261 research outputs found

    Dish networks: Protocols, strategies, analysis, and implementation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Performance Optimization in Wireless Local Area Networks

    Get PDF
    Wireless Local Area Networks (WLAN) are becoming more and more important for providing wireless broadband access. Applications and networking scenarios evolve continuously and in an unpredictable way, attracting the attention of academic institutions, research centers and industry. For designing an e cient WLAN is necessary to carefully plan coverage and to optimize the network design parameters, such as AP locations, channel assignment, power allocation, MAC protocol, routing algorithm, etc... In this thesis we approach performance optimization in WLAN at di erent layer of the OSI model. Our rst approach is at Network layer. Starting from a Hybrid System modeling the ow of tra c in the network, we propose a Hybrid Linear Varying Parameter algorithm for identifying the link quality that could be used as metric in routing algorithms. Go down to Data Link, it is well known that CSMA (Carrier Sense Multiple Access) protocols exhibit very poor performance in case of multi-hop transmissions, because of inter-link interference due to imperfect carrier sensing. We propose two novel algorithms, that are combining Time Division Multiple Access for grouping contending nodes in non-interfering sets with Carrier Sense Multiple Access for managing the channel access behind a set. In the rst solution, a game theoretical study of intra slot contention is introduced, in the second solution we apply an optimization algorithm to nd the optimal degree between contention and scheduling. Both the presented solutions improve the network performance with respect to CSMA and TDMA algorithms. Finally we analyze the network performance at Physical Layer. In case of WLAN, we can only use three orthogonal channels in an unlicensed spectrum, so the frequency assignments should be subject to frequent adjustments, according to the time-varying amount of interference which is not under the control of the provider. This problem make necessary the introduction of an automatic network planning solution, since a network administrator cannot continuously monitor and correct the interference conditions su ered in the network. We propose a novel protocol based on a distributed machine learning mechanism in which the nodes choose, automatically and autonomously in each time slot, the optimal channel for transmitting through a weighted combination of protocols

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Enabling Technologies for Ultra-Reliable and Low Latency Communications: From PHY and MAC Layer Perspectives

    Full text link
    © 1998-2012 IEEE. Future 5th generation networks are expected to enable three key services-enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements

    Enabling Parallel Wireless Communication in Mobile Robot Teams

    Get PDF
    Wireless inter-robot communication enables robot teams to cooperatively solve complex problems that cannot be addressed by a single robot. Applications for cooperative robot teams include search and rescue, exploration and surveillance. Communication is one of the most important components in future autonomous robot systems and is essential for core functions such as inter-robot coordination, neighbour discovery and cooperative control algorithms. In environments where communication infrastructure does not exist, decentralised multi-hop networks can be constructed using only the radios on-board each robot. These are known as wireless mesh networks (WMNs). However existing WMNs have limited capacity to support even small robot teams. There is a need for WMNs where links act like dedicated point-to-point connections such as in wired networks. Addressing this problem requires a fundamentally new approach to WMN construction and this thesis is the first comprehensive study in the multi-robot literature to address these challenges. In this thesis, we propose a new class of communication systems called zero mutual interference (ZMI) networks that are able to emulate the point-to-point properties of a wired network over a WMN implementation. We instantiate the ZMI network using a multi-radio multi-channel architecture that autonomously adapts its topology and channel allocations such that all network edges communicate at the full capacity of the radio hardware. We implement the ZMI network on a 100-radio testbed with up to 20-individual nodes and verify its theoretical properties. Mobile robot experiments also demonstrate these properties are practically achievable. The results are an encouraging indication that the ZMI network approach can facilitate the communication demands of large cooperative robot teams deployed in practical problems such as data pipe-lining, decentralised optimisation, decentralised data fusion and sensor networks

    Interference and power control in ad hoc wireless networks

    Get PDF
    This thesis looks at the problem of interference when Power Control is applied to maximize the network capacity. In ad hoc networks, the RTS/CTS dialog or virtual carrier sensing is less effective since a transmission takes place over three ranges: interference range, carrier sense range and transmission range. The values of interference range do not interrupt a transmission if it is close to noise floor, however the carrier sense range is capable of disrupting a transmission. Location, packet size and the traffic must be considered as important parameters in power control protocols. The majority of the work is focused at the physical and link layers
    corecore