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Abstract

In this research we first propose a more realistic drinking epidemic model, namely

the SPARS (susceptible-periodic-alcoholic-recovered drinkers) model. The ba-

sic reproduction number,R0, is then derived, and then we study the dynamical

behaviours of both drinking free equilibrium and drinking persistent equilibrium.

The purpose is to determine long term optimal treatment and short period pulsing

strategies for controlling the population of the periodic drinkers and alcoholics.

For long term optimal treatment, we show that an optimal control exists

which minimizes the number of periodic and hazardous drinkers (alcoholics). The

optimality is determined by using the Pontryagin Maximum Principle (PMP)

and the dynamic behaviour has been revealed through numerical simulations by

solving the underlying system of differential equations.

For short period pulsing strategy, we apply the pulse vaccination strategy

(PVS) in the SEIRS epidemic model to our SPARS drinking epidemic model.

Analytical results have been established for the stability of the periodic eradica-

tion solution and the persistent drinking for the SPARS model. The optimal

pulse treatment strategy has also been derived.
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CHAPTER 1

Introduction

1.1 Background

Control of alcohol drinking is an important problem in many countries since al-

cohol plays a significant role in our society and our economy. Alcohol also has

dangerous effects on human body such as brain, heart, pancreas, liver and immune

system, as well as evaluating to other dangers such as loss of performance, absen-

teeism in the workplace, drink-driving and harm to others, anti-social behavior,

crime and family violence. Most drinkers try it for the first time as teenagers

or even in childhood. There are many reasons why people start drinking alco-

hol, including the curiosity, sociability, ignorance, imitation from their parents or

celebrities behavior. The explosion and spread of drinking has been studied for

many years. The prediction about drinking can help scientists to evaluate vacci-

nation or isolation plans and may have an important effect on the mortality rate

of drinking epidemic. Drinking epidemic model is a tool which has been used to

study the dynamic of the drinking spread, to predict the future and to simulate

the outbreak, as well as evaluating the strategies to control drinking epidemic.

1.2 Objectives of the Thesis

The aim of this project is to construct a robust drinking epidemic model, and

then study its dynamic properties and determine the optimal treatment strategy

to control the growth of periodic drinkers and alcoholics. The specific objectives

of this work are as follows.

(i) Establish a robust SPARS drinking epidemic model.As for the SEIRS

epidemic model, there is a significant period of time during which the in-

dividual has been infected but is not yet infectious themselves. We model

the drinking epidemic by considering the periodic drinkers (P ) to be the

1



1.3 Outline of the Thesis 2

individual latent period which is in compartment E (for exposed), and the

alcoholics (A) to be the infected (I).

(ii) Study the basic reproduction number, R0, and analyze the stability of the

equilibrium points of the SPARS model. The basic reproduction num-

ber concerns how many secondary drinkers resulted from the introduction

of an individual drinker into the population of susceptible. The value of

R0 indicates whether an epidemic is possible. Sensitivity analysis will be

performed on R0 and the stability of the system will also be examined.

(iii) Optimization is the strategy for controlling the number of individual drinker-

s. In our study, we will establish the optimal control problem of drinking

epidemic, and show the existence of an optimal control and then derive the

optimal system. The method used to determine the optimal strategy is the

Pontryagin Maximum Principle (PMP).

(iv) Investigate the properties of the model with pulse treatment. Since the

process of vaccination is discontinuous or repeated applications, it can be

described by impulsive differential equations. We call this kind of vacci-

nation strategies pulse vaccination strategy (PVS). We will consider pulse

treatment in the SPARS model, i.e. pulse vaccination strategy. We will

also study the pulse effects by analyzing the local and global stability of

equilibria.

1.3 Outline of the Thesis

In this thesis, various analytical and numerical results for the control of drinking

epidemic are developed. The thesis is organized into five chapters.

Chapter 1 gives an overview of the research background and the objectives of

the research.

Chapter 2 presents a literature review of the former work and results related

to this work including the review of fundamental equations and prior research

work in the field.

Chapter 3 presents the drinking epidemic model and analyze the basic re-

production number, R0, and the stability of equilibrium points. The Pontryagin
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Maximum Principle (PMP) is used to determine the optimal system. The exis-

tence of an optimal control is established, followed by derivation of the optimal

system. Some numerical simulation results are also presented to demonstrate the

dynamics of the drinking epidemic model and to verify the analytical results.

Chapter 4 establishes the drinking epidemic model with time delays and im-

pulsive vaccination. The sufficient conditions are established for globally asymp-

totic stability of the drinking-free periodic solution and the permanence of the

model. Various numerical simulations are also presented to demonstrate the sys-

tem behaviour.

Chapter 5 summarizes the main results of this thesis and discusses further

research.



CHAPTER 2

Literature Review

2.1 Overview

Epidemiology is concerned with the distribution of diseases in populations and the

factors that influence the transmission of diseases. The epidemiologic approach

helps to explain the transmission of communication diseases, such as cholera and

measles [1]. Several epidemics models and associated theoretical studies are given

in Bailey [2], Anderson and May [3], Murray [4], Brauer and Castillo-Chavez

[5]. Although many social problems such as drug use [6, 7], zombie infection

[8], smoking [9] and alcohol drinking [10–13] have been referred to in terms of

epidemics, little has been published on the application of mathematical modeling

methods to such problems.

In this research we will investigate the dynamics of drinking epidemics and the

factors dominating the dynamics behave as well as the optimal control strategy.

This work will include construction of mathematical models, investigation of the

drinking epidemic treatment strategies, optimal control and the influences of

impulsive vaccination. Hence, in this chapter, we will first review topics relevant

to epidemic models in section 2.2. Then we will review the treatment strategies

and optimal control in section 2.3, followed by work in vaccination in section

2.4. Finally, the review of previous work and results in drinking epidemic are

represented in section 2.5 .

2.2 Epidemic Model

2.2.1 Mathematical model

A mathematical model is an interpreted or idealized illustration of a system or

process in mathematical terms, improvised to simplify calculation and prediction.

4



2.2 Epidemic Model 5

The efficiency of a model depends on the fact that it allows for the perception

and prediction of a phenomena without the work of performing the complex and

expensive experiments [14].

Mathematical modeling of infectious diseases is a tool which has been used

to study the mechanisms by which diseases spread, to predict the future course

of an outbreak. It can be used to study the effects of a variety of strategies for

disease eradication or control. A mathematical model for epidemics is in the

form of a system of equations subject to a set of initial and boundary conditions.

The structure and parameters involved in the equations are the main critical

elements of a mathematical model. Study of the properties of the model is also

as important as the model itself.

2.2.2 SIR and SEIR Model

Kermack and McKendrick developed the idea of threshold parameter in 1927, in-

vestigated and studied a basic SIR model [15]. In the model, all of the population

in community initially are susceptible to the disease and the infected individual

will have complete immunity after infection. The total population is divided into

three distinct categories: susceptible individuals (S), infected individuals (I) and

recovered individuals (R). The susceptible category is the healthy individuals

who may catch the disease. The infected category consists of members who have

the disease and may transmit it to others, and the recovered individuals are those

who were infected but have developed immunity to the infection. The change of

each of the individual categories is given in the flow chart below

Figure 2.1: Transfer diagram of the basic SIR model.

In the SIRS model, individuals recover with no immunity to the disease,

that is, individuals are immediately susceptible once they have recovered. The

dynamics of the SIR or SIRS have been widely analyzed [3, 5, 16].

There are many diseases for which individuals are not apparently infected

because it need a period of time for incubation. Therefore, the SIR and SIRS

models have been applied to studiy the transmission of diseases with a latent pe-

riod. By the assumption that before becoming infected individual, a susceptible
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Figure 2.2: Transfer diagram of the basic SIRS model.

individual may go through the latent period after catching the disease, the result-

ing models are of SEIR or SEIRS types, respectively, depending on whether

the recovered individual has the permanent immunity or not. Many studies have

been carried out for the SEIR and SEIRS model [17–19]. The state transfer

diagrams of the SEIR and SEIRS models are shown respectively in Figures 2.3

and 2.4.

Figure 2.3: Transfer diagram of the basic SEIR model.

Figure 2.4: Transfer diagram of the basic SEIRS model.

2.3 Optimal Control

Optimal control theory has found application in many fields, including economics,

finance, management, process control bioengineering and biological sciences. It

can be used to control an object to influence its behaviour so as to achieve a

desired goal with the constrains. In aerospace engineering, for example, optimal

control techniques can be applied to object correlation, fuel usage, spacecraft
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characterization etc. Another example is to determine the optimal percentage of

population which should be vaccinated to minimize the number of infected people

and the cost of vaccination.

Optimal control is a powerful method for solving dynamic optimization prob-

lems, when the problems are expressed in continuous time. The primary method

for optimal control was developed by Pontryagin et al. [20]. In this section,

we focus on review of optimal control theory of ordinary differential equations

(ODEs).

Lenhart and Workman [21] considered u(t) as the control and x(t) as the

state. The state variable is governed by a differential equation involving the

control variable:

x′(t) = g(t, x(t), u(t)). (2.1)

An optimal control problem consists of finding piecewise continuous control u(t)

and the associated state variable x(t) to maximize(minimize) the given objective

functional,

J(u) = max
u

(min
u

)

∫ t1

t0

f(t, x(t), u(t))dt,

subject to x′(t) = g(t, x(t), u(t)),

x(t0) = x0 and x(t1) free.

(2.2)

Such a maximizing(minimizing) control is called an optimal control. By x(t1)

free, it means that the value of x(t1) is unrestricted; f and g are continuous dif-

ferentiable functions in all three arguments. Thus, the control(s) will always be

piecewise continuous and the associated states will always be piecewise differen-

tiable.

