improve detection at

scotopic light levels (Bloomfield and Völgyi, 2009). Gap junctions between photore-

ceptors are modulated throughout the day, with greater electrical coupling at night

(Li et al., 2009). This cycle enables summing of weak signals at night while avoiding

saturation during the day.

Feedback inhibition onto photoreceptors. An important source of lateral in-

hibition in the retina is feedback from horizontal cells to photoreceptors. Horizontal

cell feedback has been shown to contribute to the surround measured in ganglion cells

(Davenport et al., 2008). When cones hyperpolarize in response to light, they release

less glutamate, leading to hyperpolarization of horizontal cells. Feedback from hor-

izontal cells then results in a shift in the activation curve of Ca2+ channels on cone

pedicles, so that the channels open (thus producing an inward, depolarizing current)

at more hyperpolarized membrane potentials. The exact mechanism of this feedback

has been the subject of much investigation (Kamermans and Fahrenfort, 2004). One

explanation, the ephaptic hypothesis, posits a dependence on the intricate nature of

synapses in the outer retina. In these invaginating synapses, small processes from

bipolar and horizontal cells are surrounded by the cone pedicle. Thus, the synap-

tic cleft is relatively small and isolated from other extracellular spaces. Under the

ephaptic hypothesis, hyperpolarization of horizontal cells leads to an inward current

through hemichannels on the horizontal cells. This current will in turn hyperpolarize

the intersynaptic space between the cone and horizontal cell. From the perspective of
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calcium channels on the cone membrane near the ribbon synapse, hyperpolarization

of the intersynaptic space appears the same as depolarization of the cone. As a result,

calcium channels are activated at more negative membrane voltages than they would

be otherwise. The resulting influx of calcium depolarizes the cone, thus opposing the

direct light-induced hyperpolarization. (Kamermans and Fahrenfort, 2004)

An opposing explanation, the pH hypothesis, again relies on hyperpolarization of

horizontal cells. In this view, hyperpolarization increases the driving force for an

influx of protons into horizontal cells, leading to alkalization of the synaptic cleft.

This change in pH then affects activation curves of Ca2+ channels in the cone mem-

brane so that calcium flows into cones at more hyperpolarized membrane potentials.

This mechanism, like the ephaptic mechanism, would lead to depolarization of cones

(Kamermans and Fahrenfort, 2004). Davenport et al. (2008) found that application

of pH buffers such as HEPES decreased feedback from horizontal cells to cones, giving

some support to the pH hypothesis. However, because changes in pH can also affect

the conductance of hemichannels, these results are still ambiguous (Fahrenfort et al.,

2009).

Horizontal cell coupling. Horizontal cells are coupled to each other by gap junc-

tions involving connexin-57 (Shelley et al., 2006). This coupling produces an extensive

syncytium that greatly increases the receptive field size of horizontal cells (Bloomfield

and Völgyi, 2009). As in photoreceptors, gap junctions between horizontal cells are

modulated by light level. In this case, prolonged exposure to dark or light conditions

reduces coupling; horizontal cells are connected most effectively at intermediate light

levels (Xin and Bloomfield, 1999).
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Feedforward inhibition onto bipolar cells. There is also some evidence for feed-

forward inhibition from horizontal cells to bipolar cells, although this connection has

not been studied as thoroughly as feedback inhibition to photoreceptors. Depolar-

ization of horizontal cells (as occurs after a light decrement) is known to depolarize

nearby ON bipolar cells and hyperpolarize nearby OFF bipolar cells (Toyoda and

Kujiraoka, 1982). While this effect could potentially be an indirect result of feedback

from horizontal cells to photoreceptors, roughly half of ON bipolar cells in salamander

retina appear to receive surround inhibition from horizontal cells even when gluta-

mate input is blocked (Fahey and Burkhardt, 2003). This phenomenon has not been

tested extensively in mammalian retina, however, and is dependent on background

light level (Thoreson and Mangel, 2012).

Feedforward input from horizontal cells to bipolar cells could be mediated by

GABA. Although horizontal cells do not contain the typical machinery for GABA

synthesis and release, they may be able to produce GABA from glutamate (Deniz

et al., 2011). ON and OFF bipolar cell dendrites express the same type of GABAA

receptors and at least one GABAC receptor subunit (Vardi and Sterling, 1994). The

same receptor could produce opposite effects in ON and OFF cells if the two cell

types have different intracellular chloride concentrations, resulting in different chloride

equilibrium potentials (Thoreson and Mangel, 2012). In at least some bipolar cell

types, the chloride gradient is consistent with this explanation (Duebel et al., 2006).

Moreover, ON and OFF bipolar cells express different chloride cotransporters that

produce chloride efflux in ON cells and chloride influx in OFF cells (Vardi et al., 2000;

Vu et al., 2000). While this evidence points to direct GABA-mediated inhibition

from horizontal cells to bipolar cells, experiments using GABA antagonists have so

far given inconclusive results (Thoreson and Mangel, 2012). Thus, caution must be

used in interpreting studies of feedforward inhibition in outer retina.
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3.2.2 Inner retina mechanisms

In the inner plexiform layer, bipolar cells provide excitatory input to ganglion cells.

Amacrine cells inhibit both bipolar and ganglion cells. These two pathways may

serve overlapping functions. For example, stimulation of the receptive field surround

decreases ganglion cell response both by directly inhibiting RGCs and by decreasing

excitatory input. Inhibition in the inner retina can come in many forms, due in part

to the large number of amacrine cell sub-types.

Feedforward excitation onto ganglion cells. Bipolars release glutamate onto

ganglion cells to produce excitation, which is shaped by presynaptic inhibition, dis-

cussed below. Although most glutamate receptors on RGCs are ionotropic (Massey

and Miller, 1988), the mixture of subtypes (NMDA, AMPA, and kainate) on a given

cell gives rise to its particular response properties (Manookin et al., 2010; Peng et

al., 1995). In addition, the rate of glutamate clearance varies between cell types and

may contribute to the range of RGC response properties (Lukasiewicz, 2005).

Feedback inhibition onto bipolar cells. The indirect contribution to lateral

inhibition of ganglion cells is mediated by GABAA, GABAC, and glycine receptors

on bipolar cell terminals (Lukasiewicz, 2005; Wassle et al., 1998). GABAC receptors

contribute more than GABAA receptors. In addition, feedback from sustained OFF

amacrine cells affects many ganglion cells indirectly through GABAB receptors on

bipolar cell terminals (de Vries et al., 2011).

In addition, amacrine and bipolar cells can be connected by gap junctions. The

“direct” or “primary” pathway of rod signaling depends on these connections (Bloom-

field and Völgyi, 2009). Signals from rods are inverted and passed to rod bipolar cells.

These bipolar cells do not synapse directly onto ganglion cells but instead pass their
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signals to AII amacrine cells. AII cells then communicate with cone bipolars through

gap junctions involving connexin-36 and possibly connexin-45. As a result, the rod

signal travels from rod bipolars to AII amacrine cells to cone bipolars and then to

the ganglion cell layer.

Feedforward inhibition onto ganglion cells. Direct chemical inhibition in the

inner retina occurs through GABAA and glycine receptors on RGC dendrites. De-

pending on the type of amacrine cell, this inhibition can generally be divided into

three groups: local (narrow-field) glycinergic, local (medium-field) GABAergic, and

broad (wide-field) GABAergic (Chen et al., 2010; Werblin, 2011). Ganglion cells also

have GABAB but not GABAC receptors (Wassle et al., 1998), and amacrine and

ganglion cells are frequently coupled by gap junctions (Bloomfield and Völgyi, 2009).

Glycine released by narrow-field amacrine cells is largely limited to local crossover

inhibition between the ON and OFF pathways (Werblin, 2011) and does not appear

to contribute to surround inhibition (Flores-Herr et al., 2001). Medium-field amacrine

cells, on the other hand, release GABA over a range of ∼250µm, similar to the size

of a ganglion cell receptive field. GABAergic amacrine cells are thought to provide

direct lateral inhibition of ganglion cells (Flores-Herr et al., 2001) and have relatively

long response latencies (Chen et al., 2010).

The specific properties of each form of inhibition can shape ganglion cell responses

differently. For example, OFF ganglion cells receive direct crossover inhibition from

the ON pathway in response to light, allowing responses to decrements in light level

but not to increments. ON ganglion cells, on the other hand, are inhibited indirectly

by a decrease in excitation from bipolar cells and thus can respond to both increments

and decrements. As a result, OFF brisk-transient cells show greater rectification in

membrane and spiking responses than their ON counterparts (Zaghloul et al., 2003).
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In other cases, increasing the strength of amacrine cell responses driven by a visual

stimulus increases ganglion cell firing rates (Manu and Baccus, 2011). This may be

the result of a release from inhibition of the RGC when the amacrine cell goes from

depolarization to hyperpolarization frequently, as may happen with a time-varying

input.

Amacrine cell coupling. In addition to their coupling with bipolar cells mentioned

above, AII amacrine cells are coupled to each other with connexin-36 gap junctions

(Bloomfield and Völgyi, 2009). These connections serve to reduce uncorrelated noise,

thus strengthening the signal-to-noise ratio of the rod pathway and preventing changes

at low light levels from being obscured by noise. There are also glycinergic amacrine-

to-amacrine synapses, but GABAergic inhibition of amacrine cells is less common.

For example, narrow-field amacrine cells receive transient GABAergic inhibition and

sustained glycinergic inhibition, whereas wide-field amacrine cells receive sustained

glycinergic inhibition only (Chen et al., 2011).

Ganglion cell coupling. Finally, gap junctions connect ganglion cells directly.

This electrical coupling appears to be restricted to connections between ganglion

cells of the same type. Gap junctions between ganglion cells typically have low con-

ductance, thus giving the direct coupling a relatively limited scope (Bloomfield and

Völgyi, 2009). Ganglion cells can also be coupled indirectly through amacrine cells

(Trong and Rieke, 2008).

3.2.3 Flexibility in retinal circuitry

In Chapter 2, we showed that retinal processing is sensitive to correlations in the

input. Ganglion cell responses also adapt to the luminance and contrast of a stimulus
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ensemble. Here we review what is known about the circuit mechanisms underlying

these forms of flexibility.

Dependence on light level. The different mechanisms of lateral inhibition are

thought to contribute under different light levels, with GABAergic amacrine cells

playing a greater role under dim illumination and horizontal cells becoming more

important under bright illumination (Lukasiewicz, 2005). Part of this dependence on

light level may be due to dopamine and nitric oxide levels, as both of these molecules

are modulated by light levels and reduce gap-junction coupling of horizontal cells

(Bloomfield and Völgyi, 2009). Horizontal cell coupling can be decreased by pro-

longed darkness or prolonged brightness. Maximal horizontal cell coupling occurs at

intermediate background lighting, partially explaining the greater role of horizontal

cells in surround inhibition at these light levels. A similar dopamine-mediated de-

pendence on illuminance is seen in AII-AII coupling, with the greatest conductances

again observed at intermediate light levels (Bloomfield and Völgyi, 2009).

Unlike connections among horizontal cells and amacrine cells, gap junctions be-

tween alpha ganglion cells increase conductance in response to dopamine. As a re-

sult, ganglion cells are more strongly coupled in the light-adapted state when retinal

dopamine levels are higher (Bloomfield and Völgyi, 2009).

Adaptation to contrast. A number of studies have sought to determine where in

the retina temporal contrast adaptation originates. The earliest stage of processing at

which contrast adaptation has been observed is in bipolar cells (Rieke, 2001; Baccus

and Meister, 2002). This adaptation does not depend on inhibition from horizontal

or amacrine cells or on voltage-dependent processes (Rieke, 2001), suggesting a mech-

anism within dendrites. At the same time, horizontal cell feedback may provide a
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mechanism for gain control in photoreceptors (VanLeeuwen et al., 2009). Adaptation

observed in RGCs may then be due in part to adaptation of bipolar cells, as con-

trast gain control occurs for changes in the location of a small stimulus within the

RGC receptive field center (Brown and Masland, 2001) and is stronger for a large

contrast change in a small spot than for a small contrast change over the entire cen-

ter (Beaudoin et al., 2007). Furthermore, contrast adaptation is not abolished by

voltage clamping of ganglion cells (Beaudoin et al., 2007) or pharmacological block-

ers of amacrine cells (Beaudoin et al., 2007; Brown and Masland, 2001; Manookin

and Demb, 2006). These findings indicate that inner retina processing, while likely

contributing to contrast adaptation, is not required.

