7 research outputs found

    Stability analysis of drinking epidemic models and investigation of optimal treatment strategy

    Get PDF
    In this research we investigate a class of drinking epidemic models, namely the SPARS type models. The basic reproduction number is derived, and the system dynamical behaviours are investigated for both drinking free equilibrium and drinking persistent equilibrium. The purpose is to determine the long term optimal treatment method and the optimal short period vaccination strategy for controlling the population of the periodic drinkers and alcoholics

    SVEIRS: A New Epidemic Disease Model with Time Delays and Impulsive Effects

    Get PDF
    We first propose a new epidemic disease model governed by system of impulsive delay differential equations. Then, based on theories for impulsive delay differential equations, we skillfully solve the difficulty in analyzing the global dynamical behavior of the model with pulse vaccination and impulsive population input effects at two different periodic moments. We prove the existence and global attractivity of the “infection-free” periodic solution and also the permanence of the model. We then carry out numerical simulations to illustrate our theoretical results, showing us that time delay, pulse vaccination, and pulse population input can exert a significant influence on the dynamics of the system which confirms the availability of pulse vaccination strategy for the practical epidemic prevention. Moreover, it is worth pointing out that we obtained an epidemic control strategy for controlling the number of population input

    Epidemic Models with Pulse Vaccination and Time Delay

    Get PDF
    In this thesis we discuss deterministic compartmental epidemic models. We study the asymp- totic stability of the disease-free solution of models with pulse vaccination campaigns. The main contributions of this thesis are to extend the literature of pulse vaccination models with delay. We take results for ordinary differential equation models and extend them to models with delay differential equations. Model generalizations include the use of a general incidence term as an upper bound for the actual incidence, and the use of switch parameters to approximate time-varying parameters. In particular, we look at contact rate parameters which are piecewise constant or time-varying. We extend literature results for non-delay general incidence models to find uniform asymptotic stability of the disease-free solution which helps us to add delay. We find an upper bound for the susceptible population under pulse vaccination and use this bound to tighten results for eradication thresholds: that is, we use this upper bound to find sufficient conditions for the uniform asymptotic stability of the disease-free solution of delayed pulse vaccination models. We extend literature results for constant contact rate bilinear incidence delay models to models with periodic time-varying contact rate, and determine conditions under which the disease-free solution is uniformly asymptotically stable for small delay. We also find conditions for disease permanence in the corresponding non-delay, time-varying-parameter pulse vaccination model. For piecewise- constant contact rate bilinear incidence models we again find thresholds which guarantee uniform asymptotic stability under small delay. We additionally discuss the effects of time-varying total population on our results, through a change of variables to population fractions. The total population is commonly held constant in the literature, for analytical simplicity, so we survey the methods for time-varying total population and the effects of such variation on the pulse vaccination schemes. We retain thresholds for eradication by considering the compartment populations as fractions of the total, instead of population numbers. The result is also applied to constant-population delay systems. When changing from standard incidence to bilinear incidence in delay systems, we discuss a way to estimate the effect of time-varying N. We support our theory with simulation results

    Analysis of a delay nonautonomous predator-prey system with disease in the prey

    Get PDF
    In this paper we have considered a nonautonomous predator-prey model with time delay due to gestation, in which a disease that can be transmitted by contact spreads among the prey only. Here, we have established some sufficient conditions on the permanence of the system by using inequality analytical technique. By Lyapunov functional method, we have also obtained some sufficient conditions for global asymptotic stability of this model. We have observed that the time delay has no effect on the permanence of the system but it has an effect on the global asymptotic stability of this model. The aim of the analysis of this model is to identify the parameters of interest for further study, with a view to informing and assisting policy-makers in targeting prevention and treatment resources for maximum effectiveness

    Dynamics of a Stage Structured Pest Control Model in a Polluted Environment with Pulse Pollution Input

    Get PDF
    By using pollution model and impulsive delay differential equation, we formulate a pest control model with stage structure for natural enemy in a polluted environment by introducing a constant periodic pollutant input and killing pest at different fixed moments and investigate the dynamics of such a system. We assume only that the natural enemies are affected by pollution, and we choose the method to kill the pest without harming natural enemies. Sufficient conditions for global attractivity of the natural enemy-extinction periodic solution and permanence of the system are obtained. Numerical simulations are presented to confirm our theoretical results

    Global dynamics of an impulsive vector-borne disease model with time delays

    Get PDF
    In this paper, we investigate a time-delayed vector-borne disease model with impulsive culling of the vector. The basic reproduction number R0 \mathcal{R}_0 of our model is first introduced by the theory recently established in [1]. Then the threshold dynamics in terms of R0 \mathcal{R}_0 are further developed. In particular, we show that if \mathcal{R}_0 < 1 , then the disease will go extinct; if \mathcal{R}_0 > 1 , then the disease will persist. The main mathematical approach is based on the uniform persistent theory for discrete-time semiflows on some appropriate Banach space. Finally, we carry out simulations to illustrate the analytic results and test the parametric sensitivity on R0 \mathcal{R}_0

    Analysis of a nonautonomous HIV/AIDS epidemic model with distributed time delay

    Get PDF
    In this paper, we have considered a nonautonomous stage‐structured HIV/AIDS epidemic model through vertical and horizontal transmissions of infections, having two stages of the period of infection according to the developing progress of infection before AIDS defined would be detected, with varying total population size and distributed time delay to become infectious (through horizontal transmission) due to intracellular delay between initial infection of a cell by HIV and the release of new virions. The infected people in the different stages have different ability of transmitting disease. We have established some sufficient conditions on the permanence and extinction of the disease by using inequality analytical technique. We have obtained the explicit formula of the eventual lower bounds of infected people. We have introduced some new threshold values _Ro and R* and further obtained that the disease will be permanent when _Ro > 1 and the disease will be going to extinct when R* < 1. By Lyapunov functional method, we have also obtained some sufficient conditions for global asymptotic stability of this model. Computer simulations are carried out to explain the analytical findings. First published online: 09 Jun 201
    corecore