The principal technique for an optimal control problem is to solve a set of

”necessary conditions” that an optimal control and corresponding state must

satisfy. The necessary conditions are generated from the Hamiltonian H, which

is defined as follows;

H(t, x, u, λ) = f(t, x, u) + λg(t, x, u) (2.3)

Since, we want to maximize(minimize) H with respect to u at u∗, and the neces-
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sary conditions can be written in terms of the Hamiltonian:

∂H

∂u
at u∗ ⇒ fu + λgu = 0 (optimality condition), (2.4)

λ′ = −∂H
∂x
⇒ −(fx + λgx) (adjoint equation), (2.5)

λ(t1) = 0 (transversality condition), (2.6)

where the dynamics of the state equation is

x′ = g(t, x, u) =
∂H

∂λ
, x(t0) = x0. (2.7)

Therefore, we can solve the optimal control problem by the following scheme;

(i) Form the Hamiltonian for the problem.

(ii) Set up the adjoint differential equations, transversality boundary conditions

and optimality conditions. Now there are three unknowns, u∗, x∗ and λ.

(iii) Eliminate u∗ by using the optimality equation Hu = 0, that is, solve u∗ in

terms of x∗ and λ.

(iv) Solve two differential equations for x∗ and λ with two boundary conditions,

substituting u∗ in the differential equations with the expression for the

optimal control from the previous step.

(v) After finding the optimal state and adjoint, solve the optimal control.

Application of control theory to epidemics is a very important field, and the

study of epidemic models is strongly related to the evaluation of different control

strategies: screening and educational campaigns [22], the vaccination campaign

[23], and resource allocation [24]. A comprehensive survey of control theory

applied to epidemiology was performed by Wickwire [25]. Many different models

with different objective functions have been proposed [9,26–29]. A major difficulty

in applying control methods to practical epidemiology problems is the commonly

made assumption that one has total knowledge of the state of the epidemics [30].

Zaman et al. [9] studied the stability of the equilibria for an SIR model.

In order to achieve control of the disease, they considered a control problem

associated with the SIR model. Some of the susceptible populations is vaccinated

in this model. They presented the existence of an optimal control for the control

problem and then conducted numerical simulations by using the Runge-Kutta
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fourth order procedure. Finally, they studied a real example to show the efficiency

of the optimal control.

Wiraningsih et al. [31] formulated a SEIR model for rabies between dogs and

human with vaccination effect. The basic reproduction number for this model is

derived, and the strategies for optimal distribution of vaccine to minimize the cost

of the control and the spread of the diseases is analyzed (minimize the infected

classes and maximize the susceptible classes). The optimality system is derived by

optimal control theory of the differential equation system and is then illustrated

by numerical results.

2.4 Impulsive Vaccination

The theory of impulsive differential equations has been extensively applied to

study evolution processes with a short term perturbation. Many processes and

phenomena in the real world exhibit impulsive effects particularly in mechanics,

control theory, pharmacokinetics, epidemiology, population dynamics, economics,

ecology [32–36].

2.4.1 Impulsive Differential Equations

Consider an evolution process [36] described by

(i) a system of differential equations

x′ = f(t, x), (2.8)

where f : R+ × Ω → Rn,Ω ∈ Rn is an open set and R+, the non-negative

real line;

(ii) the sets M(t), N(t) ∈ Ω for each t ∈ R+;

(iii) the operator A(t) : M(t)→ N(t) for each t ∈ R+.

Let x(t) = x(t, t0, x0) be any solution of (2.8) with initial value (t0, x0). The

process goes as follows: the point Pt = (t, x(t)) starts at the initial point Pt0 =

(t0, x0) and moves along the curve {(t, x) : t ≥ t0, x = x(t)} until t1 > t > 0, at

which the point Pt meets the set M(t). At t = t1, the operator A(t) transfers

the point to Pt+1 = (t1, x
+
1 ) ∈ N(t1), where x+

1 = A(t1)x(t1). Then the point

Pt continues its motion along the curve with x(t) = x(t, t1, x
+
1 ) as the solution

of (2.8) starting at Pt1 = (t1, x
+
1 ) until it hits the set M(t) again, at the next
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moment t2 > t1. Then, once again the point Pt2 = (t2, x(t2)) is transferred to

the point Pt+2 = (t2, x
+
2 ) ∈ N(t2), where x+

2 = A(t)x(t2). As before, the point Pt

continues to move forward with x(t) = x(t, t2, x
+
2 ) as the solution of (2.8) starting

at (t2, x
+
2 ). Thus the evolution process continues forward as long as the solution

of (2.8) exists.

We shall call the set of relations (i), (ii) and (iii), that characterize the above

mentioned evolution process, an impulsive differential system. The curve de-

scribed by the point Pt is called the integral curve, and the function x = x(t)

that defines this curve, a solution of the system.

Solutions of an impulsive differential system have the following three types:

(a) A continuous function, if the integral curve does not intersect the set M(t)

or hits it at fixed points of the operator A(t).

(b) A piecewise continuous function having a finite number of discontinuities of

the first kind if the integral curve meets M(t) at a finite number of points that

are not the fixed points of the operator A(t).

(c) A piecewise continuous function having a countable number of discontinuities

of the first kind if the integral curve encounters M(t) at a countable number of

points that are not the fixed points of the operator A(t).

2.4.2 Comparison Theorem

From [36], the theory of differential inequalities are essential in dynamics of dif-

ferential equations. The corresponding theory of impulsive inequalities is equally

useful in the investigation of impulsive differential equations.

To introduce the comparison principle of impulsive differential equations, we

firstly give the definition of extremal solutions of

u′(t) = g(t, u), t 6= τk,

u(t+k ) = ψ(u(tk)), t = τk,

u(t0) = u0,

(2.9)

where g ∈ C[R+ ×R,R] and ψk : R→ R.

Definition 2.1. [36] Let r(t) = r(t, t0, u0) be a solution of (2.9) on [t0, t0 + a).

A function r(t) is said to be the maximal solution of (2.9), if for any solution

u(t) = u(t, t0, u0) of (2.9) in [t0, t0 + a), the inequality

u(t) ≤ r(t), t ∈ [t0, t0 + a) (2.10)
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holds. A minimal solution ρ(t) may be defined similarly by reversing the (2.10).

Definition 2.2. [36] Let V : R+× rn → R+. V is said to belong to class V0 if V

satisfies:

(1) V is continuous on (tk−1, tk] × Rn and lim(t,y)→(t+k ,x) V (t, y) = V (t+k , x) for

every x ∈ Rn, k ∈ N ;

(2) V is locally Lipschitz continuous with respect to x.

Definition 2.3. [36] Let V ∈ V0, for (t, x) ∈ (tk−1, tk]×Rn. Define

D+V (t, x) = lim
h→0+

sup
1

h
[V (t+ h, x+ hf(t, x))− V (t, x)], (2.11)

and

D−V (t, x) = lim
h→0−

inf
1

h
[V (t+ h, x+ hf(t, x))− V (t, x)]. (2.12)

If the impulsive differential equation (2.9) and

dx

dt
= f(t, x), t 6= τk,

∆x = Ik(x), t = τk,

x(t+0 ) = x0, t0 ≥ 0,

(2.13)

satisfy the conditions:

(1) 0 < t1 < t2 < ..., and tk →∞ as k →∞;

(2) f : R+ ×Rn → Rn is continuous on (tk−1, tk]×Rn and

lim
(t,y)→(t+k ,x)

f(t, y) = f(t+k , x)

for every x ∈ Rn, k ∈ N ; (3) Ik : Rn → Rn;

(4) g : R+ ×R+ → R is continuous on (tk−1, tk]×Rn and

lim
(t,y)→(t+k ,x)

g(t, y) = f(t+k , x)

for every x ∈ R+, k ∈ N ; then the following comparison principle holds.

Theorem2.4. [36] Let V : R+ × rn → R+, V ∈ V0. Suppose that

(1)g : R+ × R+ → R and satisfies the above conditions(4), and ψk : R → R is

nondecreasing and for each k = 1, 2, ...,

D+V (t, x) ≤ g(t, V (t, x)), t 6= τk,

V (t, x+ Ik(x)) ≤ ψk(V (t, x)), t = τk.
(2.14)
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(2) r(t) = r(t, t0, u0) is the maximal solution of (2.9) existing on [t0,∞). Then

V (t+0 , x0) ≤ u0 implies that

V (t, x(t)) ≤ r(t), t > t0,

where x(t) = x(t, t0, x0) is any solution of (2.13) on [t0,∞).

In recent years, pulse vaccination, repeated application of vaccine is gaining

prominence as a strategy for eliminating a variety of epidemics. Pulse vaccina-

tion strategy (PVS) consists of periodical repetitions of impulsive vaccinations

in population differently from the traditional constant continuous vaccination.

Many SIR and SEIR epidemic models with pulse vaccination were extensively

studied.

Zeng et al. [37] studied the impulsive control on an SIR epidemic model and

got the conditions on which epidemic-elimination solution is globally asymptoti-

cally stable and the conditions of bounded system. The differential susceptibility

SIR epidemic model with stage structure and pulse vaccination is introduced

by Zhang et al. [38]. Their work give some sufficient conditions for the globally

attractivity of an infection-free periodic solution and the permanence of infected

individual. Shi et al. [39] considered including the impulsive vaccination affects

on the original SIR system. Li and Yang [40] investigated two epidemic models

with continuous and impulsive vaccination strategies. The associated basic re-

production numbers were given and they compared the effect of control measures

on the spread of infection for the continuous and pulse vaccination strategies.

The application of PVS to SEIR models was discussed on d’Onofrio’s work

[41,42]. The author established the criteria for determining the space of vaccina-

tion parameters and the regions of local asymptotic stability (LAS). Furthermore,

the author studied analytically the global asymptotic stability (GAS) of the erad-

ication solutions in some cases and established the criterion which guarantees the

LAS of the eradication solutions.

2.5 Previous Work on Drinking Epidemic

The definition of alcoholism varies significantly between the medical community

and the treatment programs, such as Alcoholics Anonymous, which have been

set up to help alcoholics to recover. Even within the medical community there is

much debate about whether or not alcoholism should be considered as a disease. It

was only recently that epidemiology began to be applied to the study of this kind
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of social problems. Since the beginning of this century, this area of mathematics

has started to become more prominent in the study of this type of problems and

other social phenomena, crime [43], drug abuse [6] and even the spread of urban

legends [44].

A simple SIR model for alcoholism is suggested by Sanchez et al. [10] in

which the population is divided into the following drinking classes: occasional

and moderate drinkers (S), problem drinkers (D), and temporarily recovered (R).