Most amacrine cells do not adapt to contrast, but some do change potential slowly

after a contrast switch (Baccus and Meister, 2002). Beaudoin et al. (2008) measured

a gain reduction in both excitatory and inhibitory conductances in ganglion cells

following an increase in contrast, suggesting that both bipolar and amacrine cells

adapt to stimulus variance. On the other hand, Brown and Masland (2001) did not see

any weakening of contrast gain control when GABA and glycine were blocked. Thus,

while direct inhibition to ganglion cells may have some role in contrast adaptation,

it does not appear to be crucial.

Finally, adaptation also occurs in ganglion cells in the conversion of current input

to spike output. This is demonstrated most clearly by the observation that gain

control is stronger in spiking responses than in input currents. In addition, RGC

spiking adapts to the variance of current injections (Kim and Rieke, 2001). This

additional contrast gain control may be due in part to inactivation of sodium channels.

Fluctuations in input current to RGCs lead to inactivation of sodium channels with

a slow recovery, and simulations show that this inactivation could explain adaptation

of spiking to input variance (Kim and Rieke, 2003). Thus, intrinsic mechanisms
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within ganglion cells appear to enhance the adaptation to contrast that already occurs

presynaptically.

Sources of correlated firing. Our current understanding of the mechanisms shap-

ing correlations between ganglion cells is fairly limited, although the presence of such

correlations is well-known (Mastronarde, 1989; DeVries, 1999).

Electrical coupling throughout the retina likely shapes output correlations. The

gap junctions between ganglion cells have a low conductance and can thus produce

coherent firing in a small patch of cells without diluting the signal across wide swaths

of retina. This coupling can lead to reciprocal excitation between two neighboring

ganglion cells, resulting in short (1-3 ms) spike latencies between the cells (Bloomfield

and Völgyi, 2009). Shared electrical input from a common amacrine cell can also

lead to synchronous activity in two nearby ganglion cells (DeVries, 1999). Coupling

elsewhere in the retina could similarly enhance correlations between nearby cells.

As discussed above, many gap junctions are modulated by light level. If any such

modulation occur on a fast time-scale or is sensitive to complex features of visual

scenes, then the resulting correlations could be stimulus-dependent.

In addition, chemical synapses appear to contribute to retinal correlations. Synap-

tic inputs to pairs of ganglion cells show correlations that are affected by the presence

or absence of a visual stimulus (Trong and Rieke, 2008). These correlations are ob-

served when looking at pairs of excitatory inputs and pairs of inhibitory inputs, sug-

gesting that at least some correlations in RGC output are determined pre-synaptically.

Furthermore, ganglion cell types that display correlated spiking are not always elec-

trically coupled (DeVries, 1999). Although both of these lines of evidence could be

explained if correlations present in bipolar cell dendrites are simply carried forward

to the inner retina, gap junctions alone are unlikely to account for all correlated firing
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in the retina.

In the experiments reported here, we sought to understand how retinal circuitry

shapes correlations, particularly the dependence on stimulus correlations. We first

blocked outer retina and uncovered a possible role for horizontal cells in maintaining

redundancy. We then blocked lateral connections in inner retina. Our findings sug-

gest that direct inhibition of ganglion cells by GABAA receptors might also enhance

changes in output correlations but GABAC and glycine receptors are less likely to be

involved.

3.3 Results

3.3.1 Feedback in outer retina enhances stimulus correlations

We began by testing the contribution of the outer retina to stimulus-dependent cor-

relations between ganglion cells. To do this, we added the pH buffer HEPES to the

perfusate. Although the exact mechanism of horizontal cell feedback to photorecep-

tors is debated, HEPES has been shown to block this feedback and to decrease the

surround measured in ganglion cells (Davenport et al., 2008). We initially hypoth-

esized that blocking this source of lateral inhibition would increase correlations in

retinal output and make them more heavily dependent on stimulus correlations.

Invariance of spike train correlations. To measure the effects of horizontal cell

feedback on retinal output correlations, we binned spike trains with 33-ms bins and

found correlation coefficients between spike trains of pairs of simultaneously recorded

ganglion cells, as in Chapter 2. In control conditions, as discussed above, output

correlations tended to be stronger for more correlated stimuli (Fig. 3.1A, B). When

HEPES was applied, the output correlations became almost completely invariant with
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Figure 3.1: HEPES removes stimulus dependence of output correlations.
(A) Pairwise correlations for three types of correlated stimuli compared to an
uncorrelated flickering white noise checkerboard. Blue circles represent
measurements made in control conditions; red diamonds are in HEPES. HEPES
makes correlations more invariant between stimuli. N = 1953 pairs. (B) Excess
correlation computed from the data in A. All excess correlations are computed with
respect to the white noise checkerboard responses. Error bars are calculated by
bootstrapping. (C) Excess correlation, computed as in B but comparing HEPES
against control conditions separately for each stimulus.
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respect to the stimulus. On a population level, HEPES tended to weaken correla-

tions in response to multiscale and full-field stimuli without significantly changing the

strength of correlations for spatially white and exponentially correlated noise (Fig.

3.1C). The more striking effect, however, was on individual pairs of cells. Some pairs

maintained approximately equal correlations across stimuli by increasing white noise

checkerboard correlations when HEPES applied; for others, HEPES decreased output

correlations in response to highly correlated stimuli.

Thus, contrary to our näıve hypothesis, it appears that horizontal cell feedback

does not explain the relative decorrelation observed in Chapter 2. In fact, horizontal

cells may actually increase the stimulus dependence of output correlations. One

might ask whether the addition of HEPES made the retina insensitive to light. If this

were the case, then our measurements of output correlations would reflect spontaneous

activity and hence be independent of the stimulus class. For several reasons, we do not

believe this is the case. First, we measured the average firing rates in each condition.

For most stimuli, activity levels increased when HEPES was applied (Fig. 3.2A), but

the firing rates were still within a physiological range. This is one indication that the

retina was still healthy in the presence of HEPES.

We also looked directly at visual responses to alternating flashes of light and

dark. We recorded responses to such a stimulus immediately before and after each of

our main experimental trials (that is, before and after measuring correlations in the

control condition and before and after making the same measurements in HEPES).

Figure 3.2B shows the average firing rate of a few cells in response to such a stimulus.

We can see from these responses that cells maintained their general responsiveness

throughout the experiment, even after addition of HEPES. To summarize this obser-

vation, we averaged across time bins to obtain, for each RGC, the mean firing rate

during the ON phase and the mean firing rate during the OFF phase. Comparing
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Figure 3.2
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Figure 3.2: HEPES does not abolish light responses. (A) Average firing
rates for each stimulus in control condition (white) and in the presence of HEPES
(gray). Each box spans the 25th to 75th percentiles for the indicated stimulus with
the central line denoting the median; whiskers indicate the full range. (B)
Representative traces of a ganglion cell responding to a 1-second alternating flash of
dark (shaded area) and light (white area) in the control condition (blue) and in
HEPES (red). (C) Average firing rate for all recorded cells in response to a
1-second flash of light. Recordings were taken immediately before and after the
main experimental trials (i.e. ∼50 minutes apart). Although HEPES affects firing
rate, activity is stable throughout the HEPES recording. (D) Representative
examples of receptive fields measured from white noise responses in control
condition (top row) and in HEPES (bottom row). Each image shows the spatial
component of one receptive field measured by reverse correlation. Note that the
spatial component is defined here to have a positive peak; thus all frames appear to
show ON responses even for OFF cells.

these values, we see that responses again tended to be stronger under HEPES (Fig.

3.2C) but were still in a reasonable physiological range. Moreover, the stability of the

responses measured before and after our experimental trials suggests that the retina

was still healthy and responsive at the end of the experiment.

Even with these robust light responses, the retina still could have become insen-

sitive to the small-scale structure of our stimuli. To test for this, we estimated the

spatio-temporal receptive field of each cell in response to white noise by reverse cor-

relation. As shown for a few cells in Figure 3.2D, we could extract receptive fields in

the presence of HEPES, indicating responsiveness to spatially and temporally varying

checkerboards. Thus, we are confident that our findings in the presence of HEPES are

not an artifact of insensitivity to visual stimuli but instead indicate that the retina is

able to equilibrate output correlations when horizontal cell feedback is blocked. While

surprising, this result could be evidence of a need for redundancy to be maintained

in early visual processing. This possibility is returned to in the Discussion.
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Information rates. To further understand the effects of HEPES in our experi-

ments, we turned to analyses of single cell responses. Since our results thus far

suggest that horizontal cell feedback may increase redundancy by allowing stimu-

lus correlations to trigger more correlated output, we sought to determine whether

horizontal cell feedback was beneficial in terms of any other information theoretic

measures.

We first looked at the information carried by a single spike in each condition (see

Methods for details). In the control condition, single-spike information values had a

narrower distribution for a more correlated stimulus. That is, neurons with low infor-

mation rates (below ∼3 bits/spike) when probed with a checkerboard had increased

information rates under full-field flicker, whereas cells with high information rates

for the checkerboard had decreased information for the full-field flicker. The same

general pattern held when horizontal cell feedback was blocked with HEPES (Fig.

3.3A). The addition of HEPES increased single-spike information about the spatially

uniform stimulus (t-test p < .01, N = 103 cells) without significantly affecting infor-

mation during the white noise checkerboard presentation (p = .10). The difference

in information rate between full-field and spatially modulated stimuli increased when

HEPES was applied, although this effect was small for most cells. Thus, it is possible

that horizontal cell feedback acts to maintain similar information rates across stimuli.

Signal-to-noise ratio. In addition, we computed the signal-to-noise ratio (SNR;

see Methods) for each cell under each of the four conditions. As shown in Figure 3.3B,

SNR was greater for the highly correlated full-field stimulus than for the checkerboard

stimulus in almost all cells, both in the control solution and in HEPES. Within

a given stimulus type, HEPES tended to increase SNR (t-tests p < .05 for each

stimulus, N = 96 cells). HEPES also tended to decrease the fractional change in
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Figure 3.3
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Figure 3.3: Effects of HEPES on information. (A) Left, single-spike
information in control conditions (blue) and in HEPES (red) is consistently higher
for full-field flicker than for a white noise checerboard. The stimulus consisted of 30
seconds of a flickering white noise checkerboard and 30 seconds of full-field flicker.
The same stimulus sequence was repeated 60 times. Right, HEPES increases
information rates for full-field flicker (orange) but not for the spatio-temporally
modulated checkerboard (green). N = 108 cells. (B) Signal-to-noise ratio (SNR),
plotted as in A. SNR tends to increase under HEPES and is consistently greater for
the full-field stimulus than for spatially uncorrelated white noise. A few cells with
large SNR values are left off at this scale but are included in all analyses. (C)
Ratios of SNR in control condition to SNR with HEPES applied. Black dotted line
indicates a 1:1 ratio.

SNR produced by the increase in stimulus correlation (Fig. 3.3C; t-test p < .005).

That is, SNR values for white noise and full-field stimuli are more similar when

horizontal cell feedback is blocked. This suggests that horizontal cell feedback serves

to make SNR more dependent on stimulus type, as we saw with pairwise correlations.

Receptive fields. As noted above, we can estimate receptive fields from ganglion

cells recorded in the presence of HEPES. Ideally, we would want to measure responses

of a population of cells to stimuli with varying correlations in the presence and absence

of HEPES. Due to the amount of data needed for STRF estimation and limits on

recording stability, we were not able to record from all conditions in the same cells.

Instead, we presented white and exponentially correlated checkerboard stimuli in

HEPES only and found that the receptive field adaptations in HEPES are consistent

with those reported for the control medium in Chapter 2. Namely, center latencies

were faster in response to correlated noise (t-test on adaptation index, p < .001,

N = 22) and relative surround strengths tended to be stronger for correlated noise

(t-test p = .02). However, the small number of recorded cells makes it difficult

to compare the magnitude of these changes. Future experiments test the effects of

76



HEPES on receptive fields measured under each stimulus condition independently.

3.3.2 Inner retina may enhance extreme stimulus correla-

tions

GABA. Lateral inhibition in the inner retina is largely a result of GABA released

from amacrine cells onto bipolar and ganglion cells (Werblin, 2011). Thus, we sus-

pected that blocking GABA receptors might affect the partial decorrelation seen in

Chapter 2. To test this hypothesis, we followed the same procedure as described

above but with the GABAA receptor antagonist bicuculline or the GABAC receptor

antagonist TPMPA in the solution instead of HEPES.