It is assumed that the population size remains constant, N . New recruits join

the population as occasional and moderate drinkers (S) and have homogeneous

mixing with the rest of the members of the population. A diagram of the various

rates affecting the three groups of individuals is represented in Figure 2.5 below.

Figure 2.5: Transfer diagram of Sanchez and his collaborators model.

The governing system of equations is

dS

dt
= µN − βSD

N
− µS,

dD

dt
= β

SD

N
+ ρ

RD

N
− (µ+ φ)D,

dR

dt
= φD − ρRD

N
− µR,

S +D +R = N

(2.15)

The non - dimensionalized system of (2.15) is as follows:

s′ = µ− βsd− µs,

d′ = βsd+ ρrd− (µ+ φ)d,

r′ = φd− ρrd− µr,

s+ d+ r = 1

(2.16)

where s = S
N
, d = D

N
and r = R

N
.
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The parameters of this model are defined as follows:

µ : the birth and death rate.

β : the rate of recruitment to alcoholism due to encounters between occasional

and moderate drinkers and problem drinkers.

p : the rate at which recovered drinkers relapse to alcoholism.

φ : the rate of recovery.

The model’s basic reproduction number (R0), which gives the average number of

secondary drinker generated by the problem drinker in the population of moder-

ate drinkers, has been computed. For this model, the reproductive number with

recovery via treatment is R0 = β
µ+φ

, where β is a measure of the influence of

problem drinkers on the susceptible individual and 1
µ+φ

represents the average

time a problem drinker spends on the drinking class D [10].

Their results are not typical in epidemic models because the outcomes depend

not only on the value of R0 but on the size of the initial population of problem

drinkers. Especially, R0 < 1 does not guarantee the eradication of drinking

communities.

The results in this work also indicate that ineffective treatment programs

with high relapse rates may develop the spread of alcoholism, because they cre-

ate a group of recovered drinkers who could easily relapse. High relapse rates

will occur when treatment programs have only short-term positive effects. From

Witkiewitz’s research indicate that within the first year most of drinkers whose

receive treatment relapse to the lighter drinking [45]. An effective treatment s-

trategy for controlling the spread of alcoholism is to limit the amount of time a

recovered alcoholic spends in places where drinking occurs.

Benedict studied how alcoholism spreads, and how alcoholics relapse in [11].

At a standing-room-only talk at the 2006 Joint SMB - SIAM Conference on the

Life Sciences in Raleigh, North Carolina, Fabio Sanchez of Cornell University

presented a model for the spread of alcoholic drinking based on epidemiological

models of infectious diseases. By further developing Sanchez and his collabora-

tors’ model [10], the researcher investigate how the drinking problem spread by

alcoholics through social contacts among people with different drinking habits.

Newman [12] proposed the so-called SAR model which has similar parameters

and a similar SIR structure to the Sanchez model. However, it accounts for

not only recovered drinkers who relapse to occasional drinking but also those

recovered drinkers who relapse to problem drinking. Newman’s model also allows

the birth rate and death rates to take different values, and also includes a relapse

term from the recovered category to the susceptible class. Newman’s model was
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further investigated by Benedict [11]. A diagram of the various rates affecting

the three groups of individuals is shown in Figure 2.6.

Figure 2.6: Transfer diagram of Newman model.

The Newman model can be described mathematically as follows:

dS

dt
= µN − βSA

N
+ εR− γS,

dA

dt
= β

SA

N
+ ρ

RA

N
− φA− (γ + δ)A,

dR

dt
= φA− ρRA

N
− εR− (γ + δ)R,

S +D +R = N

(2.17)

where

µ is the birth rate;

β is the rate of recruitment to alcoholism due to encounters between suscep-

tible drinkers and alcoholics;

ε is the rate at which recovered drinkers relapse to moderate drinkers;

ρ is the rate at which recovered drinkers relapse to alcoholism;

φ is the rate of recovery;

γ is the natural death rate which is refer to any death rate not caused by

alcohol;

δ is the death rate related from drinking alcohol;

S is the number of susceptible drinkers;

A is the number of problem drinkers or alcoholics;

R is the number of temporarily recovered drinkers;

N is the number of total population.

This system (2.17) is subject to the following initial conditions

S(0) = S0 ≥ 0, A(0) = A0 ≥ 0, R(0) = R0 ≥ 0
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where S0, A0 and R0 are constants. From (2.17), the total population N is defined

by the following equation

dN

dt
= µN − δ(A+R)− γN (2.18)

Newman investigated the model and analyzed the basic reproduction number,R0,

which give the average number of people who will become alcoholism by intro-

ducing one alcoholic in the compartment.

Manthey et al. [13] analyzed the dynamics of campus drinking by using an

epidemiological model. They introduced a simple mathematical model capturing

the dynamics of the campus drinking phenomenon, which is focused on a college

campus and the student population is divided into three classes: non-drinkers

(N), social drinkers (S) and problem drinkers (P ). The student population is

assumed to be constant. The interactions between these three categories of stu-

dents are shown in Figure2.7.

As the work in [13] focuses on students in a college campus for a relatively

Figure 2.7: Transfer diagram of Manthey’s model.

short period of time only, their model does not include a recovered class and they

also regard students who stop drinking as non-drinkers. Therefore, their model

is a modified susceptible-infected-susceptible (SIS) model, and can be described

mathematically as follows:
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dN

dt
= η − ηN − αNS − κNP + βS + εP,

dS

dt
= σS − (η + σ)S + αNS − βS − γSP + δP,

dP

dt
= πP − (η + π)P + γSP + κNP − δP − εP,

N + S + P = 1

(2.19)

where

α is the transmission rate of non-drinkers to social drinkers;

β is the recovery rate of social drinkers;

γ is the transmission rate of social drinkers to problem drinkers;

δ is the recovery rate of problem drinkers to social drinkers;

ε is the recovery rate of problem drinkers to non-drinkers;

η is the departure rate from campus environment;

π is the entrance rate of problem drinkers;

κ is the transmission rate of non-drinkers to problem drinkers;

σ is the number of problem drinkers or alcoholics;

R is the entrance rate of social drinkers;

N is the entrance rate of problem drinkers.

The model suggests that the reproductive number is not sufficient to predict

whether drinking behavior will persist on campus and that pattern of recruiting

new members plays a significant role in minimizing the campus alcohol problem.

2.6 Concluding Remarks

Various mathematical models for drinking epidemics have been developed. How-

ever, existing models still have some limitations and modification are required in

many aspects.

(i) The model presented by Sanchez assumes that the population is constant.

However in reality, this is not the case.

(ii) Sanchez’s model assumes that as people enter the population all of them

are occasional or social drinkers. In the real world, there are many people

who never try to have a drink.

(iii) Sanchez’s model assumes that an individual who enters the recovered drink-

ing group maintains immunity indefinitely. However, realistically, a recov-
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ered individual can relapse to the possible drinkers.

(iv) Normally, we can classified the drinkers in two categories; occasional drinker-

s and problem drinkers or alcoholics group like as Manthey’s model.

(v) Manthey’s model does not include a recovered class since they focus only

on students in a college campus for a short period of time (about 6 years

or less). To study the drinking epidemic not only in the college, one needs

to consider the recovered drinkers.

(vi) From the report [46], excessive alcohol use contributes to 88,000 deaths

in the United States each year, including 1 in 10 deaths among working

age adults. Excessive alcohol use includes binge drinking, heavy drinking.

Then, the death rate related to alcohol drinking in the alcoholics group

should not be equal to the death rate in other groups.

In this work, we will construct a more realistic drinking epidemic model and study

its behaviour and the method for the control of the behaviour.



CHAPTER 3

Optimal Treatment for the Drinking

Epidemic Model

3.1 General Overview

On the assumption that the spread of alcohol drinking follows a process similar

to that of disease transmission, mathematical epidemiological modeling of the

spread of alcohol drinking may give the conception on the evolution through the

drinking career, from initiation or occasional drinking to usual drinking, treat-

ment, relapse and final recovery. Benedict [11] described how alcoholism spreads,

and how alcoholics relapse by determining the effects of reproduction numbers on

the model dynamics and computing the equilibrium states of the model. Manthey

et al. [13] analyzed the dynamics of campus drinking by using an epidemiological

model. They introduced a basic drinking epidemic model to describe the dynam-

ics of the campus drinking behavior and their research focused on students at a

college campus. From their results, it can be concluded that the basic reproduc-

tion number is not sufficient to predict the behavior of drinking on this campus.

There is persistence of drinking that produced from the new initiate drinking

which is an interrupt to the reduction of the number of drinkers on the campus.

In this chapter, we develop a mathematical model for the control of alco-

hol drinking and then study its qualitative behavior. The rest of the chapter is

organized as follows. In section 3.2, the SPARS drinking epidemic model is estab-

lished, then an explicit expression for the basic reproduction number is derived,

and then the equilibrium points are determined and their stability are investigat-

ed. In section 3.3, an optimal control problem for finding the optimal treatment

(control) strategy is constructed, and then the Pontryagin Maximum Principle

(PMP) is used to find the optimal solution. In section 3.4, numerical examples

are given to validate the analytical results and to simulate the dynamic process

19
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of the movement of population among different groups. Finally, some conclusions

are given in section 3.5.

3.2 Formulation and Analysis of the Drinking

Epidemic Model

3.2.1 The SPARS Model

The model focuses on the population aged 16 and over. The population is divided

into four classes: susceptible drinkers (S), periodic drinkers (P ), alcoholics (A)

and recovered drinkers (R). The total population is denoted by N with N =

S + P +A+R. We assume that the recruitment rate is different from the death

rate which indicates that the total population is not constant. The interactions

between the four categories of population are shown in Figure 3.1.

Figure 3.1: Transfer diagram of the SPARS model.

The model presented in Figure 3.1 may be represented by the following system

of equations:

dS(t)

dt
= µN(t)− αS(t)P (t)

N(t)
− dS(t) + ηR(t),

dP (t)

dt
= α

S(t)P (t)

N(t)
− βP (t)− (d+ ε1)P (t),

dA(t)

dt
= βP (t)− γA(t)− (d+ ε2)A(t),

dR(t)

dt
= γA(t)− ηR(t)− (d+ ε3)R(t).