In the presence of bicuculline, we observed a tendency for pairs of ganglion cells

to have greater excess correlation than in the control condition, especially when com-

paring full-field flicker to spatially uncorrelated white noise (Fig. 3.4A; N = 87 cells).

TPMPA, on the other hand, did not appear to have an effect on the stimulus depen-

dence of output correlations (Fig. 3.4B; N = 66). Neither drug had a strong effect on

the signal-to-noise ratios or information rates. These results suggest that amacrine

cell inhibition may preserve correlations in highly correlated stimuli. This effect is

most likely due to direct inhibition of ganglion cells, as GABAA receptors play a more

minor role in indirect inhibition through bipolar cells (Lukasiewicz, 2005). The lack

of an effect from blocking GABAC receptors, which are present in bipolar cells but

not RGCs (Wassle et al., 1998), also lends support to this interpretation.

Glycine. In the retina, glycine is used largely to create crossover inhibition from

the ON pathway to the OFF pathway and vice versa. The processes of glycinergic

amacrine cells cover a narrow field, and thus glycine only spreads a short distance
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Figure 3.4: Blocking GABAA receptors may reduce changes in
correlation. (A) Excess correlation in control condition (white) and in the
presence of the GABAA receptor blocker bicuculline (gray) are similar in response
to stimuli with exponential or multiscale correlations (left and middle bars), but
bicuculline decreases excess correlation for full-field flicker (right bars). Excess
correlation is computed as in Figure 3.1B, with each correlated stimulus compared
to a flickering white noise checkerboard. N = 87 pairs. (B) Excess correlation is
similar in control condition and in the presence of the GABAC receptor blocker
TPMPA. N = 66 pairs.

from the point of release. While crossover inhibition could affect correlations between

neighboring ON and OFF cells, we did not expect glycine to have a large role in

shaping correlations between ganglion cells in general. Consistent with this, we did

not observe an effect of strychnine on output correlations, although the small number

of cells recorded (21) prevents us from making a strong conclusion.

3.4 Discussion

We have shown that blocking horizontal cell feedback with HEPES makes pairwise

correlations in retinal output invariant with respect to stimulus correlations. That
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is, lateral inhibition in the outer retina appears to preserve stimulus correlations.

Similarly, the tendency to decrease excess correlation in the the presence of GABA

blockers is consistent with the possibility that lateral inhibition in the inner retina

may partially remove stimulus correlations.

Why might lateral connections in the retina induce stimulus-dependent correla-

tions? Redundancy may be important for processing noisy signals. Indeed, early

theories of redundancy reduction stipulate that the optimal code is one that min-

imizes the loss of information (Barlow, 1961; Atick, 1992). More precisely, Tkačik

et al. (2010) examined the coding strategies for a maximum-entropy network with

pairwise correlations. When noise levels are high and the stimulus is correlated, the

optimal strategy is to have positive correlations between neurons. Such redundancy

strengthens the signal, whereas independent noise is averaged out. Thus, correlations

in the retina could be needed to overcome noise and transfer signals to the rest of

the visual system. Horizontal and amacrine cells could conceivably be responsible

for adjusting these correlations as the noise level of the signal changes. Any overall

decorrelation might occur later in the visual system. In addition, it is possible that

the degree of retinal correlation itself provides information to later visual areas about

the structure of the current stimulus ensemble.

How horizontal and amacrine cells enhance differences in stimulus correlations is

less clear. Stimulus correlations could lead to correlations in nearby horizontal cell

responses and thus correlated inhibition of nearby photoreceptors. This explanation

would imply correlated output of nearby photoreceptors onto horizontal cells, how-

ever, and thus the necessity of horizontal cells is not obvious. Horizontal cells might

also shape the timing of responses in photoreceptors, and thus in ganglion cells as

well. While this may be an important factor in shaping retinal output, the results

reported here hold when correlations are measured in bins of 200 ms where jitter in
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spike timing should not have an effect.

Another possibility is that connections between horizontal cells change when stim-

ulus correlations change. Coupling strength between horizontal cells changes depend-

ing on the background light level due to changes in dopamine and nitric oxide levels.

When dopamine or nitric oxide levels are increased in horizontal cell culture, un-

coupling peaks after two minutes and recovers after five minutes or more (Lasater

and Dowling, 1985; Lu and McMahon, 1997); such changes occur in about half as

much time in the intact retina (Pottek et al., 1997). Thus, our five-minute stimu-

lus segments were likely adequate for dopamine or nitric oxide to exert some effect,

but the slow time course of these agents makes it unlikely that they are the sole

mediators of the observed effects. HEPES may also have non-specific effects in the

retina due to its global effect on pH. Future experiments should use other blockers of

horizontal cell feedback (such as cobalt and carbenoxolone) to test for specificity of

the results reported here and should test the combined effects of HEPES and other

pharmacological agents.

Similarly, it is unclear how lateral inhibition in the inner retina may affect output

correlations. Our results thus far suggest a mechanism whereby direct GABAergic

inhibition from amacrine cells to ganglion cells maintains changes in stimulus correla-

tions. This effect appears to be modest in amplitude, although GABAergic signaling

might be expected to play a greater role at low light levels. Alternatively, amacrine

cells may play a role in shaping output correlations in some cell types but not others,

leading to a small average effect.

Future work should seek to clarify the roles of GABAergic and ephaptic inhibition

in retinal response to stimulus correlations. In particular, it will be important to test

the effects of GABAA receptor antagonists and horizontal cell blockers at different

background light levels. It would also be useful to examine the effects of GABAA
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blockers when horizontal cell feedback is blocked and vice versa to determine whether

inner and outer retina shape output correlations synergistically or independently.

Recording from horizontal and bipolar cells, while technically challenging, would also

be helpful in elucidating the effects of outer retinal processing on redundancy and

correlations in retinal output. Finally, gap junctions are widespread in the retina and

likely to play a role in coordinated output. We have not examined their role in this

thesis, but such measurements will be crucial to fully understanding the mechanisms

shaping correlations in retinal output.

3.5 Methods

Neural recording. The general procedure was the same as that described in Chap-

ter 2. Briefly, we recorded from isolated guinea pig retina from using a multi-electrode

array with two panels of 30 electrodes (Multi Channel Systems MCS GmbH, Reut-

lingen, Germany). Stimuli were displayed on a Lucivid monitor (MicroBrightField,

Inc., Colchester, VT) and projected onto the retina.

In some trials, the perfusate included 20 mM HEPES, 100 µM bicuculline, 50 µM

(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA), or 2 µM strychnine.

TPMPA was obtained from Tocris (Minneapolis, MN, USA); all other drugs were from

Sigma-Aldrich (St. Louis, MO, USA).

Stimulus generation. In a typical experiment we displayed four types of stim-

uli: spatio-temporal white noise, exponentially correlated noise, multiscale correlated

noise, and full-field flicker. For all stimuli except for multiscale, we began by choosing

intensity values from independent Gaussian distributions for each check. In the case

of spatio-temporal white, exponentially correlated, or multiscale noise, our stimulus
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had 64 x 64 checks, each of which had an area of 42 µm x 55 µm. Full-field flicker, of

course, had only one check that covered an area of 2.67 mm x 3.5 mm, well beyond the

extent of the electrode array. To generate exponentially correlated noise, we filtered

the Gaussian noise with an exponential filter with a space constant of one check. Note

that here, unlike in Chapter 2, the exponentially correlated stimulus does not have

temporal correlations. The multiscale stimulus was produced by adding Gaussian

noise at several nested scales, as described in Chapter 2. All four stimuli were again

thresholded at their mean intensity to yield binary stimuli. We generally presented

10 minutes of each stimulus in each condition (control and drug).

In some experiments, we presented repeated stimuli instead of unique sequences.

In these cases, we generated 30–60 seconds each of white noise checkerboard and full-

field flicker and repeated each segment 60 times. To control for any drifts in response,

we alternated blocks of 10 repeats of each stimulus.

Before and after each trial, we presented a square wave stimulus for 2 minutes to

test for tissue health and light responses. This stimulus was presented at 0.5 Hz (1

second ON, 1 second OFF) and used the maximum and minimum intensities available.

Analysis. Chapter 2 describes the method for measuring pairwise spike train corre-

lations and estimating receptive fields. Here we also computed information rates and

signal-to-noise ratios. For each stimulus, we computed the information contained in

a single spike following Fairhall et al. (2006). By averaging across repeats, we found

the firing rate r(t) of each cell as a function of time t measured in 5-ms bins. The

single-spike information is then

Ispike =

〈
r(t)

r̄
log

(
r(t)

r̄

)〉
t

, (3.1)
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where r̄ is the overall mean firing rate of the cell and the average is taken across time

bins.

The signal-to-noise ratio (SNR) quantifies the strength of the stimulus-dependent

response relative to the trial-to-trial variability in response. We define s(t) to be the

response at time t averaged across repeats and ni(t) to be the residual response on

trial i, both computed in 33-ms bins. Their Fourier transforms at frequency k are

denoted S(k) and Ni(k), respectively. The signal-to-noise ratio is then

SNR =

∫
S(k)S∗(k)

〈Ni(k)N∗i (k)〉i
dk, (3.2)

where (·)∗ denotes the complex conjugate. The integral is taken over frequencies up

to the Nyquist frequency of the firing rate, which for a bin size of 33 ms was 15 Hz.
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Chapter 4

General discussion

4.1 Summary

In the preceding chapters I presented a series of results relating to the processing

of correlated scenes. In Chapter 2, I showed first that, when presented with stimuli

that differ in spatio-temporal correlation structure, the retina shows reduced changes

in output correlation relative to changes in input correlation. I then demonstrated

that the receptive fields of ganglion cells are more high-pass and show a skew toward

stronger surrounds when the stimulus is more correlated. Moreover, these receptive

field changes, along with adaptation in the gain, are sufficient to explain the observed

pattern of output correlations. In Chapter 3, I showed that horizontal cell feedback

and, to a lesser extent, feedforward inhibition from amacrine cells increase the stim-

ulus dependence of output correlations and of the signal-to-noise ratios of individual

ganglion cells. Here I discuss these results in a broader context and suggest a number

of future research directions.
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4.2 Studying natural vision

Historically, much of our knowledge of retinal processing has come from experiments

in which a stimulus such as a spot of light (Kuffler, 1953) or drifting grating (Enroth-

Cugell and Robson, 1966) is presented and action potentials in the optic nerve are

recorded. More recently, white noise analysis (Chichilnisky, 2001) has become popu-

lar for mapping receptive fields. Such studies allow us to systematically examine the

sensitivity of RGCs to a wide range of stimuli. However, single spots of light and

drifting gratings do not occur frequently outside the experimental setting. Rather,

natural scenes contain a large number of objects and textures with a distinct 1/f 2

power spectrum (Field, 1987). The ability of the retina to adapt to its visual environ-

ment leads to the speculation that its response properties during natural vision may

be different from those observed in many experiments. In this thesis, we have investi-

gated one aspect of this question: Does the retina adapt to stimulus correlations? In

particular, does the retina become increasingly decorrelating as stimulus correlations

increase? As we have seen, the answer is that ganglion cells do adapt in a way that

partially mitigates the redundancy introduced by highly correlated stimuli. Further

exploration of questions such as this will be crucial to fully understanding how we

perceive the world.

Here we have focused on the first few steps in visual processing. There are a

number of reasons why the retina is ideal for studying population coding. At a

conceptual level, the inputs and outputs of the system are well-defined. Input to the

retina consists of photons of visible light, and there is very little feedback from the rest

of the brain (but see Reperant et al., 2006, for a review of rare exceptions). Thus,

we know to a close approximation what information the retina receives. In turn,

all communication from the retina to the rest of the nervous system goes through
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the optic nerve, which is made up of ganglion cell axons. Thus, if we recorded the

responses of all RGCs in a retina we could be confident that we had measured all

output information. This is in contrast to areas such as cortex, where bidirectional

connections between regions make it difficult to determine the inputs and outputs of

each area.

On a practical level, the retina is a thin sheet, making it unnecessary to slice the

tissue prior to recording. While some cuts must be made to overcome the curvature

of the eye, we can make these cuts far from the area of recording so that only the most

distant of connections are disrupted. In addition, the main output cells are on the

surface and thus relatively close to the (planar) electrodes in a multi-electrode array.

Moreover, the fact that retina is inherently photosensitive means that we can provide

a good approximation of its natural input. (Of course, to have a truly naturalistic

input we would need to filter the stimuli to mimic the blur that occurs when light

passes through the eye before reaching the retina, but such a manipulation could

easily be included in experimental design.) These properties make population studies

in the retina particularly exciting because any changes in output must be due either

to the stimulus, which we control, or to changes within the system itself. Thus, while

many details of retinal circuitry remain a mystery, questions of network behavior are

tractable.

Studies of retinal population coding not only contribute to our understanding of

the visual system but also enrich our knowledge of neural circuits in general. While

the retina is a specialized tissue with unique cell types, many of the synaptic mecha-

nisms are found elsewhere in the brain. Thus, understanding circuitry and population

coding in the retina can give us candidates for behavior in other circuits, leading to

improved computational models and more targeted experiments.

The experiments reported in this thesis used more naturalistic stimuli than many
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previous studies, but there is still a degree of artificiality in that we record from iso-

lated retina. The ideal case would be to record from the retinae of awake, behaving

animals as they viewed their natural environments. Such a project would be tech-

nically difficult but is becoming more of a reality with the development of advanced

recording techniques. For example, adaptive optics can be used to measure calcium-

based light responses of ganglion cells in mice injected with fluorescent proteins (Yin

et al., 2013). This and other techniques will hopefully be used in the future to study

vision in increasingly natural environments.

4.3 Adaptation to complex stimulus features

The ability of retinal ganglion cells to adapt to simple stimulus feature such as lu-

minance and contrast is well documented (e.g., Shapley and Enroth-Cugell, 1984;

Smirnakis et al., 1997). We also know that changes in stimulus correlations lead to

altered receptive fields in lateral geniculate nucleus (LGN; Lesica et al., 2007) and

primary visual cortex (David et al., 2004; Felsen et al., 2005). On the other hand,

adaptation of the retinal population as a whole to stimulus correlations has not been

studies as extensively. Pitkow and Meister (2012) found that the retina decorrelates

pink (1/f) noise and adds correlations to white noise. The results reported here repli-

cate and strengthen this finding by showing that correlations in an individual pair of

neurons change between stimuli. On the surface, our finding that linear properties

of ganglion cell responses could explain such adaptation are in conflict with Pitkow

and Meister (2012)’s conclusion that nonlinear processing is needed. However, they

only tested this claim with receptive fields measured during white noise presenta-

tion, whereas we measured receptive fields under both white and correlated stimuli

to account for any stimulus-dependent changes in linear processing. Thus, while the
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output of a fixed linear filter for stimuli of varying correlation levels is not adequate

to account for correlation invariance, the output of an adapting filter is sufficient.

The similarity of adaptation to correlation to contrast adaptation suggests that

the two forms of adaptation may be related. Adaptation to contrast can produce

receptive fields with shorter latencies and lower sensitivity (Baccus and Meister, 2002),

as we report here for adaptation to correlations. It is plausible, for instance, that

naturalistically correlated stimuli have higher effective contrast than uncorrelated

stimuli, even if the two stimuli have similar contrast when they enter the eye. In

LGN, changes in effective contrast due to receptive field adaptation can explain the

higher reliability of responses to correlated stimuli (Lesica et al., 2007); a similar

phenomenon could occur in retina. Whether such similarities are the result of a

shared mechanism is currently unknown. In this thesis we have presented evidence of

a large role for horizontal cells in adaptation to stimulus correlations. While horizontal

cell input to bipolar cells does not appear to contribute to contrast adaptation (Rieke,

2001), horizontal cells can produce gain control in photoreceptors and could thus play

a role in adaptation to contrast and correlation (VanLeeuwen et al., 2009). Amacrine

cells are generally thought to play a minor role in contrast adaptation (Brown and

Masland, 2001), although they may contribute in some cases (Beaudoin et al., 2008).

Similarly, our results are consistent with a role for direct inhibition of ganglion cells,

but any such effect is weak at best. Thus, while there are some suggestions that

correlation and contrast may produce adaptation via shared mechanisms, further

work is clearly needed. Efforts to measure changes in pairwise correlations when

contrast changes and to compare any such effects with those that follow changes in

stimulus correlations are currently ongoing.
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4.4 Efficient coding of correlated stimuli

According to theories of efficient coding, the visual system ought to remove redun-

dancy present in the input whenever doing so would not reduce the amount of infor-

mation conveyed (Barlow, 1961). Here we have proposed and tested a corollary of

this theory: retina adapts to reduce the effect of input correlations on output correla-

tions. In this view, it may be adaptive at time to increase correlations relative to the

stimulus. In particular, population responses to a flickering checkerboard show corre-

lations at distances greater than the size of a single check (see Figure 2.4C). Pitkow

and Meister (2012) similarly found that retinal output can show greater correlations

than those present in a white noise stimulus. If the goal is to minimize changes in cor-

relations, rather than the correlations themselves, then it makes sense that responses

to an uncorrelated stimulus might be more correlated than the stimulus.

The presence of some correlations in retinal output is expected because redun-

dancy reduction is not the sole purpose of the visual system. If ganglion cells were

fully independent, it would be impossible for the thalamus and cortex to distinguish

between variation in a neuron’s response due to a change in stimulus and variation

due to noise. Clearly, then, some redundancy is needed to combat the effects of

noise. What is less obvious is how the population of RGCs should respond to a given

stimulus in order to obtain the optimal balance of noise reduction and redundancy

reduction. In a simulation of two coupled neurons, Tkačik et al. (2010) found that

the optimal strategy is to average the signal (i.e. enhance correlations) when neural

noise is high and reduce correlations when noise is low. Moreover, the optimal magni-

tude of averaging or decorrelation increases for a more correlated stimulus, with the

stimulus-dependence increasing at high noise levels. It would be interesting to see

whether manipulating the amount of noise (for example, by changing the background
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light level) affects the output correlations in retinal responses.

4.5 Functional classification of ganglion cells

It would be highly informative to characterize stimulus-dependent correlations within

and between cell types. Indeed, Mastronarde (1983a,b,c) found that correlations

between cat Y cells are stronger and more likely to be due to reciprocal connections

than correlations between X cells. In addition, the strength of correlation between

and within types of ganglion cells in monkey depends not only on the polarity but

also on the cell types of the pair in questions (Greschner et al., 2011).

Ganglion cells can be classified into types based on morphology, physiology, or a

combination of the two. To determine morphological cell types, we would need to

image our cells at high resolution. Typical setups for multi-electrode array recordings

use microscopes with no more than 10x magnification, which is adequate to focus

the stimulus on the same plane as the retina but not to see individual cells. For the

latter, we would most likely want to be able to switch between a low-magnification

lens for stimulus presentation and a high-magnification immersion lens for imaging.

Such a procedure is possible in theory (and is already done in many single-electrode

experiments on retina) but would require significant modification of our experimental

setup.

A more feasible pathway would be to identify cell types based on their response

properties. Such physiological catalogs have been developed in mouse (Farrow and

Masland, 2011), rabbit (DeVries and Baylor, 1997), and salamander (Segev et al.,

2006), but a careful functional classification of guinea pig RGCs has not been done.

Responses to stimuli such as checkerboards and drifting gratings are typically used

to cluster cells into types. We performed a rudimentary classification of cells by type
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in Chapter 2, but our precision was hampered by the relatively small size of our

array. To differentiate cell types with similar functional properties, we would want

to verify that each type tiles the retina (DeVries and Baylor, 1997). With an area of

only 120 µm x 150 µm per array, we cannot achieve adequate sampling to make this

determination. With a larger array (for example, one with 252 electrodes), we could

sample from a larger area and thus examine coverage factors to verify our cell typing.

To obtain accurate results, the ideal process would be to develop such a classification

system in an independent series of experiments and then to use a shortened set of

classification stimuli as part of each of our experiments.

Classifying cells by type may enable us to better understand how the retina adapts

to stimulus correlations. For example, we might think that the downstream effects

of redundancy depend on whether the redundancy is within a single channel (i.e. cell

type) or between channels. Indeed, we found that correlations in pairs with one OFF

cell and one ON cell depend on stimulus correlations to a greater degree than pairs

where both cells are of the same polarity. It would be interesting to test such within-

and between-channel effects in a more thorough manner. One might also suspect that

the horizontal cell contribution to correlations is common across RGC types. While

there are about a dozen types of bipolar cell, most mammals have only two types of

cone and two types of horizontal cell. Thus, the specificity of any processing in the

outer retina may be limited. On the other hand, we might expect the amacrine cell

contribution to be more specialized due to the large diversity of amacrine cells. This

hypothesis would be easy to test if we had a detailed functional classification system.
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4.6 Population models of retinal correlations

Another way to understand our data is to build a population model of the retina,

fit it to data, and look at which aspects of the fit depend on stimulus correlations

and which are static across stimuli. While it has become common to fit models

of individual RGCs (for example, the linear-nonlinear model used in this thesis),

population models of the retina are also being developed. Two approaches are Ising

models and Restricted Boltzmann Machines.

The Ising model is taken from statistical mechanics. The goal is to find a model

that fits the measured data (in our case, firing rates and pairwise correlations in firing

rate) as well as possible without making any additional assumptions. The minimal

model that can be produced from partial knowledge of the true network state is

the maximum entropy distribution (Jaynes, 1957). In this approach, the uncertainty

about the system is maximized to allow the model population to attain any of a wide

range of states consistent with the data. Specifically, each neuron can be spiking or

silent given a stimulus. For a model with known pairwise correlations, the closed-form

solution to this problem is known. Each pair of neurons has a coupling coefficient

that represents the connection strength, and each individual neuron has a bias that

accounts for its spontaneous firing rate (for a more detailed description, see Tkačik et

al., 2010; Stephens et al., 2011). These parameters are found using recordings such

as those described in this thesis. Ising models have been useful in predicting the

behavior of a population of neurons. For example, Tkačik et al. (2010) examined the

effects of noise level on the optimal coding strategy for a pair of neurons and showed

that correlations ought to be enhanced at high noise levels and reduced at low noise

levels. Ising models have also been fit to recordings from populations of up to ten

retinal ganglion cells (Ann Hermundstad, personal communication), and efforts to
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determine how the parameters in these models depend on the stimulus presented are

currently ongoing.

A Restricted Boltzmann Machine is a form of neural network that can learn rep-

resentations. It is generally constructed with a layer of visible units (RGCs in our

case) and one or more layers of hidden units (processing within the retina) with

connections between units in different layers but not between units within the same

layer (Hinton, 2007). The motivation for using such a model is that it contains no

direct interactions between ganglion cells. Thus, correlations are not explicitly fit;

any patterns between neurons must arise from fits to single neurons’ firing rates. De-

spite this, when such a network is trained on firing rates of individual neurons from

our recordings, it can capture the pairwise correlations in the data (David Schwab,

personal communication).

Efforts are currently underway to fit both these models to recordings of retinal gan-

glion cells responding to stimuli with different correlation structures. Such projects

will hopefully give us an understanding of how properties of individual cells and their

connections can lead to the observed changes in network behavior. In addition, any

interesting behavior in the models should lead to predictions that we can then test

experimentally.

4.7 Concluding remarks

Natural visual stimuli are highly correlated. It has long been speculated that an

optimal sensory system would remove these correlations to reduce redundancy. On the

other hand, some degree of redundancy is needed to combat noise. Here I presented

evidence that the retina balances these two needs by reducing differences in stimulus

correlation to maintain a relatively stable degree of redundancy. I then suggested a
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circuit mechanism wherein correlations are enhanced, especially in the outer retina,

to preserve signal strength. Future studies should further explore the contributions

of horizontal and amacrine cells, particularly with regard to correlations within and

between cell types. It will also be interesting to determine how adaptation to stimulus

correlations is balanced with other goals of visual processing and how downstream

areas of the visual pathway interpret correlations in retinal output.
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Appendix A

Identifying spikes in multielectrode

array data

The material in this Appendix was published as Prentice et al. (2011).

A.1 Abstract

We present an algorithm to identify individual neural spikes observed on high-density

multi-electrode arrays (MEAs). Our method can distinguish large numbers of distinct

neural units, even when spikes overlap, and accounts for intrinsic variability of spikes

from each unit. As MEAs grow larger, it is important to find spike-identification

methods that are scalable, that is, the computational cost of spike fitting should scale

well with the number of units observed. Our algorithm accomplishes this goal, and

is fast, because it exploits the spatial locality of each unit and the basic biophysics of

extracellular signal propagation. Human interaction plays a key role in our method;

but effort is minimized and streamlined via a graphical interface. We illustrate our

method on data from guinea pig retinal ganglion cells and document its performance
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on simulated data consisting of spikes added to experimentally measured background

noise. We present several tests demonstrating that the algorithm is highly accurate:

it exhibits low error rates on fits to synthetic data, low refractory violation rates,

good receptive field coverage, and consistency across users.