(3.1)

where

S(t) is the number of susceptible drinkers at time t,
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P (t) is the number of occasional or periodic drinkers at time t,

A(t) is the number of alcoholics or hazardous drinkers at time t,

R(t) is the number of temporality recovered drinkers at time t,

N(t) is size of the total population at time t,

µ is the rate of the general population entering the susceptible population,

that is, the demographic process of individuals reaching age 15 in the

modeling time period,

α is the contact rate between the susceptible and periodic drinkers,

β is the proportion of becoming an alcoholic,

γ is the proportion of hazardous drinkers who enter treatment,

η is the rate at which recovered drinkers relapse to susceptible drinkers,

d is the natural death rate of the general population,

ε1 is the death rate of occasional drinkers,

ε2 is the death rate of hazardous drinkers,

ε3 is the death rate of recovered drinkers.

We first find the equilibria of the SPARS model. By setting the RHS of the

system (3.1) to zero, we get two equilibrium states, namely the drinking free state

E0

(
µN
d
, 0, 0, 0

)
and the endemic state E1(K1N

α
,ΛK2K3N,ΛβK3N,Λβγ),

where

K1 = (β + d+ ε1)

K2 = (γ + d+ ε2)

K3 = (η + d+ ε3)

Λ =
(αµ−K1d)

α(K1K2K3 − βγη)
.

(3.2)

It is easy to see that K1K2K3 − βγη > 0, and therefore, the endemic state E1

occurs if and only if

αµ > K1d. (3.3)

3.2.2 The Basic Reproduction Number

The number of secondary drinkers produced by a single drinking individual in the

susceptible population is called the basic reproduction number,R0. The value of

R0 will indicates whether an epidemic is possible. Based on [47], the reproduction

number can be determined as the spectral radius of the next generation matrix.
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In the next generation matrix, the distinction between the drinkers and alcoholics

compartments must be determined from the epidemiological interpretation of the

model.

The drinking epidemic system (3.1) has a unique drinking free equilibrium

E0 (S0, 0, 0, 0) with S0 = µN
d

. Taking the drinking compartments to be S and P

gives

[
P ′

A′

]
=

[
αS0

N
0

0 0

][
P

A

]
−

[
β + d+ ε1 0

−β γ + d+ ε2

] P

A


=

[
αµ
d

0

0 0

][
P

A

]
−

[
K1 0

−β K2

][
P

A

]
.

(3.4)

The next generation matrix can then be determined by K = FV −1 where

F =

[
αµ
d

0

0 0

]
, V =

[
K1 0

−β K2

]
.

Thus,

K = FV −1 =

[
αµ
K1d

0

0 0

]
(3.5)

which has two eigenvalues λ = 0 , αµ
K1d

. Hence the basic reproduction number is

R0 = ρ(λ) =
αµ

K1d
. (3.6)

3.2.3 Stability of the equilibria

We now consider the stability of the two equilibrium states, namely the drinking

free equilibrium state E0 and the endemic state E1. For the system defined by

(3.1), the Jacobian matrix is the 4× 4 matrix given by

J =


−αP
N
− d −αS

N
0 η

αP
N

αS
N
−K1 0 0

0 β −K2 0

0 0 γ −K3

 . (3.7)
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At the drinking free equilibrium E0

(
µN
d
, 0, 0, 0

)
, the Jacobian matrix is

J0 = J

(
µN

d
, 0, 0, 0

)
=


−d −αµ

d
0 η

0 αµ
d
−K1 0 0

0 β −K2 0

0 0 γ −K3

 . (3.8)

By solving the characteristic equation det (J0 − λI) = 0, we obtain four eigenval-

ues
λ1 = −d,

λ2 = −K2,

λ3 = −K3,

λ4 =
αµ−K1d

d
.

(3.9)

If R0 = αµ
K1d

< 1, i.e. αµ < K1d, then all the four eigenvalues are negative.

Therefore, we conclude that the drinking free equilibrium is locally asymptotical-

ly stable if R0 < 1, or unstable otherwise.

At the endemic state E1(K1N
α
,ΛK2K3N,ΛβK3N,Λβγ), the Jacobian is

J1 = J(
K1N

α
,ΛK2K3N,ΛβK3N,Λβγ)

=


−αK2K3Λ− d −k1 0 η

αK2K3Λ 0 0 0

0 β −K2 0

0 0 γ −K3

 .
(3.10)

The characteristic equation of J1 is

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0 (3.11)

where

a1 = d+K2 +K3 + αK2K3Λ,

a2 = K2K3 + (αK2K3Λ + d) (K2 +K3) + αK1K2K3Λ,

a3 = K2K3 (d+ αΛ (K1K2 +K2K3 +K1K3)) ,

a4 = αK2K3Λ (K1K2K3 − ηβγ) .

(3.12)
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By the Routh-Hurwitz conditions [48], the equilibrium state is asymptotically

stable if

a1 > 0,

a3 > 0,

a4 > 0

a1a2a3 > a2
3 + a2

1a4.

(3.13)

From (3.2), we can see that K1 > 0, K2 > 0 and K3 > 0. Then, it is not difficult

to verify the validity of the above inequalities. Thus, for R0 > 1 there exists an

unique positive equilibrium E1 of the drinking epidemic model, which is always

locally asymptotically stable.

3.3 Optimal Control

For the optimal control problem, we let the control variables u1(t) be the edu-

cation campaign level used to control drinking in a community and u2(t) be the

level of treatment in the form of drinking.

The objective is to minimize the numbers of both occasional and hazardous

drinkers with minimum control. Hence, the optimal control problem can be

constructed as follows

OCP : J (u1, u2) =

T∫
0

[
δ1P (t) + δ2A(t) +

1

2

(
ξ1u

2
1(t) + ξ2u

2
2(t)
)]
dt,

(3.14)

subject to

dS(t)

dt
= µN(t)− αS(t)P (t)

N(t)
− dS(t) + ηR(t),

dP (t)

dt
= α

S(t)P (t)

N(t)
− (β + d+ ε1)P (t)− u1(t)P (t),

dA(t)

dt
= βP (t)− (γ + d+ ε2)A(t)− u2(t)A(t),

dR(t)

dt
= γA(t)− (η + d+ ε3)R(t) + u1(t)P (t) + u2(t)A(t),

(3.15)
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with initial conditions

S(0) = Ss , P (0) = Ps , A(0) = As , R(0) = Rs. (3.16)

Here δi and ξi for i = 1, 2 are weight factors (positive constants) representing

drinker’s level of acceptance of the control campaign. Let P (t) and A(t) be state

variables with control variables u1(t) and u2(t). Then we can rewrite the system

(3.15) in the following form:

φ′ = Bφ+ F (φ) := G(φ), (3.17)

where

φ =


S(t)

P (t)

A(t)

R(t)

 ,

B =


−d 0 0 η

0 − (β + d+ ε1 + u1(t)) 0 0

0 β − (γ + d+ ε2 + u2(t)) 0

0 u1(t) γ + u2(t) − (η + d+ ε3)

 ,

F (φ) =


µN − αSP

N

αSP
N

0

0

 .

Obviously (3.17) is a non-linear system with bounded coefficients. From the

non-linear term of the right hand side of (3.17), we have

F (φ1)− F (φ2) =


µN1 − αS1P1

N1

αS1P1

N1

0

0

−

µN2 − αS2P2

N2

αS2P2

N2

0

0

 (3.18)
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and thus

|F (φ1)− F (φ2)| =
∣∣∣∣(µN1 − α

S1P1

N1

)
−
(
µN2 − α

S2P2

N2

)∣∣∣∣
+

∣∣∣∣αS1P1

N1

− αS2P2

N2

∣∣∣∣
6 µ |N1 −N2|+

∣∣∣∣αS2P2

N2

− αS1P1

N1

∣∣∣∣+

∣∣∣∣αS1P1

N1

− αS2P2

N2

∣∣∣∣
6 µ |N1 −N2|+ 2

∣∣∣∣αS1P1

N1

− αS2P2

N2

∣∣∣∣
6 µ |N1 −N2|+ 2α

∣∣∣∣S1P1N2 − S2P2N1

N1N2

∣∣∣∣
6 µ |N1 −N2|+ 2α |S1P1N2 − S2P2N1|

= µ |N1 −N2|+ 2α

∣∣∣∣(S1N2 + S2N1)

2
(P1 − P2)

+
(P2N2 + P1N1)

2
(S1 − S2) +

(S2P2 + S1P1)

2
(N2 −N1)

∣∣∣∣
6 µ |N1 −N2|+ α |S1N2 + S2N1| |P1 − P2|

+α |P2N2 + P1N1| |S1 − S2|+ α |S2P2 + S1P1| |N2 −N1|

6M1 |S1 − S2|+M2 |P1 − P2|+M3 |N1 −N2| ,
(3.19)

where
M1 = α |P2N2 + P1N1|

M2 = α |S1N2 + S2N1|

M3 = µ+ α |S2P2 + S1P1| .

Hence, we get

|G(φ1)−G(φ2)| 6 L |φ1 − φ2| (3.20)

where L = max {M1,M2,M3, ‖B‖} <∞. Therefore, the function G is uniformly

Lipchitz continuous [49]. From the definitions of the control u1(t),u2(t) and the

control on S(t), P (t), A(t) and R(t), we can conclude that the solution of system

(3.20) exists [49], as described by the theorem below.

Theorem 3.1. Consider the optimal control problem OCP . There exists an

optimal control u∗ = (u∗1, u
∗
2) ∈ U such that

min
(u1,u2)∈ U

J (u1, u2) = J (u∗1, u
∗
2) , (3.21)

with the state and control satisfying equations (3.15) and (3.16).
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Proof. For the existence of an optimal control, based on [50], the following con-

ditions must be satisfied.

(i) The set of controls and corresponding state variables are nonempty.

(ii) The control set U is convex and closed.

(iii) The RHS of the state system is bounded by a linear function in the state

and the control variables.

(iv) The integrand of the objective functional is concave on U .