A.2 Introduction

The vertebrate retina is an important model system in neuroscience because it is

amenable to detailed study despite having a complex structural and functional ar-

chitecture (Sterling, 2004). Population coding and collective behavior in the retinal

output is studied by use of multi-electrode arrays (MEAs) to record extracellularly

from many retinal ganglion cells (RGCs) simultaneously (Meister et al., 1994; DeVries

and Baylor, 1997). Similar recordings can now also be made in other brain areas

(Buzsáki, 2004). MEAs offer unprecedented possibilities to obtain both single neuron

and single action potential resolution from large tissue samples. However, recordings

obtained in this way are useful only if most spikes can be assigned, with sufficient

accuracy, to the neurons that generated them. Even if each neuron spikes with a

unique waveform signature, we must still determine all those “template” waveforms

present in a dataset, separating them from each other and from noise. Moreover, in

practice there can be wide variation in the spike waveforms from a given unit (for

instance in amplitude), complicating the task of determining from data which units

fired and when.

This “spike sorting problem” is therefore a bottleneck in the use of high density

arrays with hundreds or thousands of electrodes. Methods that were manageable with

tetrodes (Gray et al., 1995) do not generally scale up to the massive datasets that

large arrays generate. For example, some standard methods cluster data by manually
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examining two-dimensional projections in a feature space of a few tens of dimensions.

This approach is infeasible when the feature space contains thousands of dimensions.

Another challenge with large arrays is that the chance of seeing a single isolated

spike becomes negligible, simply because there is so much activity. Thus we must

find template waveforms corresponding to the activity of single neural units (as ex-

tracellular recording cannot unambiguously identify distinct single neurons, we will

refer to our recovered putative neurons as “neural units”) without ever seeing a pris-

tine example of one, and we must be prepared to decompose temporally overlapping

spikes in essentially every recorded event. Overlaps in both space and time are less

frequent, but they nevertheless must be resolved if we wish to unravel the patterns of

collective neural activity. Resolution methods that rely on exhaustively checking all

possible combinations suffer a combinatorial explosion for large arrays. Further, any

spike decomposition method must stop before every spike has been found, because

there will be some units whose intrinsic amplitude is not larger than recording noise.

We need a principled approach to terminating each fit and to deciding later which

units’ activities have been reliably captured.

Thus, to be most useful for large arrays, a spike identification algorithm should

ideally both scale well and also be able to decompose overlapping events. This ap-

pendix outlines a method that accomplishes these goals (matlab code available upon

request.) It first clusters a small subset of a larger dataset, using a partially auto-

mated, human-guided clustering technique. This manual step is efficient, and scalable,

because (i) the clustering is based on an ordering that arranges event data by similar-

ity along a single dimension, (ii) the ordered data display band-like features that are

visually very salient for human operators, making cluster cutting unambiguous, and

(iii) the algorithm is robust to variations and outliers in the cluster-cutting procedure.

The algorithm then fits the full dataset to the spike templates thus obtained, using a
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modified Bayesian approach. In our data (from guinea pig retina) most of the intrinsic

variability of spikes from a given unit consists of amplitude variation only, whereas

other variability can be summarized as a universal (spike-independent) noise pro-

cess. By carefully modeling these circumstances we greatly reduce our computational

burden.

After characterizing the spatiotemporal character of the noise, our algorithm iden-

tifies spikes iteratively in a matching-pursuit (or “greedy”) scheme (Mallat and Zhang,

1993; Segev et al., 2004). Fitting terminates when addition of another spike does not

improve the posterior probability of a fit; a natural overfitting penalty is provided by

prior probabilities of firing and of spike amplitude. No assumptions are made about

spike time cross-correlations; in particular, we do not require a priori any refractory

“hole” in the spike time autocorrelation functions. Nevertheless, all of the inferred

spike trains corresponding to otherwise acceptable spike types do exhibit such a hole,

which serves as a check on our results. Fitting is followed by several qualitative post-

hoc validations of the templates. Where our method requires human judgment, we

structure our techniques and develop tools to facilitate interaction and proofreading.

Our approach combines successful elements from previous techniques: the empir-

ical characterization of the noise (Pouzat et al., 2002); separation of clustering and

fitting steps and the iterative subtraction scheme for handling overlaps (Segev et al.,

2004); and division of the clustering task by leader electrode address (Litke et al.,

2004). Novel features of our approach include systematic exploitation of the spatial

organization of the signals, the use of an ordering algorithm to greatly simplify clus-

tering, the observation that the noise temporal correlation is well represented by a

simple function, an explicit model of spike amplitude variation, and the introduction

of a principled Bayesian likelihood criterion for terminating spike fitting. Each of

these innovations adds a critical element to the success of our spike sorting method.
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Figure A.1: Recording chamber and typical data. (A) Typical MEA
apparatus. A tissue sample was mounted in an inverted microscope, with images
projected onto it via a small video monitor at the camera port (not visible).
Clockwise from left, 1: suction; 2: tissue hold-down ring; 3: perfusion inflow, with
temperature control; 4: preamplifier; 5: location of the multi-electrode array. (B)
Example of a single-spike event. Each subpanel shows the time course of electrical
potential (µV) on a particular electrode in the 5× 6 array. The electrodes are
separated by 30µm (similar to RGC spacing). A spike from one unit is visible in the
lower right corner and an axonal spike can be seen running vertically in the second
column of electrodes. Data were acquired at 10 kHz. After baseline subtraction and
high-pass filtering, a spatial whitening filter was applied (see Methods, Step 1).

Although we focused on data taken from vertebrate retina, the methods should be

equally applicable to other kinds of MEA data, such as those collected from different

brain areas (Buzsáki, 2004).

A.3 Results

To illustrate our method, we tested our spike sorting algorithm on 120 minutes of

recordings from guinea pig retinal ganglion cells (RGC), acquired with a 30-electrode,

dense MEA covering about 0.018 mm2 of tissue (Fig. A.1A). The analysis described
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in this appendix identified 1,260,475 spikes in the dataset. A typical firing event took

the form illustrated in Figure A.1B, where each panel shows 3 ms of the electrical

potential recorded by each electrode (or “channel”). We identified spiking events as

voltages crossing a threshold of −40 µV, taking into account the fact that simul-

taneous threshold crossings on neighboring channels represent the same spike event

(see Methods for details). The duration of each spike event was taken to be 3.2 ms

centered on the event’s peak.

In addition to identifiable spikes, each electrode had background activity with a

standard deviation of ∼ 10 µV that we will collectively refer to as “noise.” Potential

sources for this activity include true (Johnson) noise in the electrode and electronics,

electrical pickup from the environment, and a hash of background activity from weak

or distant neurons (Fee et al., 1996). A challenge for spike identification is that in

general there is no way to separate these three classes of “noise” cleanly from each

other, nor from the spikes of interest to us. Nevertheless, we will propose a technique

for identifying spikes that is very accurate for firing events with intrinsic amplitude

at least 4 times the standard deviation of the noise.

Figure A.1B illustrates that each single firing unit will be “heard” on multiple

electrodes, and that those electrodes form a spatially localized group. Our method

is scalable because it systematically exploits this simple observation: even on a large

electrode array, most firing units will involve only a handful of electrodes. (Some of

our signals were not local, and stretched over the entire electrode array in a line (e.g.,

Fig. A.1B). We ignored such axonal signals, which were also distinguished by their

low amplitude and triphasic shape.)

100



A.3.1 Preliminary visualization of our data

We first attempted a “geographical clustering”: from each event we found the mini-

mum of the potential on each channel and the channel containing the deepest mini-

mum (“leader channel”). We then used the absolute values of the minima as weights

in a weighted average of the locations of the 9 electrodes neighboring (and including)

the leader channel. This weighted average gave a particularly salient two-dimensional

feature, the event’s barycenter :

x̄ =

∑9
i=1 xi |minVi(t)|∑9
i=1 |minVi(t)|

.

The sums run over the 9 electrodes neighboring the leader, and xi is the location

of the ith neighbor electrode. We then augmented x̄ with a third feature, z, equal

to minus the peak potential (because peaks were generally negative, z was almost

always the absolute value of the peak). These three features gave a scatterplot that

clearly showed many well-separated clusters (Fig. A.2A), without any need to deduce

the “best” features by principal component analysis (Fig. A.2B).

This extension of the “triangulation” method developed for tetrode recordings

(Gray et al., 1995) already shows key aspects of the data: (a) many clusters are highly

dispersed in amplitude, and (b) some cluster pairs appear at nearly the same spatial

locations but are nevertheless well separated by amplitude. The first circumstance

means that we must allow for variable amplitude when fitting spikes to templates

representing the clusters. The second warns us that a simple least-squares fit to

amplitude could confound two distinct units. For this reason our spike-fitting method

employs a Bayesian prior for each cluster’s amplitude variation, allowing us to make

such discriminations.

Although the simple clustering based on spatial location in Figure A.2A looks
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Figure A.2: Visualization of data and flowchart of our method. (A)
22, 234 firing events cluster well in terms of their barycenter (voltage weighted
average spatial location) and absolute peak voltage (see text), despite wide
amplitude dispersion in some groups; each combination of color and marker size
corresponds to one spiking unit identified by the clustering method developed in the
text. Gray points were not assigned to any cluster. A total of 107 clusters are
marked. (B) Events cluster poorly when projected onto the three principal features
uncovered by principal component analysis (PCA). Coloring as in A. (C) Schematic
of our spike sorting method. Dashed lines involve a small subset of a full dataset.
The backwards arrow describes the introduction of new spike templates found after
the first pass of fitting; a total of two passes are performed. (D) The optics
algorithm orders all firing events into a linear sequence based on a distance measure
(see text). Events are lined up in this order (x-axis), and represented in terms of the
960 voltage samples recorded by all the electrodes during a 3.2 ms firing event
(y-axis; from top to bottom, 32 consecutive time samples from one channel, then 32
time samples from a second channel, and so on). The human operator highlights
bands of events (typically very clear to an observer) that appear to constitute a
single cluster; one such band is shown. Later automated diagnostics refine and
check these assessments.
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promising, it can be misleading. Indeed, the restriction of the weighted average

to the 9 electrodes around the leader can artificially separate clusters by biasing

the barycenter to be located near a particular electrode. This problem could be

alleviated by using a larger neighborhood, but on large arrays there will inevitably be

temporal collisions of spikes from distinct units. The barycentric features in Figure

A.2A will register such collisions as a haze of seemingly random spots. Thus, at a

minimum the MEA voltage traces must be segmented by exploiting the spatial locality

of recorded responses. Despite these shortcomings, Figure A.2A points out why the

more sophisticated method developed in this appendix can succeed: the “geographic”

information encoded by the MEA is a powerful intrinsic clue to each unit’s identity.

A.3.2 Summary of our method

Our sorting method is outlined in Figure A.2C (details in Methods). From a subset

of the raw data, we made a preliminary classification of spike events in terms of the

electrode on which they achieved their peak voltage. All events sharing a given leader

channel were cropped to the 9 electrodes neighboring the leader (i.e. the leader and

the 8 bordering electrodes), then ordered with the optics algorithm (Ankerst et al.,

1999) into a linear sequence. The optics algorithm places similar events nearby in

the sequence; distance was measured by a normalized Euclidean distance between

event voltage traces (see Methods). The linear sequence of events was displayed to

the user, along with all the recorded voltage samples for each event (Fig. A.2D), and

manually clustered. Although the ordering was based on events cropped to 9 chan-

nels, the full waveforms were displayed to the user (Fig. A.2D). Because the data

are ordered in one dimension, and because precision is not required in view of later

refinement, this manual step remains rapid. An automated method for cluster cutting
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could be implemented, but in view of the inevitable desire for human proofreading we

preferred to simply carry out this step by hand. From each preliminary cluster, we

estimated a template waveform representing the corresponding neural unit and then

fit the templates to the remaining data. Fitting was accomplished by a Bayesian algo-

rithm based on a probabilistic model capturing the dominant sources of variability we

observed in our data: background noise, spike amplitude variation, and overlapping

spikes from distinct units. After finding, for each event, the most probable template

which accounts for the event, we subtracted it and then iterated. Finally, the fit

results were used in a post-hoc validation of the initial clustering, and we repeated

the procedure in a second pass if necessary. Details of each step are presented in

Methods.