(v) There exist constants c1, c2 > 0 and σ > 1 such that the integrand,

L(P,A, u1, u2), of the objective functional satisfies

L(P,A, u1, u2) ≥ c2 + c1

(
|u1|2 + |u2|2

)σ
2 . (3.22)

To verify all of these conditions, we use the result by Lukes [51] to give the

existence of solutions of the state system (3.15) with bounded coefficients, which

gives condition (i). The control set is closed and convex by definition, and thus

satisfies condition (ii). Since our state system is bilinear in u1 and u2 , the RHS of

the system (3.15) satisfies condition (iii), using the boundedness of the solutions.

In addition, the integrand of the objective functional (3.14) is convex on the

control set U . We can also easily see that there exist a constant σ > 1 and

c1, c2 > 0 since δ1, δ2, ξ1, ξ2 > 0, such that

δ1P (t) + δ2A(t) +
1

2

(
ξ1u

2
1(t) + ξ2u

2
2(t)
)
≥ c2 + c1

(
|u1|2 + |u2|2

)σ
2 , (3.23)

which completes the proof for existence of the optimal control.

We can find an optimal solution of this optimal control problem by considering

the Lagrangian and the Hamiltonian for the problem. The Lagrangian of the

optimal control problem is given by

L (P,A, u1, u2) = δ1P (t) + δ2A(t) +
1

2

(
ξ1u

2
1(t) + ξ2u

2
2(t)
)
. (3.24)

Applying Pontryagin’s Maximum Principle (PMP), we form the Hamiltonian and

derive the optimality system:

H (S, P,A,R, u1, u2, λ1, λ2, λ3, λ4)

= L (P,A, u1, u2) + λ1(t)
dS(t)

dt
+ λ2(t)

dP (t)

dt
+ λ3(t)

dA(t)

dt
+ λ4(t)

dR(t)

dt
,

(3.25)

where λ1(t), λ2(t), λ3(t) and λ4(t) are the adjoint functions to be determined.
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Theorem 3.2. If (u∗1, u
∗
2) is an optimal pair with corresponding states S∗, P ∗, A∗

and R∗, then there exist adjoint variables λ1(t), λ2(t), λ3(t) and λ4(t), which sat-

isfy:

λ′1(t) =
αP (t)

N(t)
(λ1(t)− λ2(t)) + dλ1(t),

λ′2(t) = −δ1 +
αS(t)

N(t)
(λ1(t)− λ2(t))

+ (β + d+ ε1)λ2(t) + u1(t) (λ2(t)− λ4(t))− βλ3(t),

λ′3(t) = −δ2 + (γ + d+ ε2)λ3(t)− γλ4(t) + u2(t) (λ3(t)− λ4(t)) ,

λ′4(t) = −ηλ1(t) + (η + d+ ε3)λ4(t),

(3.26)

and the transversality conditions (boundary conditions) are

λi(tfinal = 0), i = 1, 2, 3, 4. (3.27)

Furthermore we obtain

u∗1(t) = max

{
min

{
(λ2(t)− λ4(t))

ξ1

P ∗(t) , ψ1

}
, 0

}
, (3.28)

u∗2(t) = max

{
min

{
(λ3(t)− λ4(t))

ξ2

A∗(t) , ψ2

}
, 0

}
. (3.29)

Proof. To consider the transversality conditions and the adjoint equations, the

method in [21] is used. From the Hamiltonian (3.25), we obtain (3.26) from

λ′1(t) = −∂H
∂S

, λ′2(t) = −∂H
∂P

, λ′3(t) = −∂H
∂A

, λ′4(t) = −∂H
∂R

. (3.30)

Using the optimal conditions and the property of the control space U for the

control variables u1 and u2 , we get

∂H

∂u1

= ξ1u1(t)− (λ2(t)− λ4(t))P ∗(t),

∂H

∂u2

= ξ2u2(t)− (λ3(t)− λ4(t))A∗(t).

(3.31)

From the property of the control space, u∗1 and u∗2 are given by



3.3 Optimal Control 29

u∗1(t) =



0 if
(λ2(t)− λ4(t))P ∗(t)

ξ1

6 0

(λ2(t)− λ4(t))P ∗(t)

ξ1

if 0 <
(λ2(t)− λ4(t))P ∗(t)

ξ1

< ψ1

ψ1 if
(λ2(t)− λ4(t))P ∗(t)

ξ1

> ψ1

(3.32)

and

u∗2(t) =



0 if
(λ3(t)− λ4(t))A∗(t)

ξ2

6 0

(λ3(t)− λ4(t))A∗(t)

ξ2

if 0 <
(λ3(t)− λ4(t))A∗(t)

ξ2

< ψ2

ψ2 if
(λ3(t)− λ4(t))A∗(t)

ξ2

> ψ2.

(3.33)

These can be written in compact notation (3.28) and (3.29), respectively.

Therefore, the characterization of the optimal control u∗(t) = (u∗1(t), u∗2(t))

is defined by (3.32) and (3.33). The optimal control and the state are found

by solving the optimality system, which consists of the state system (3.15), the

adjoint system (3.26) and the boundary conditions (3.16) and (3.27). To solve the

optimality system we use the initial and transversality conditions together with

the characterization of the optimal control pair (u∗1(t), u∗2(t)). By substituting the

value of u∗1(t) and u∗2(t) in the control system, we get the following system :
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dS∗(t)

dt
= µN(t)− αS

∗(t)P ∗(t)

N∗(t)
− dS∗(t) + ηR∗(t),

dP ∗(t)

dt
= α

S∗(t)P ∗(t)

N∗(t)

−
[
β + d+ ε1 −max

{
min

{
(λ2(t)− λ4(t))

ξ1

P ∗(t) , ψ1

}
, 0

}]
P ∗(t),

dA∗(t)

dt
= βP ∗(t)

−
[
γ + d+ ε2 −max

{
min

{
(λ3(t)− λ4(t))

ξ2

A∗(t) , ψ2

}
, 0

}]
A∗(t),

dR∗(t)

dt
=

[
γ + max

{
min

{
(λ3(t)− λ4(t))

ξ2

A∗(t) , ψ2

}
, 0

}]
A∗(t)

−(η + d+ ε3)R∗(t)

+ max

{
min

{
(λ2(t)− λ4(t))

ξ1

P ∗(t) , ψ1

}
, 0

}
P ∗(t),

(3.34)

with the Hamiltonian,

H∗ (S∗, P ∗, A∗, R∗, u∗1, u
∗
2, λ1, λ2, λ3, λ4)

= δ1P
∗(t) + δ2A

∗(t) +
1

2

[
ξ1

(
max

{
min

{
(λ2(t)− λ4(t))

ξ1

P ∗(t), ψ1

}
, 0

})2

+ ξ2

(
max

{
min

{
(λ3(t)− λ4(t))

ξ2

P ∗(t), ψ2

}
, 0

})2
]

+λ1(t)
dS∗(t)

dt
+ λ2(t)

dP ∗(t)

dt
+ λ3(t)

dA∗(t)

dt
+ λ4(t)

dR∗(t)

dt
.

(3.35)

The optimal control and the corresponding states have been determined. Next

we will show the numerical simulation that solve system (3.34) and Hamiltonian

(3.35).

3.4 Numerical Simulations

A number of numerical simulations were carried out using MATLAB to illustrate

the dynamics of the system. The parameter values used in the numerical simu-

lations are : µ = 0.085, α = 0.02, β = 0.01, γ = 0.001, d = 0.075, η = 0.001, ε1 =

0.001, ε2 = 0.01 and ε3 = 0.002. The percentages of initial individuals in suscep-

tible, periodic, alcoholics and recovered classes are 50, 30, 15 and 5, respectively.

The evolution of each class of population with time is shown in Figure 3.2. The
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results show that the drinking free state of the system is asymptotically stable,

which is as expected from our analysis as R0 = αµ
(β+d+ε1) d

= 0.26 < 1. Moreover,

we considered another case in which the contact rate between the susceptible and

periodic drinkers is α = 0.2 which is given R0 > 1. The evolution of each class

of population in this case is shown in Figure 3.3. Obviously, the asymptotically

stable endemic state has been captured in this case.

The optimal control problem for the SPARS model is solved numerically. We

used an iterative method such as the Runge-Kutta fourth order scheme to solve

this optimality system by using the method in [21]. The state variables S, P,A

and R are solved forward in time by using an initial guess of the control variables

u1(t) and u2(t). Conversely, the adjoint variables, λi for i = 1, 2, 3, 4 are solved

backwards in time. For the SPARS model presented in this work, the state

system is given by (3.15). The adjoint system is given by (3.26) with the final

time conditions given by (3.27) and the characterization of the optimal control

by (3.28) and (3.29). The numerical results obtained are presented in Figure 3.4.

In Figure 3.4(a) and 3.4(e), we see that the number of susceptible drinkers

and the total population, respectively, with control are greater than those with-

out control, which can be caused by the education control that we put on the

susceptible individual and the treatment control on the recovered drinkers for

which this group could be relapse to susceptible group.

In Figure 3.4(b) and 3.4(c), we have plotted the periodic drinkers and alco-

holics, respectively, with and without control. We see that in the first ten to

fifteen days the number of population with and without control in both cate-

gories does not differ very much; but as time increases, the difference becomes

substantial.

In Figure 3.4(d), the comparison of education control ,u∗1, and the treatment

control ,u∗2, are plotted as a function of time in days.
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Figure 3.2: The evolutions of the four classes of populations when R0 < 1.
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Figure 3.3: The evolutions of the four classes of populations when R0 > 1.
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Figure 3.4: Diagrams showing the effects of drinking control on the evolutions

of the four classes of populations : (a) susceptible drinker; (b) periodic drinker;

(c) alcoholic; (d) recovered drinker; (e) total population; (f) the optimal controls

u∗1(t) and u∗2(t).
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3.5 Concluding Remarks

An SPARS model has been proposed to describe the overall drinking population

dynamics for the case in which the total population is not constant and the death

rates for different population groups are different. The model is constructed

taking into account the periodic drinkers compartment with bilinear incidence

rate. Analysis of the model shows that there are two equilibria, drinking free state

and endemic state. An explicit expression for the basic reproduction number,

R0, has been derived and it has been shown that when R0 < 1, that is α <
(β+d+ε1) d

µ
, the drinking free equilibrium is locally asymptotically stable. The

drinking endemic state has also been shown to be locally asymptotically stable

for R0 > 1. An optimal control problem has also been constructed to determine

the optimal treatment strategies to minimize the number of drinkers and the

resources for the control. The results show that the number of periodic drinkers

and alcoholics decreases significantly in the optimal controlled system. It is found

that the numerical results agree with the analytical results derived.