A.3.3 Tests of our method

optics-based clustering of a subset of our dataset led to 107 potential templates for

events from distinct neural units. Many of these templates had low amplitudes; such

low-amplitude templates were sometimes mistakenly fit to noise by our algorithm.

We therefore rejected units that were likely to contain substantial noise fits because

they were of amplitude less than or comparable to the noise (details in Methods).

This left fifty potentially reliable units that were accepted in our dataset.

Comparison with geographical clusters. Our optics-based procedure identi-

fied 107 potential clusters of events in a subset of the data. To check that the pro-

cedure gave reasonable results we plotted each event in the barycentric coordinates

of Figure A.2A and colored the events according to the assigned cluster label. The

clusters were spatially localized and separated in peak amplitude, as they should be

if they were produced by distinct single neurons. Gray dots in Figure A.2A were not
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assigned to any cluster. Some of these events contained overlaps of spikes that were

not resolved by the initial spatial segmentation of data during the preprocessing step.

The subsequent spike fitting step in our algorithm resolved most such ambiguities.

Error rates on synthetic data. To validate our algorithm we tested its per-

formance on synthetic data created by adding spikes to experimentally measured

background noise clips, then fitting templates to each clip. We took noise clips to be

3.2 ms segments of time during which no spikes were recorded on any channel; we

identified 14,000 such clips. For each clip, we randomly chose a fixed number (1, 3, or

5) of templates from the initial set of 107, with uniform probability and without re-

placement. We then added these templates to the noise clip at random times, leaving

a margin of 0.6 ms on either side of the clip to prevent waveforms from being cut off.

(Our typical template waveforms extended approximately 0.5 ms to either side of the

peak.) We gave each spike an amplitude drawn from a Gaussian distribution with

mean equal to its template amplitude and standard deviation 10% of the template

amplitude (similar to the observed distribution).

The template fitting algorithm was then run over this synthetic dataset and an-

alyzed for false positive and false negative rates (Fig. A.3A). We counted a false

negative for a template every time that template was present in an event but not fit

correctly to within 1 ms; we counted a false positive every time a template was fit to

the data without actually being present. The error rates increased with the number of

template overlaps; thus, for the fifty templates with amplitudes that exceed the noise,

we separately plotted error rate histograms for each degree of overlap. Error rates

were robustly low — even within extremely complex events with 5 overlapping spikes

(rare in the data), the majority of spike templates had an error rate of a few percent

or less. To gain perspective on these values, we measured the number of templates
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fit to each event in our recorded data: 60% of events contained 1 spike, 94% had 3 or

fewer spikes, and 98% had 5 spikes or fewer. Most of the errors were made on lower

amplitude templates for which amplitude variations can lead to confusion with noise.

Refractory violations. When sorting spikes recorded extracellularly, ground truth

can be assessed if simultaneous intracellular recordings are available (e.g. Harris et al.,

2001). Since we do not have such recordings, in order to validate our algorithm on real

data we examined the rate of refractory violations — i.e., the fraction of interspike

intervals of duration less that 1.5 ms. Refractory violations can appear in our sorted

data if spikes from distinct neural units are mis-assigned to the same unit or if noise

fluctuations are mistaken for spikes. Of the 107 templates constructed from the initial

clustering, 84% had less than 0.5% refractory violations and all had less than 2.5%,

providing evidence that the templates produced by the initial clustering rarely merge

distinct neural units (Fig. A.3C). More significantly, all fifty templates describing

units that rose reliably over the noise level had less than 0.5% refractory violations.

Furthermore, 96% of these had less than 0.1% refractory violations (Fig. A.3C). Note

that the percentage of refractory violations only provides a lower bound on the number

of misidentified spikes — nevertheless, the low refractory violation rates we observed

provide strong evidence that our algorithm makes few fitting mistakes on the units

otherwise identified as reliable.

Coverage. While the absence of refractory violations gives evidence that our algo-

rithm does not merge different neural units together, it might still split spikes from

the same unit into two distinct clusters if, e.g. there was substantial amplitude vari-

ation. To test for this, for each unit that was above the noise level we measured

the linear receptive field by taking the spike triggered average (STA) of the flickering
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Figure A.3: Tests of the method. (A) (Top) The cumulative percentage of
templates having false negative probabilities less than the indicated values. Error
rates were measured in fits to synthetic data as the fraction of times a fit was not
reported for a template when it was actually present. (Bottom) As above, but
showing false positive probabilities (fraction of times a fit was reported for a
template when it was not actually present). Results reported separately for fits to
events with different numbers of overlapping spikes (inset colors). (B) Correlation
in spike trains across fits by three different users (A, B, and C). Each curve
corresponds to one pair of users and gives the cumulative fraction of templates
having lower correlation than indicated. See main text for further details. (C)
Cumulative fraction of templates having fewer refractory violations than indicated.
Refractory violations are rare (see text). (D) The centers of 19 OFF cell receptive
fields recorded from a single piece of tissue. To map a neuron’s receptive field
center, we first find the peak (in space and time) of the spike-triggered average
stimulus. Restricting to the peak time, we apply cubic spline interpolation in space
and then draw contour lines at 75% of the peak value.
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checkerboard stimulus. We expect that such receptive fields will be connected regions

of the visual field, roughly elliptical in shape, and that no two units will have iden-

tical receptive fields. 31 of the 50 reliably identified units had enough spikes to give

reliable estimates of the spatial receptive field. Of these, examination of the temporal

kernel showed that 19 were OFF cells (responding to light decrement) and 12 were

ON cells (responding to light increment), consistent with the expected excess of OFF

ganglion cells (Ratliff et al., 2010; Chichilnisky and Kalmar, 2002; Peichl et al., 1987;

Peichl, 1989; Dacey and Petersen, 1992; Tauchi et al., 1992). None of these receptive

fields were identical, giving evidence that our algorithm did not split single units

into multiple clusters. Further, all of the receptive fields were connected, suggesting

that none of our clusters are mixtures of different RGC. In addition, essentially all of

the recorded area was covered by at least one receptive field (coverage of OFF cells

shown in Fig. A.3D). The density of RGCs in guinea pig varies from 250 mm−2 to

1500 mm−2 (Do-Nascimento et al., 1991). We record signals from a region slightly

larger than the electrode array, roughly 0.065 mm2. Thus the expected number of

RGCs is 16–97, consistent with our total of 31 receptive fields, keeping in mind that

many of the sluggish cell types would not have enough spikes to yield a good spike

triggered average.

Different users. Because our method involves human intervention, there exists a

risk that different users could obtain divergent results. One possible discrepancy is

that different users could identify distinct sets of templates. This would not pose a

serious problem in and of itself, as long as further analysis did not demand a complete

population. Moreover, the completeness of the template set is ultimately limited only

by the time invested by the operator in clustering. However, it would be problematic

if the spike trains fit to the same template by different users differed significantly.
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To assess the robustness of our method, we therefore had three different users (here

referred to as A, B, and C) carry out our spike sorting procedure on the same data

set and examined the correlation of the results. User A found 20 templates with large

enough spike counts to assess cross-correlation, B found 25, and C found 28. While

these numbers were smaller than the 50 we had identified previously, the difference

consisted of units with extremely low firing rates. We compared the three sets of

templates to identify those which were found by multiple users, by minimizing the

euclidean distance between template pairs. 18 templates agreed between A and B, 18

between A and C, and 23 between B and C. A total of 17 templates were found by

all three users. For each template that was found by at least two users, we computed

the cross-correlation coefficient of the corresponding spike trains. Across all pairs

of users, two-thirds of such templates had a spike train correlation higher than 0.95

(Fig. A.3B).

Complex events. A major challenge for a spike sorting algorithm is dealing with

variability in spikes produced by individual neural units. An even greater challenge

arises from spatio-temporal overlaps between spikes from different neural units. Our

low error rate in analysis of synthetic data containing both of these complexities (Fig.

A.3) provides evidence that our algorithm is effective at resolving overlaps and iden-

tifying variable spikes from given units. To test this further, we manually examined

many events in the real data which a human observer could identify as representing

overlaps or neural variability. Our algorithm typically did an excellent job of dealing

with variable-amplitude bursts (Fig. A.4B), as well as events that overlap in space

and time (Fig. A.4C).
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Figure A.4: Template fitting to complex events. (A) Example of a
single-spike event. Each subpanel shows the time course of electrical potential (in
µV, black curves), on a particular electrode in the 5× 6 array. After baseline
subtraction and high-pass filtering, a spatial whitening filter was applied (see
Methods). Red curves show the result of our fitting algorithm, in this case a single
template waveform representing an individual neural unit. (B) Detail of a more
complex event and its fit, in which a single unit fires a burst of 9 spikes of varying
amplitudes (upper left channel), while a different unit fires 5 additional spikes
(upper right channel). Simultaneous data from four neighboring electrodes are
shown. (C) Example of an overlap event and its fit, which now is a linear
superposition of 7 templates. (D) Detail of C, showing signals on four of the
electrodes. This time individual fit spikes are displayed. The red and green traces
show fit templates that, although similar, differ significantly in their overall
strength, and in the relative strengths of their features. The black trace shows a fit
to a low-amplitude template that was later classified as unusable, and hence
discarded, by the procedure in Methods, Step 4.
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Speed. Currently the main fitting code, written in matlab and run on a commer-

cial 2.5 GHz computer, requires about 5 ms of real computer time per fit spike for

each of the two passes. This is fast enough for our purposes; considerable further im-

provement is possible with existing software (Mex) and hardware (GPU) techniques.

A.4 Discussion

A review of early work on spike identification, prior to the widespread use of MEAs,

can be found in Lewicki (1998). Like some earlier work, our method separates spike

identification into distinct steps of clustering and fitting. The clustering step uses all

the waveform features, and makes no assumption about the cluster structure (e.g.,

that it is a mixture of Gaussian distributions). The fitting step acknowledges that

each neural unit’s signals are subject to intrinsic, multiplicative variation as well as

additive noise and uses a Bayesian approach to infer the identity of the most likely

firing unit.

Our approach is intentionally not fully automatic, since human proof-reading of

the results of automated clustering is generally essential. However, we have been

careful to use human judgement only where it is indispensable. Further, both the hu-

man and machine steps are organized so as to scale well with array area (or number

of units monitored). For example, cluster cutting was greatly simplified by represent-

ing spikes in an ordered one-dimensional array. This feature, along with systematic

exploitation of the spatio-temporal locality of spikes (Fig. A.2A), and the use of a

simple but powerful generative model, make our method scalable to large arrays.

Furthermore, we observed that our more ambiguous templates tended to be located

on the boundary of the array due to recording of units located some distance from

the electrodes. These “boundary effects” should become less important for larger ar-
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rays; we thus anticipate that the methods described in this appendix will yield more

accurate spike sorting for large, dense arrays.

Our method can be extended in many ways. For example, it would be straightfor-

ward to update the priors continually as fitting proceeds, allowing non-stationarity

and stimulus dependence to be handled more gracefully. In some applications it may

be preferable to report spike identification probabilistically, rather than just listing

the most-likely spike events; our formulas already provide this information. The

method can also be extended to non-planar arrangements of electrodes and neural

tissues, for, e.g., cortical applications. Finally, the generative model in the present

appendix does not take into account correlations within and between spike trains,

or the receptive field structure and stimulus dependence of responses. Performance

could be further improved on complex overlapping spike events via a bootstrapping

procedure. We could first use the simple independent, Poisson generative model of

this appendix to produce an accurate preliminary assignment of spikes to units. From

this assignment we could construct a more detailed model of correlated activity with

pairwise interactions (e.g., Schneidman et al., 2006; Pillow et al., 2008; Tkačik et al.,

2010). This more complex generative model could then be used to further refine spike

assignments for applications requiring a very high degree of accuracy.

A.5 Methods

The recordings used to develop our spike-sorting method were those reported in Chap-

ter 2 of this thesis. Here we present the method of identifying spikes in data of this

type. Our procedure had four steps, each detailed below: (1) Preprocessing, where

spatial locality was exploited to segment the data, (2) Clustering and template build-

ing, where a subset of the data was clustered to separate the responses of likely neural
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units, template waveforms for each neural unit were built, and their variability charac-

terized, (3) Spike fitting, where every firing event was separated into a superposition

of responses from different neural units, and (4) Validation of templates, where each

template and the spikes identified with it were tested for reliability.

A.5.1 STEP 1: Data preparation and segmentation

The first step in our procedure (Fig. A.2C) was to prepare the data for clustering of

events from different neural units by separating firing events from noise and segment-

ing spatio-temporally distinct regions of spiking activity on the electrode array.