CHAPTER 4

Drinking Epidemic Model with Time

Delays and Impulsive Vaccination

4.1 General Overview

The common method used for controlling the epidemic disease is vaccination. We

normally adopt the vaccination to control or eradicate the spread. Vaccinations

have many types. Constant vaccination and pulse vaccination are two main s-

trategies [52]. Constant vaccination is a primary vaccination strategy that can

protect the individual who received the vaccine. But this method of vaccination

is not always sufficient for disease eradication and does not offer 100% protection,

and some of individual get infected despite of vaccination [53]. Pulse vaccination

strategy (PVS) is a method used to eliminate an epidemic disease by injection or

vaccination repeated on a risk group over a defined age range [41,54]. Even though

the effect of continuous vaccination strategy is better than impulsive vaccination

strategy, the side effect of the cost and the material have potential harmful ef-

fects, especially for infants. So we prefer to the impulsive vaccination strategy as

it is easier to be manipulated and it has the relatively low cost [52,55–57].

The scientists at the University of Chile developed an experimental drug to

cure alcoholism. If a person who has received the vaccine try to drink alcohol, they

will almost immediately get severe nausea, accelerated heartbeat and discomfort,

according to the Daily Mail [58]. The shot is effective for about six months to a

year and works by speeding up the hangover process.

In recent years, many epidemic models with time delay were largely studied

in [59–63]. Some of the research literature on SEIR or SEIRS epidemic models

are established by ODEs [17, 64–67]. Impulsive differential equations and time

delay are introduced to describe the dynamics of epidemic disease [68–75], and

most of these research literature are on SEIRS model.

37
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Meng et al. [76] proposed and analyzed the dynamic behaviors of an SEIRS

epidemic model with pulse vaccination and two time delays under the condition

of nonlinear incidence rate. Using the stroboscopic map, the authors determined

the dynamics of the discrete system and presented the existence of an infection-

free periodic solution. Whenever the period of impulsive effect is less than some

critical value, the stability of the infection-free equilibrium is globally attractive.

Moreover, they obtained the efficient conditions for the persistence of epidemic

model with pulse vaccination.

An impulsive vaccination of the SEIR epidemic model with two time delays is

formulated by Gao and his teamwork [77]. They obtained the infection-free peri-

odic solution of the system. Moreover, they found that whenever the vaccination

rate is greater than θ∗ ,the infected disease dies out, while if the vaccination rate

is less than θ∗, the disease will be permanence.

In this chapter, an SPARS drinking epidemic model with two time delays

and impulsive vaccination is investigated in section 4.2 including some lemmas

that we will use for considering the stability of periodic solution. In section 4.3,

the property of periodic solution is investigated, while the essential conditions

for the permanence of the drinking is obtained in section 4.4. In section 4.5,

numerical examples are given to validate the analytical results and to simulate the

dynamic process of the movement of population among different groups, followed

by concluding remarks in section 4.6.

4.2 Model Formulation and Lemmas

In this study, we set the SPARS drinking epidemic model with two time delays

and impulsive vaccination by the following assumptions:

(i) The total population(N) is partitioned into four classes, the susceptible

drinkers(S), periodic drinkers(P ), alcoholics(A) and recovered drinkers(R).

(ii) The natural death rate is assumed to be the same positive constant d for

all four categories, and the extra death rates taking into account the effect

of drinking in the categories of periodic, alcoholic and recovered drinker are

ε1, ε2 and ε3, respectively. We also assume that the influx of susceptible

population from a constant recruitment is K.

(iii) The contact rate α is defined as the expected number of contacts at which

potentially drinking occurs between susceptible individual and others. The

rate at which an occasional drinker becomes an alcoholic is β with the addict
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period ω; the alcoholics receive treatment with rate γ and the recovered

drinkers relapse to susceptible drinkers with rate η in the period τ .

(iv) The proportion of successful vaccination, which is called pulse vaccination

rate, is θ (0 < θ < 1), and the interpulse time or the time between two

consecutive pulse vaccinations is T .

The SPARS drinking epidemic model with two time delays and impulsive

vaccination is established as follows

S ′(t) = K − αS(t)P (t)

N(t)
− dS(t) + ηR(t− τ)e−(d+ε3)τ

P ′(t) = α
S(t)P (t)

N(t)
− βP (t− ω)e−(d+ε1)ω − (d+ ε1)P (t)

A′(t) = βP (t− ω)e−(d+ε1)ω − γA(t)− (d+ ε2)A(t)

R′(t) = γA(t)− ηR(t− τ)e−(d+ε3)τ − (d+ ε3)R(t)


t 6= kT, k ∈ N

S(t+) = (1− θ)S(t)

P (t+) = P (t)

A(t+) = A(t)

R(t+) = R(t) + θS(t)


t = kT, k ∈ N

(4.1)

Note that in model (4.1), we consider the impulsive vaccination of the SPARS

model with time delays and the influx of susceptible comes from the constant

recruitment rate, K, which is different to the original SPARS model in (3.1)

on which the population enter the susceptible population from the demographic

process of individuals reaching age 15 in the modeling time period.

The total population size N(t) can be determined by

N ′(t) = K − dN(t)− (ε1P (t) + ε2A(t) + ε3R(t))

N(t+) = N(t)
(4.2)

Thus, the total population size may vary in time. From (4.2), we have

K − (d+ ε1 + ε2 + ε3)N(t) 6 N ′(t) 6 K − dN(t) (4.3)

It follows that

K

d+ ε1 + ε2 + ε3

6 lim
t→∞

inf N(t) 6 lim
t→∞

supN(t) 6
K

d
(4.4)
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In the following, some previous results which are to be used in establishing

our main results, are given.

Lemma 4.1. [73] Consider the following equation:

x′(t) = a1x(t− ω)− a2x(t) (4.5)

where a1, a2, ω > 0 for −ω 6 t 6 0. We have

(i) If a1 < a2 , then lim
t→∞

x(t) = 0

(ii) If a1 > a2 , then lim
t→∞

x(t) =∞
The proofs of case (i) and (ii) are given in Theorem 3.2.1 [78] and Lemma 2.1

[79],respectively.

Lemma 4.2. [73] Consider the following impulsive differential equation

u′(t) = a− bu(t), t 6= kT, k ∈ N
u(t+) = (1− θ)u(t), t = kT, k ∈ N

}
(4.6)

where a > 0, b > 0 and 0 < θ ≤ 1. Then, there exists a unique periodic solution

of system(4.6):

ũ(t) =
a

b
+
(
u∗ − a

b

)
e−b(t−kT ), kT < t ≤ (k + 1)T (4.7)

which is globally asymptotically stable, where u∗ = a(1−θ)(1−e−bT )

b(1−(1−θ)e−bT )
.

Lemma 4.3. [80] Consider the following impulsive differential equation

u′(t) = a− bu(t)− cu(t− T ), t 6= kT, k ∈ N
u(t+) = (1− θ)u(t), t = kT, k ∈ N

}
(4.8)

where a > 0, b > 0, c > 0 and 0 < θ ≤ 1.Then there exists a unique periodic

solution of system (4.8) which is globally asymptotically stable.

4.3 Drinking-Free Periodic Solution

Since A(t) = N(t) − (S(t) + P (t) +R(t)), we focus on the following equivalent

model of (4.1);
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S ′(t) = K − αS(t)P (t)

N(t)
− dS(t) + ηR(t− τ)e−(d+ε3)τ

P ′(t) = α
S(t)P (t)

N(t)
− βP (t− ω)e−(d+ε1)ω − (d+ ε1)P (t)

R′(t) = γN(t)− γS(t)− γP (t)− ηR(t− τ)e−(d+ε3)τ

−(γ + d+ ε3)R(t)

N ′(t) = K − (d+ ε2)N(t) + ε2S(t) + (ε2 − ε1)P (t)

+(ε2 − ε3)R(t)



t 6= kT, k ∈ N

S(t+) = (1− θ)S(t)

P (t+) = P (t)

R(t+) = R(t) + θS(t)

N(t+) = N(t)


t = kT, k ∈ N

(4.9)

In this section, we first analyse the system (4.9) by demonstrating the exis-

tence of a drinking-free periodic solution, in which periodic drinking individuals

are permanently absent from the population, i.e. P (t) = 0 for all t > 0. Un-

der this condition the dynamics of susceptible individuals, alcoholics, recovered

individuals and total population must satisfy the following system :

S ′(t) = K − dS(t) + ηR(t− τ)e−(d+ε3)τ

R′(t) = γN(t)− γS(t)− ηR(t− τ)e−(d+ε3)τ − (γ + d+ ε3)R(t)

N ′(t) = K − (d+ ε2)N(t) + ε2S(t) + (ε2 − ε3)R(t)

 t 6= kT, k ∈ N

S(t+) = (1− θ)S(t)

R(t+) = R(t) + θS(t)

N(t+) = N(t)

 t = kT, k ∈ N

(4.10)

Since lim
t→∞

N(t) > K
d+ε2

and K
d+ε1+ε2+ε3

6 lim
t→∞

inf N(t) 6 lim
t→∞

supN(t) 6 K
d

,

we can say that lim
t→∞

N(t) 6 K
d

. If P (t) ≡ 0, it follows from the third and seventh

equations of model(4.1) that lim
t→∞

A(t) = 0. Therefore we have the following limit

system of (4.10)

R(t) =
K

d
− S(t) (4.11)
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and

S ′(t) = K

(
1 +

ηe−(d+ε3)τ

d

)
− dS(t)− ηe−(d+ε3)τS(t− τ), t 6= kT

S(t+) = (1− θ)S(t), t = kT

 (4.12)

According to Lemma 4.2, we can see that if d > ηe−(d+ε3)τ , then the system

(4.12) has a unique positive periodic solution with period T which is globally

asymptotically stable. We denote this periodic solution by S̃(t). Therefore, the

drinking-free periodic solution of system (4.10) is
(
S̃(t), 0, K

d
− S̃(t), K

d

)
.