Data from the array were sampled at 10KHz, high-pass filtered below 200 Hz with

a finite impulse response filter to remove low frequency baseline fluctuations, and

then packaged into 3.2 ms clips: (a) “noise clips” in which the potential never fell

below −30 µV and (b) “spike events” surrounding moments at which the potential

crossed −40 µV. The duration of the clip was chosen to include the full extent of

most spike events with a small margin on either side. The threshold was set such

that there were no discernible spikes among the subthreshold voltage deflections,

although this low-amplitude noise likely contained contributions from spikes of distant

neurons. Clips with potentials between −30 µV and −40 µV were neither used to

characterize noise (since they might contain small spikes) nor used to identify spikes

(since they were very noisy). The threshold for spikes was set to ∼ 4 times the

standard deviation of the potential in the noise clips. Each spike event thus consisted

of N = 3.2 ms × 10 kHz × 5 × 6 = 960 numbers, the potentials on a 32 × 5 × 6

grid of space-time pixels (“stixels”). Spike events sometimes overlapped each other,

for example if a burst of spikes lasted longer than 3.2 ms. Cluster identification and

spike template building (Step 2) used three or four 30-second segments sampled from
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different times, but subsequent spike fitting and sorting (Step 3) used all the data.

Electrodes can share signals because of instrumental cross-talk and because the

activity of neurons spreads passively to nearby electrodes. We modeled both effects

by a linear filter that spatially blurs signals. To find this filter empirically, we noted

that it also applies to the noise. Accordingly, we measured the spatial covariance

of noise clips, finding that it was spatially isotropic and had a roughly exponential

falloff, with a correlation length of ∼ 30 µm. We applied the square root of the inverse

of this covariance matrix to all data, and used the resulting “spatially whitened” data

for all analysis. In some datasets this transformation sharpened the individual spikes

spatially, improving our ability to distinguish them in the clustering stage. In other

datasets the transformation had little effect. Our data also exhibited temporal corre-

lations, but these have a different physical origin from the essentially instantaneous

passive spatial spread. We found that temporal whitening prior to clustering (Pouzat

et al., 2002) worsened our signal-to-noise ratio and impeded cluster determination.

Thus we addressed temporal correlations later, during the spike fitting.

Segmentation. Each spike event is a superposition of spikes from an unknown num-

ber of distinct neural units with stereotyped waveforms that we sought to identify.

We first spatially segmented the data to isolate waveforms from individual units and

their immediate neighbors. To this end, we identified all stixels at which the potential

was more negative than the threshold of −40 µV and divided this set into connected

components (two stixels were considered connected if they were nearest neighbors in

either time or space). Within each connected patch we identified the absolute peak

electrode and time, then extracted a 3.2 ms region centered temporally on the peak

time and cropped spatially to a neighborhood of nine channels surrounding (and in-

cluding) the leader electrode. Thus each spike event was segmented into one or more
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cropped events; each of which was then classified according to its leader electrode.

A similar segmentation method has recently been applied to the spike identification

problem by J. Schulman (unpublished); see http://caton.googlecode.com. In sub-

sequent clustering, only those events having the same leader electrode were directly

compared to each other (Litke et al., 2004).

Some cropped events might be composites of two spike types corresponding to

neighboring, but distinct, neural units. However, this step at least decomposes com-

posite events whose components are well separated in space or in time, and hence re-

duces the combinatorial burden inherent in large arrays; later steps handle composites

missed at this stage. The method also ensures that, if spikes from two well-separated

units frequently co-occur, the two units will nevertheless be correctly handled as

separate.

A.5.2 STEP 2: Cluster identification and template building

The second step in our procedure (Fig. A.2C) was to cluster spiking events in a subset

of the data (four 30-second segments) into groups that had similar waveforms and

thus probably came from the same neural unit. For each cluster, we produced a

template waveform describing the typical spike and determined the distribution of

amplitude rescalings that best matched spikes to this template.

Cluster identification. In order to group events into clusters based on the sim-

ilarity of their waveforms, some previous approaches have sought a low-dimensional

set of discriminable waveform “features,” and have assumed that variability between

events in the same cluster arises only from additive noise. In practice, systematic

variation in the shape of spikes from single units is often observed that is not well de-

scribed by additive noise. Furthermore, identifying the correct set of salient waveform
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features that discriminate between units is challenging (Fig. A.2B; Quiroga, 2007).

Thus, seeking a technique that did not require feature extraction, we adapted the

optics algorithm (Ankerst et al., 1999). Briefly, optics computes distances between

all pairs of waveforms, then orders the waveforms such that similar ones are placed

close together in a single linear sequence. optics makes no assumption that clusters

have a Gaussian distribution in feature space, nor does it set any threshold density

in that space to trigger cluster identification. The linear ordering allows for easy

visualization and cutting of clusters.

We applied this algorithm to cropped and segmented spike events (obtained in

Step 1) which were upsampled by a factor of 5 (using matlab’s cubic spline inter-

polation) and then temporally aligned to place the absolute peak of the waveform

at a common position before downsampling again. The interpolation was necessary

to compensate for apparent variations in spike waveforms due to discrete sampling

(Lewicki, 1994). To reduce the fuzziness of the clusters, we masked spike events by

setting voltage samples to zero if they were less negative than −15µV . As a dis-

tance metric between the masked potentials V and V′ of two spike events, we chose

d(V,V′) =
(∑N

i=1[(Vi − V ′i )2/(k
√
|Vi|+ |V ′i |)]

)1/2
where i indexes the potentials at

each channel and timepoint, and k is the total number of nonzero potentials after

masking of either V or V′. Division by k normalized for the effective dimensional-

ity (given by the number of dimensions containing nonzero entries). We observed

that higher voltage traces tended to have a higher variance; the factor
√
|Vi|+ |V ′i |

partially compensated for this, leading to more homogeneous clusters.

We constructed a graphical user interface (gui) that allowed a human operator

to visualize each spike event in the optics sequence as a vertical column of pixels

color-coded by voltage (see Fig. A.2D). Transitions between distinct spike types were

usually obvious to the operator, who could quickly find and select bands corresponding
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to each spike type. (For the data in this appendix, the operator found over 100 such

clusters in about 30 minutes.) The software then wrote the corresponding cropped

events to a set of data files. The ease of separation likely occurred because clusters

could already be fairly well delineated with just the “geographical” features in Fig.

A.2A.

Up to this point, the events being clustered were still segregated into batches

according to their leader channel x0, y0. Thus it was possible for a single unit to

be multiply identified: If it stimulated two neighboring electrodes nearly equally,

the unit could generate events in both of the corresponding batches. We tested

for duplicates by manually examining pairs of clusters whose medians had a large

cross-correlation and merged the clusters if necessary. There was also a possibility

that the initial clustering would assign multiple units to one cluster. In these cases,

visual examination of the superposed waveforms of the cluster often showed it to be

a composite of multiple units. This was resolved by doing a principal components

analysis on the waveforms in that cluster: if the cluster was composite, at least one of

the first few principal component weights had a multimodal histogram. The cluster

was split by thresholding at the valleys of the histogram; we then tested whether any

of the split components ought to be merged with an existing cluster. We developed

a graphical user interface to assist the operator in performing these merging and

splitting steps.

Generally it was clear to the human operator when a band in the gui output

was clean enough and wide enough (contained enough events) to generate a good

cluster; thus there was no need to specify a priori the desired number of clusters, an

advantage over many automated clustering procedures. Marginally significant clusters

were either eliminated during template building (see below), or else generated fits that

were themselves discarded during spike fitting (Step 3) and evaluation of template
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reliability (Step 4). Any significant clusters missed at this stage, for example because

of the small fraction of the data used in this step, were found and reincorporated later

during spike fitting (Step 3).

Template building. Next we created a consensus waveform (“template”) sum-

marizing each cluster of cropped, upsampled events and characterized meaningful

deviations from that consensus. We created a draft template by finding the pointwise

median over all events in a cluster and then aligned each event to the draft template

by maximizing their cross-correlation over time shifts, which we found to be more

accurate than aligning to each event’s peak time. Finally, we found the pointwise

median (to suppress the effects of outliers) of the aligned events; this waveform was

our template (Fig. A.5B).

A key step was to realize that, in our data, the most significant sources of variation

of individual spikes from the template were (a) additive noise, and (b) overall mul-

tiplicative rescaling of the spike’s amplitude (Fig. A.5C). To quantify (b), we found

the rescaling factor that optimized the overlap of each spike with its template, then

stored the mean and variance of those factors in a lookup table for later use as a prior

probability for amplitude variation. We also logged the number of events associated

to each template, converted to an approximate firing rate, and saved those rates,

again for later use as a prior.

A.5.3 STEP 3: Spike fitting

The third step in our procedure was to fit the spike templates constructed in Step

2 to each firing event in the data in order to determine which neural units were

responsible for the activity. To this end, we constructed a simple generative model

of firing events, and included distributions of firing rate and of amplitude variation
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Figure A.5: Template building. (A) Detail of 40 of the aligned events used to
compute a template, upsampled and shifted into alignment as described in the text.
Some outlier traces reflect events in which this unit fired together with some other
unit; the unwanted peaks occur at random times relative to the one of interest and
thus do not affect the template. (B) Blue, detail of a template waveform, showing
the potential on 12 neighboring electrodes. Time in ms runs horizontally; the
vertical axis is potential in µV. Red, for comparison, the pointwise mean of the 430
waveforms used to find this template (nearly indistinguishable from the blue curve).
(C) Detail of A, showing only the leader channel. Each trace has been rescaled by a
constant to emphasize their similarity apart from variation in overall amplitude.

for each template. The firing probabilities and amplitude distributions were inferred

from the previously clustered data, and therefore served as priors in the template

fitting procedure described below. The fitting procedure iteratively identified and

subtracted the most likely templates in each firing event.

The cluster templates were produced using an upsampled 50 kHz sample rate, but

for fitting to data we downsampled back to the actual 10 kHz, in each of 5 “reading

frames”; that is, we created five versions of each template corresponding to subsample

shifts. Let Fµ;x,y(t) be the potential of template µ on the electrode with address x, y,

at time t, with time measured in units of the sampling time δt = 0.1 ms, and the

template peak centered within the 3.2 ms template frame at the central point t = 16.
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We use the vector notation Fµiti for the template µi shifted to time ti, i.e. its x, y, t

component is Fµi,x,y(t− ti).

Generative model The goal of spike fitting is to identify, for each spike event, all

the units {µi} which contribute to the event and their firing times {ti} irrespective

of their amplitudes {Ai}. Thus we assumed a probabilistic generative model of the

data (Atiya, 1992; Lewicki, 1994; Sahani, 1999; Pouzat et al., 2002) and computed the

posterior probability of {(µi, ti)} given the observed data. We assumed that a spike

event V could be explained by a linear combination of templates Fµiti with variable

amplitudes Ai and correlated, zero-mean Gaussian noise δV:

V =
K∑
i=1

AiFµiti + δV. (A.1)

HereK is the (a priori unknown) number of units contributing to the event. Given this

model, to obtain the posterior probability that a firing event consists of a particular

set of templates, we need to specify the prior probabilities of µ, t, and A. We chose

a Gaussian prior for the amplitude A, a Poisson prior for µ, and a uniform prior

for t. Although A is a strictly positive quantity, we modeled its distribution with

a Gaussian for analytical tractability. In practice, the distribution of A was tightly

concentrated around its mean of approximately 1 and the Gaussian approximation

had negligible weight at negative values (Fig. A.6D).

Our generative model assumes that spike waveforms from a given neural unit are

stereotyped, apart from their amplitude. We did observe considerable variation in

spike amplitude (Fig. A.2A), in part due to bursting (Fee et al., 1996; Harris et al.,

2001), and thus included it in the model as a distribution of amplitude rescaling

factors. Allowing for the possibility of slight variations in spike width also slightly
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improved our results. But there was little additional variability to be modelled (Fig.

A.5C). Our model also assumes that signals from different units combine linearly, as

does the noise. This is reasonable, because the biophysics of extracellular recording is

governed by the equations of electrodynamics, Ohm’s law, and other linear relations.

A third assumption is that noise and the variability of spike amplitude are each well

described by Gaussian distributions. Assuming Gaussianity (well-confirmed in some

settings (Pouzat et al., 2002), but not others (Shoham et al., 2003)) allows for a fast,

partially analytic approach to fitting. We validate this assumption quantitatively

below.