From the delayed SPARS drinking epidemic model (4.1), letting the drinking

compartments to be P and A gives[
P ′

A′

]
=

[
αS∗

N∗ 0

0 0

][
P

A

]
−

[
d+ ε1 + βe−(d+ε1)ω 0

−βe−(d+ε1)ω γ + d+ ε2

][
P

A

]
(4.13)

The next generation matrix can then be determined by L = FV −1 where

F =

[
αS∗

N∗ 0

0 0

]
, V =

[
d+ ε1 + βe−(d+ε1)ω 0

−βe−(d+ε1)ω γ + d+ ε2

]
.

Thus,

L = FV −1 =

[
αS∗

(d+ε1+βe−(d+ε1)ω)N∗ 0

0 0

]
(4.14)

which has two eigenvalues;

λ = 0 ,
αS∗

(d+ ε1 + βe−(d+ε1)ω)N∗
,

where S∗ = K(d+ηe−(d+ε3)τ )(1−e−dT )
d2(1−(1−θ)e−dT )

and N∗ = K
d

.

Hence the basic reproduction number is

R∗ =
α(d+ ηe−(d+ε3)τ )(1− e−dT )

d(d+ ε1 + βe−(d+ε1)ω)(1− (1− θ)e−dT ).
(4.15)
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Theorem 4.4. If R∗ < 1, the drinking-free periodic solution (DFPS)(
S̃(t), 0, K

d
− S̃(t), K

d

)
is globally attractive, where

R∗ =
α(d+ ηe−(d+ε3)τ )(1− e−dT )

d(d+ ε1 + βe−(d+ε1)ω)(1− (1− θ)e−dT )
(4.16)

Proof. SinceR∗ < 1, we can choose ε0 > 0 small enough such that

αdΓ

K
< (d+ ε1 + βe−(d+ε1)ω) (4.17)

where Γ = K(d+ηe−(d+ε3)τ )(1−e−dT )
d2(1−(1−θ)e−dT )

+ ε0.

From system(4.12), we consider the following comparison impulsive differen-

tial system :

X ′(t) = K

(
1 +

ηe−(d+ε3)τ

d

)
− dX(t), t 6= kT, k ∈ N

X(t+) = (1− θ)X(t), t = kT, k ∈ N.

 (4.18)

By Lemma 4.2, we have a periodic solution of system (4.18) as follows

X̃(t) = ξ + (X∗ − ξ)e−d(t−kτ) , kT < t 6 (k + 1)T (4.19)

which is globally asymptotically stable, where ξ = K d+ηe−(d+ε3)τ

d2
and

X∗ = ξ(1−θ)(1−e−dT )
(1−(1−θ)e−dT )

for k > k1.

Therfore,

S(t) < X(t) 6 X̃(t) + ε0 6
K(d+ ηe−(d+ε3)τ )(1− e−dT )

d2(1− (1− θ)e−dT )
+ ε0 , Γ (4.20)

Further, from the second equation of system (4.27), we have

P ′(t) = α
S(t)P (t)

N(t)
− βP (t− ω)e−(d+ε1)ω − (d+ ε1)P (t)

6
αdΓ

K
P (t)− βP (t− ω)e−(d+ε1)ω − (d+ ε1)P (t).

(4.21)

From (4.17), we have αdΓ
K

< d + ε1 + βe−(d+ε1)ω. Further, considering the

following comparison differential system

y′(t) =
αdΓ

K
y(t)− βy(t− ω)e−(d+ε1)ω − (d+ ε1)y(t), (4.22)
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we have, lim
t→∞

y(t) = 0. By the comparison theorem and nonnegativity of P (t),

we get

lim
t→∞

P (t) = 0. (4.23)

Then, for any sufficiently small ε1 > 0, there exists an integer k2 such that for all

t > k2T ,

P (t) < ε1. (4.24)

From the third equation of system (4.1),for t > k3T we have

A′(t) < βε1 − (γ + d+ ε2)A(t). (4.25)

Consider the comparison equation for t > k3τ ,

z′(t) = βε1 − (γ + d+ ε2)z(t). (4.26)

It is easy to see that lim
t→∞

z(t) = βε1
γ+d+ε2

. By the comparison theorem, there exists

an integer k3 > k2 such that

A(t) <
βε1

γ + d+ ε2

. (4.27)

Therefore, in view of the equation for A(t) and considering that ε1 is sufficiently

small, it follows that

lim
t→∞

A(t) = 0. (4.28)

For the total population, from system (4.2) and equations (4.24) and (4.27),

we get that

N ′(t) = K − dN(t)− (ε1P (t) + ε2A(t) + ε3R(t))

6 K − dN(t)− (ε1P (t) + ε2A(t))

6 K − dN(t)−
(
ε1ε1 +

βε2ε1
γ + d+ ε2

)
Consider the comparison equation for t > k5T ,

n′(t) = K − dn(t)−
(
ε1 +

βε2

γ + d+ ε2

)
ε1.

We can see that lim
t→∞

n(t) = K
d

. By the comparison theorem, for k5 > k4 we have

lim
t→∞

N(t) =
K

d
. (4.29)
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Let V (t) =
∣∣∣S(t)− S̃(t)

∣∣∣. Then, from (4.12),(4.24),(4.27) and the first e-

quation of model (4.1), there exists an integer k6 > k5 such that between two

consecutive pulses

D+V (t) 6

∣∣∣∣ηe−(d+ε3)τ

(
N(t− T )− K

d

)∣∣∣∣+ α
S(t)P (t)

N(t)

+ ηe−(d+ε3)τ (P (t− T ) + A(t− T ))− dV (t)ηe−(d+ε3)τV (t− T )

6 Hε1 − dV (t) + ηe−(d+ε3)τV (t− T )

(4.30)

for t > k6T , where H = α + ηe−(d+ε3)τ
(

1 + β
γ+d+ε2

)
. When t = kT , V +(t) =

(1− θ)V (t).

Consider the following delayed differential equations for t > k6T ,

v(t) = Hε1 − dv(t) + ηe−(d+ε3)τv(t− T ). (4.31)

By Lemma 4.2, we get

lim
t→∞

v(t) =
Hε1

d− ηe−(d+ε3)τ
,

which is one of the fixed solutions v(t) of equation (4.31) with initial condition

v(t) =
∣∣∣S(t)− S̃(t)

∣∣∣ for t ∈ (k6T, (k6 + 1)T ). Thus there exists an integer k7 > k6

such that

0 ≤ V (t) ≤ Hε1
d− ηe−(d+ε3)τ

(4.32)

for all t > k7T . Because ε1 can be arbitrarily small, we have

lim
t→∞

S(t) = S̃(t). (4.33)

Finally, it follows from (4.23),(4.28),(4.29)and (4.33) that the drinking-free pe-

riodic solution
(
S̃(t), 0, K

d
− S̃(t), K

d

)
of system (4.1) is globally attractive. The

proof of Theorem 4.3 is completed.

Corollary 4.5. The drinking free periodic solution
(
S̃e(t), 0,

K
d
− S̃e(t), Kd

)
of

the system (4.9) is globally attractive provided that θ > θ∗ or ω > ω∗ or τ > τ ∗

where

θ∗ = 1− edT +
α(d+ ηe−(d+ε3)τ )(edT − 1)

d(d+ ε1 + βe−(d+ε1)ω)
, (4.34)

ω∗ = − 1

d+ ε1

ln

[
α(d+ ηe−(d+ε3)τ )(1− e−dT )

βd (1− (1− θ)e−dT )
− (d+ ε1)

β

]
(4.35)
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τ ∗ = − 1

d+ ε3

ln

[
d(d+ ε1 + βe−(d+ε1)ω)(1− (1− θ)e−dT )

αη(1− e−dT )
− d

η

]
(4.36)

4.4 Permanence of drinking

In this section, we consider the permanence of drinking in the pulse vaccination

SPARS model with two time-delays, on which the drinking becomes endemic if

the drinking population always persists above a certain positive level.

Definition 4.6. In system (4.9), the drinking is said to be permanent if there

is a positive constant Υ such that lim
t→∞

inf P (t) > Υ for any positive solution

(S(t), P (t), A(t), R(t)) of the system (4.9).

Denote

R∗ =
α(1− θ)(1− e−dT )

d(d+ ε1 + βe−(d+ε1)ω)(1− (1− θ)e−dT )
(4.37)

P ∗ =
(1− θ)(1− e−dT )

(d+ ε1 + βe−(d+ε1)ω)(1− (1− θ)e−dT )
− d

α
(4.38)

It is easily to see that

P ∗ =
d

α
(R∗ − 1). (4.39)

Theorem 4.7. If R∗ > 1, the drinking is permanent in the model (4.9).

Proof. Note that the second equation of (4.9) can be written as

P ′(t) = α
S(t)P (t)

N(t)
− βP (t− ω)e−(d+ε1)ω − (d+ ε1)P (t)

= α
S(t)P (t)

N(t)
− βP (t)e−(d+ε1)ω + βe−(d+ε1)ω (P (t)− P (t− ω))− (d+ ε1)P (t)

= P (t)

(
α
S(t)

N(t)
− βe−(d+ε1)ω − (d+ ε1)

)
+ βe−(d+ε1)ω d

dt

t∫
t−ω

P (σ)dσ

(4.40)

For a positive solution (S(t), P (t), A(t), R(t)) of the system (4.9), we define

V (t) = P (t)− βe−(d+ε1)ω

t∫
t−ω

P (σ)dσ (4.41)
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Using (4.40), we have from (4.9) that

V ′(t) = P (t)

(
α
S(t)

N(t)
− βe−(d+ε1)ω − (d+ ε1)

)
. (4.42)

Since R∗ > 1, it is easy to see that P∗ > 0, and thus there exists sufficiently small

ε > 0 such that
α

βe−(d+ε1)ω + d+ ε1

δ > 1 (4.43)

where

δ =
K(1− θ)

(
1− e−(d+αP ∗)T

)
(d+ αP ∗) (1− (1− θ)e−(d+αP ∗)T )

− ε.

We claim that it is possible that P (t) 6 P ∗ for all t > t0 where t0 is a certain

nonnegative constant. Suppose the contrary, then as t > t0

S ′(t) = K − αS(t)P (t)

N(t)
− dS(t) + ηR(t− τ)e(d+ε3)τ

> K − (d+ αP ∗)
S(t)

N(t)

(4.44)

Consider the following comparison system :

v′(t) = K − (d+ αP ∗)v(t) , kT < t 6 (k + 1)T, k ∈ N

v(t+) = (1− θ)v(t) , t = kT

}
(4.45)

By Lemma 4.2, we obtain

ṽe(t) =
K

d+ αP ∗
+

(
v∗ − K

d+ αP ∗

)
e−(d+αP ∗)(t−kT ), kT < t 6 (k + 1)T, (4.46)

which is the unique globally asymptotically stable periodic solution of system

(4.45), where v∗ = K(1−θ)(1−e−(d+αP∗)T )

(d+αP ∗)(1−(1−θ)e−(d+αP∗)T )
.

Thus, there exists a T ∗ > 0 satisfying

S(t) > ṽe(t)− ε > v∗ − ε = δ (4.47)
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for all t > t0 + T ∗ , t1. By (4.42) and (4.47), we have

V ′(t) > P (t)

(
α
S(t)

N(t)
− (d+ ε1 + βe−(d+ε1)ω)

)
=

P (t)

d+ ε1 + βe−(d+ε1)ω

(
αδ

d+ ε1 + βe−(d+ε1)ω
− 1

)
, t 6= kT

(4.48)

for all t > t1. Set

Pl = min
t∈[t1,t1+ω]

P (t) > 0. (4.49)

We will now show that P (t) > Pl for all t > t1. Suppose the contrary.Then

there exists a T0 > 0 such that P (t) > Pl for all t1 6 t 6 t1 + ω + T0, and

P ′(t1 + ω + T0) 6 0.

Then, the second equation of system (4.9) can be written as

P ′(t) = α
S(t)P (t)

N(t)
− βP (t− ω)e−(d+ε1)ω − (d+ ε1)P (t)

> αδP (t)− βP (t− ω)e−(d+ε1)ω − (d+ ε1)P (t).

(4.50)

Thus,

P ′(t1 + ω + T0) > αδP (t1 + ω + T0)− βP (t1 + ω + T0)e−(d+ε1)ω

−(d+ ε1)P (t1 + ω + T0)

> Pl
(
αδ − (βe−(d+ε1)ω + d+ ε1)

)
> 0

(4.51)

This is the contradiction. Therefore, P (t) > Pl for all t > t1. Consequently, for

all t > t1, we have that

V ′(t) >
Pl

d+ ε1 + βe−(d+ε1)ω

(
αδ

d+ ε1 + βe−(d+ε1)ω
− 1

)
, t > t1, (4.52)

which implies that as t −→∞ , V (t) −→∞.

This contradicts V (t) 6 K
d

(
1− βe−(d+ε1)ω

)
. Therefore, the claim is proved.

Corollary 4.8. The drinking is uniformly persistent provided that θ < θ∗ or

ω < ω∗.

θ∗ = 1−
d
(
d+ ε1 + βe(d+ε1)ω

)
α(1− e−dT ) + de−dT (d+ ε1 + βe(d+ε1)ω)

(4.53)

ω∗ = − 1

d+ ε1

ln

[
α(1− θ)(1− e−dT )

βd (1− (1− θ)e−dT )
− d+ ε1

β

]
(4.54)
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4.5 Numerical Simulations

In this section, various numerical investigations are carried out to illustrate the

theoretical results in sections 4.3 and 4.4. The parameter values used in the

numerical simulations are : µ = 0.0085, α = 0.02, β = 0.01, γ = 0.001, d =

0.0075, η = 0.001, ε1 = 0.001, ε2 = 0.01 and ε3 = 0.002. The percentages of initial

individuals in susceptible, periodic, alcoholics and recovered classes are 50, 30, 15

and 5, respectively. The evolution of each class of population without vaccination

,i.e. θ = 0, is shown in Figures 4.1 and 4.2. The numerical results from pulse

vaccination with rate θ = 0.1, θ = 0.3, θ = 0.6 and θ = 0.9 are shown in Figures

4.3 - 4.10.

In Figure 4.1, we can see that the number of occasional drinkers dramati-

cally increases in the first month of no vaccination. Conversely, the number of

susceptible drinkers decreases rapidly. The amounts of alcoholics and recovered

drinkers slightly decrease first, then the number of alcoholics gradually increases

until reaching a stable state. Overall, in the non-vaccination community, alcohol

drinkers are more than the number of people who do not drink and recovered

from drinking.

Figures 4.2 - 4.10, illustrated the effect of pulse vaccination for controlling

drinking epidemics with rate 0.1, 0.3, 0.6 and 0.9, respectively. The fluctuation

of recovered drinkers is always greater than that for periodic drinkers and alco-

holics, that is, the drinking epidemic cannot be permanent.
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Figure 4.1: The evolutions of the four classes of populations without vaccination.
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Figure 4.2: Three dimensional trajectory in periodic drinker-alcoholics-recovered
drinker (P,A,R)-Space without vaccination.
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Figure 4.3: The evolutions of the four classes of populations with pulse vaccination
rate θ = 0.1.
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Figure 4.4: Three dimensional trajectory in periodic drinker-alcoholics-recovered
drinker (P,A,R)-Space with pulse vaccination rate θ = 0.1.
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Figure 4.5: The evolutions of the four classes of populations with pulse vaccination
rate θ = 0.3.
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Figure 4.6: Three dimensional trajectory in periodic drinker-alcoholics-recovered
drinker (P,A,R)-Space with pulse vaccination rate θ = 0.3.
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Figure 4.7: The evolutions of the four classes of populations with pulse vaccination
rate θ = 0.6.
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Figure 4.8: Three dimensional trajectory in periodic drinker-alcoholics-recovered
drinker (P,A,R)-Space with pulse vaccination rate θ = 0.6.
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Figure 4.9: The evolutions of the four classes of populations with pulse vaccination
rate θ = 0.9.
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Figure 4.10: Three dimensional trajectory in periodic drinker-alcoholics-recovered
drinker (P,A,R)-Space with pulse vaccination rate θ = 0.9.
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4.6 Concluding Remarks

In this chapter, we have studied the dynamical behavior of a drinking epidemic

model with two time-delays and impulsive vaccination. Two thresholds R∗ and

R∗ are derived and it is shown that if R∗ < 1 then the drinking will disappear,

while if R∗ > 1 then the drinking will be permanent which means that after

some period of time the drinking will become hazardous. Analytical expression

of three critical values θ∗, ω∗ and τ ∗ have been established and it is shown that

θ > θ∗ or ω > ω∗ or τ > τ ∗ implies that the drinking will eradicate, while θ < θ∗

or ω < ω∗ implies that the drinking will be uniformly persistent. The research

indicates that the long latent period of drinking or a long recovered period or a

large pulse vaccination rate will lead to eradication of drinking.



CHAPTER 5

Summary and Further Research

5.1 Summary

In this thesis, we have investigated a mathematical model describing the dynamics

of drinking. This model consists of four differential equations describing the rate

of change for four subpopulation S, P , A and R. We investigated the stability

of the model and have demonstrated that the model is asymptotically stable.

Furthermore, we studied two strategies to eradicate the drinking epidemic and

investigate the optimal control of treatment and impulsive vaccination. Based on

previous work in the field, some new analytical and numerical results have been

derived. The main results are summarized as follows:

(1) Results for the stability analysis of the SPARS drinking epidemic model

(i) The threshold quantity that determines the average number of secondary

drinkers produced when one drinker individual is introduced into a group of

susceptible individuals, the basic reproduction number, is R0 = αµ
d(d+β+ε1)

where α

is the contact rate, µ is the rate of the general population entering the susceptible

population, d is the natural death rate , β is the proportion becoming alcoholic

and ε1 is the death rate of occasional drinkers.

(ii) From the investigation, it can be concluded that the drinking free equilib-

rium is stable if R0 < 1, or otherwise unstable. Moreover, persistent drinking is

always stable. The model was shown to be stable, which is an important feature

of a good model.

(iii) Numerical simulation has been carried out and the results have confirmed

the verification of analytical results.
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(2) Results for the optimal control strategy

(i) An optimal control strategy has been established to minimize the number

of drinkers, including occasional drinkers and alcoholics, and to maximize the

number of recovered individuals.

(ii) Numerical simulations show that, under the optimal control strategy, the

numbers of periodic drinkers and the alcoholic individuals decrease while the

numbers of recovered group and total population increase in the optimality sys-

tem.

(3) Results for the impulsive vaccination.

(i) Based on the mathematical model constructed, we investigated the drink-

ing epidemic model with two time-delays and impulsive vaccination. The pulse

term is (1 − θ)S(t), which means that the vaccination is applied every T time

interval and θ ∈ (0, 1) denotes the proportion of successful vaccination.

(ii) By analysing the SPARS model, two thresholds have been established,

one for global interactivity of the drinking-free solution and another for the per-

manence of drinking solution.

(iii) As summarized in Corollaries 4.5 and 4.8, drinking disappears when θ >

θ∗ whereas drinking persists when θ < θ∗ where θ∗ and θ∗ are shown in Corollaries

4.5 and 4.8, respectively.

(iv) Our results indicate that a long latent period of the disease or a large

pulse vaccination rate will lead to eradication of drinking.

5.2 Further Research

In this project, we minimize the number of drinkers by finding the optimal control

for the drinking epidemic model with numerical verification of the results with

the corresponding parameters to the thresholds. Using real data to demonstrate

how the optimal control theory can be applied in real situation will be continued

in future research. One possible extension is to consider the optimal control

strategy of the SPARS drinking epidemic model with time delay. Moreover,

the two epidemic control strategies, namely the optimal control and impulsive

vaccination, may be extended to study other epidemics.
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