Our generative model has a Poisson prior probability for firing by each neural unit,

i.e. a prior that is as unstructured as possible while being consistent with the mean

firing rate. The prior probability could be made somewhat more accurate by including

refractory periods, the likelihood of bursting, and correlations between neural units.

But this would significantly increase the complexity of the model, and inferring the

distribution would require much more data (Schneidman et al., 2006).

Finally, we assumed that all statistical distributions that enter into the model are

stationary and independent of the stimulus. While our retinal preparation does not

suffer electrode drift (as might implanted electrodes), there are occasionally shifts in

spike amplitudes and firing rates over the course of a lengthy experiment. Although

in principle our fixed priors could lead to biased estimates, these biases are small

when spike identification is robust, i.e. when the likelihood function dominates the

prior in the posterior probability of a neural unit (Ventura, 2009).

Noise characterization. In the context of our generative model, in order to assess

the probability that the residual after subtracting a putative spike is indeed noise, we

first need to measure the distribution of noise. After applying the spatial whitening
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filter (described in Step 1), our noise clips are decorrelated in space, but not in time

(Fig. A.6A). Assuming that the noise has a correlated Gaussian distribution, we need

the inverse of the noise covariance matrix, C−1. One approach to finding C−1 is to

invert the empirical covariance matrix C of a large set of noise clips. Besides being

intractable for larger arrays, this approach has the disadvantage that a numerically

stable evaluation requires a very large noise sample.

For these reasons we instead took a parametric approach. We evaluated the covari-

ance C(x, y, t;x′, y′, t′) and noted that it was approximately diagonal and translation-

invariant in space (i.e. proportional to δx,x′δy,y′ and independent of x and y). It was

also approximately stationary, i.e. invariant under time shifts t→ t+∆t, t′ → t′+∆t,

and thus only depended on t− t′. Finally, we observed that the time dependence of

C was roughly an exponential, ≈ ηe−|t−t
′|/τ (Fig. A.6A). This gave:

C−1(x, y, t;x′, y′, t′) = η−1 × δx,x′δy,y′


(1 + ξ2)/(1− ξ2) , if t = t′

−ξ/(1− ξ2) , if t = t′ ± δt

0 , otherwise.

(A.2)

Here δt = 0.1 ms is the sample time, and δx,x′ is the Kronecker symbol. η and

ξ = e−δt/τ are obtained from the noise covariance. The dataset used in Results yields

noise strength η ≈ 57 µV2 and ξ ≈ 0.58.

By construction, our noise model reproduces the 2-point correlations in the noise

clips. However, real noise may not be Gaussian distributed. One check on this

is to construct the transformed quantities U = C−1/2V empirically, find their full

distribution as V ranges over noise clips (the “one-point marginal” distribution),

and compare to a normal distribution. Figure A.6B shows this comparison, lumping

together every element of U. The empirical noise deviates from a Gaussian only in

122



the far tails that contain very little weight.

Fitting algorithm for single spikes. Given the above characterization of the

noise distribution, and our Gaussian prior for spike amplitude variation, the genera-

tive model Eqn. A.1 defined the posterior probability P ({µi, ti, Ai}|V) for templates

{µi} to be present at times {ti} with amplitude scale factors {Ai}, given the recorded

potentials V. We ideally would have marginalized P ({µi, ti, Ai}|V) over the nuisance

parameters {Ai} and then maximized with respect to {(µi, ti)} to identify the most

probable set of units and spike times. In practice, this maximization is computa-

tionally expensive to perform on many templates simultaneously. Instead, we used a

greedy approximation which fit one template at a time.

We first assumed that the event contained exactly one spike and identified the

spike’s type µ and time of occurrence t. Bayes’ formula gives for the posterior prob-

ability:

P (µ, t, A|V)dtdA ∝ P (V|µ, t, A)P (µ, t, A)dtdA , (A.3)

up to a constant independent of µ, t, and A. Here P (µ, t, A) is the prior probability

of the template µ appearing at time t with an amplitude A:

P (µ, t, A)dtdA = rµdt(2πσµ
2)−1/2 exp

(
−(A− γµ)2/2σ2

µ

)
dA , (A.4)

where γµ is the mean and σ2
µ the variance of the scale factor for cluster µ; rµ is the

estimated overall rate of firing for this cluster. The generative model gave the prob-

ability of the observed potential V given µ, t, A (the likelihood) as P (V|µ, t, A) =

Pnoise(V−AFµ,t) , where Pnoise is a Gaussian distribution with zero mean and covari-

ance C (Eqn. A.2). Combining the likelihood and prior, then integrating out A, gave
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Figure A.6: After fitting spikes, only noise remains. (A) Noise covariance
after spatial whitening. Subpanels : spacetime covariance C(x, y, t;x∗, y∗, t+ ∆t)
between the central channel and its neighbors as a function of ∆t, for various fixed t
(colored curves). Central panel (dotted line): the function
(57 µV2) exp(−∆t/(0.18 ms). (The various t lines and the dotted line are too
similar to discriminate visually.) Horizontal axes: ∆t in ms; Vertical axes: C in µV2.
(B) Blue curve, Semilog plot of the one point marginal probability density function
of decorrelated noise samples. Red curve, same quantity, evaluated on residuals after
spikes have been removed from spike events. Dotted curve, Gaussian chosen to
represent this distribution. (C) Green, detail of the same template waveform shown
in Figure A.5. Red, pointwise mean of the residuals after the fit spike is subtracted
from 4,906 one-spike events of this type. The fact that it is nearly flat validates our
assumption that spikes vary only in overall amplitude, and that noise is independent
of spiking. Blue, pointwise standard deviation of the residuals, again evidence that
only noise remains after fitting and subtracting spikes. (D) Top, histogram of fit
values of the scale factor A for a template with peak amplitude −168 µV (well above
noise) obtained without a prior on A, superposed with a Gaussian of the same mean
and variance. Bottom, similar histogram for a low amplitude template. A secondary
bump appears, due to noise fits, but is well separated from the main peak; a cutoff
is shown as a dashed green line. The superposed Gaussian has mean and variance
computed from the part of the empirical distribution lying above the cutoff.
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the formula we ultimately used in our fitting algorithm:

P (µ, t |V)

P (no spike|V)
=

rµdt√
1 + σ2

µF
t
µ,tC

−1Fµ,t

exp

(
1

2σ2
µ

(γµ + σ2
µV

tC−1Fµ,t)
2

1 + σ2
µF

t
µ,tC

−1Fµ,t

−
γ2µ
2σ2

µ

)
.

(A.5)

We have expressed Eqn. A.5 as a ratio with the probability that no templates con-

tributed to the event. Finally, we varied µ and t to find the template and time which

maximized Eqn. A.5. This gave the first fit template, µ∗, its firing time, t∗, and the

probability ratio of the fit.

We improved scalability by a slight approximation. Starting from a spike event,

we first identified the time and electrode address of its absolute peak and restricted

the matrix products in expression Eqn. A.5 to only sum over a spatiotemporal neigh-

borhood surrounding this peak. The size of the neighborhood was chosen to match

the typical spatial extent and temporal duration of the templates.

Multiple spikes. In principle, we could have extended the single template proce-

dure described above to compare the probabilities of all possible combinations of two

or more spikes. Such an exhaustive approach, however, would quickly have become

impractical. We instead noted that, even if an event contains multiple spikes, the

single-spike fit described above still identified that template whose removal would

lead to the largest increase in the probability that the remaining waveform is noise.

Thus we adopted an iterative (matching-pursuit or “greedy”) approach: starting with

a spike event, we found the absolute peak, fit it by the method described above, sub-

tracted the fit, and then repeated the process (Segev et al., 2004).

The single-spike procedure found the most probable spike type µ∗; we then com-

puted the scale factor A and spike time t′ that would allow the fit spike to be sub-

tracted as fully as possible. We thus held µ fixed to µ∗ and minimized the ordinary
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norm ‖V−AFµ∗,t′‖2 over A and t′. The scaled and shifted template obtained in this

way was subtracted before repeating the single-spike fitting procedure. The param-

eter t′ was only used for template subtraction. The spike time which was actually

reported by the algorithm was not t′, but t∗ described above. In practice, t′ was

always very close to t∗.

To determine when to stop fitting spikes, we adopted a likelihood ratio test. At

each step of the fitting loop, we summed Eqn. A.5 over t, obtaining the probability

ratio that an additional spike of type µ is present relative to the probability that

no additional spike was present. We can then say that fitting an additional spike

is justified if the ratio exceeds unity for some µ∗. The fitting loop terminates when

the significance test fails. Note that the factor rµdt (the prior probability of a spike

from unit µ) in Eqn. A.5 is typically much smaller than one. In order for the

fitting algorithm to accept a candidate spike, the remaining terms in Eqn. A.5,

which relate to goodness-of-fit, must be large enough to overcome this small factor.

Furthermore, the amplitude prior is typically concentrated tightly around its mean.

The marginalization over amplitudes thus suppresses templates that would have to

stretch by a large factor in order to fit the data. Both of these effects counteract

overfitting. Figure A.4C, D shows an example of the successful decomposition of a

multiple-spike event using our method.

Second pass. The spike fitting algorithm might exit prematurely if a spike is

present that does not appear in the list of templates initially extracted from the

small subset of data. In this case, the fit will terminate, even though other identi-

fiable spikes of lower amplitude may remain. To check this, if the residual exceeds

V ∗trust = −44 µV after termination, the code declares an “incomplete fit” and writes

the residual to a file; the small set of resulting waveforms are then reintroduced into
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our clustering code and used for a second round of fitting. In this way we can be

assured of finding even rare spike types, without having to perform clustering on the

complete dataset. Using this method, only 0.02% of fits in the second pass were clas-

sified as incomplete. It can also happen that the small data sample used for clustering

gives a poor estimate of some firing rates and amplitude distributions that enter our

priors for spike fitting. Thus, before the second pass of fitting the priors are updated

based on the outcome of the first pass.

A.5.4 STEP 4: Evaluation of template reliability

After spike identification, we performed a final evaluation to test whether templates

and their sorted spike trains were trustworthy. The primary criteria were: (1) resid-

uals after spike removal should resemble noise, (2) the histogram of amplitude scale

factors should be unimodal, and (3) the inter-spike interval (ISI) distributions should

display “refractory holes,” whereas the cross-correlation functions should not. Reli-

able templates were taken to be those that passed all these tests. Most unreliable

templates failed multiple tests.

Residuals. For single-spike events, the residual signal after subtracting the fit

should resemble pure noise. In particular, it should be stationary in time and

translation-invariant in space. Figure A.6C shows that these expectations were met,

validating our assumptions. For example, if the unit in Figure A.6C had significant

variations other than amplitude rescaling, or if there were an amplitude-dependent

noise process, then we would expect significant non-stationarity in the residual curves

(Lewicki, 1994). To test that, after termination, the residual of a spike event consists

only of noise, we computed the one-point marginal distribution of waveforms after

all known spikes had been removed. Figure A.6B shows that this distribution closely
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resembled that of noise clips, indicating that our code indeed found the significant

spikes. Of particular note, the standard deviation of the residuals matched that of the

noise: For each template, we found the standard deviation of the residuals of events

to which only that template was fit. This value ranged from 6.92 µV to 8.63 µV,

while the noise standard deviation was 7.57 µV.

Amplitude. For large amplitude templates, the distribution of amplitude scale

factors A obtained during spike fitting was typically close to Gaussian (Fig. A.6D).

On the other hand, for low amplitude templates, accidental noise fits can sometimes

lead to a histogram of A values with a secondary, low-amplitude peak well separated

from the expected peak near A ≈ 1 (Fig. A.6D). Examining the amplitude histograms

allowed us to quickly set an individual threshold for each reliable template. Fit spikes

with A value below this threshold were discarded. If two peaks were discernible but

overlapped significantly, the entire cluster was deemed unreliable and its spikes were

not used in further analysis. In addition, our trigger rejected any spike event that

did not cross −40 µV. Thus, any cluster whose amplitude histogram extended closer

to zero than this was probably missing some true spikes and was not used.

ISI distribution and cross-correlation. Interspike interval distributions for sin-

gle units are expected to have a refractory hole; our analysis of these distributions

was described in Results. Two distinct neural units need not respect any mutual re-

fractory period. Their spike-time cross-correlation function is therefore not expected

to display any hole. We looked for such unexpected behavior and, when found, reex-

amined the corresponding templates. If the templates appeared to be duplicates, we

merged the corresponding spike trains (Litke et al., 2004; Segev et al., 2004). Another

diagnostic for duplicate templates is a coincident receptive field.
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