59,510 research outputs found

    Two new feature selection algorithms with rough sets theory

    Get PDF
    Rough Sets Theory has opened new trends for the development of the Incomplete Information Theory. Inside this one, the notion of reduct is a very significant one, but to obtain a reduct in a decision system is an expensive computing process although very important in data analysis and knowledge discovery. Because of this, it has been necessary the development of different variants to calculate reducts. The present work look into the utility that offers Rough Sets Model and Information Theory in feature selection and a new method is presented with the purpose of calculate a good reduct. This new method consists of a greedy algorithm that uses heuristics to work out a good reduct in acceptable times. In this paper we propose other method to find good reducts, this method combines elements of Genetic Algorithm with Estimation of Distribution Algorithms. The new methods are compared with others which are implemented inside Pattern Recognition and Ant Colony Optimization Algorithms and the results of the statistical tests are shown.IFIP International Conference on Artificial Intelligence in Theory and Practice - Knowledge Acquisition and Data MiningRed de Universidades con Carreras en Informática (RedUNCI

    Two new feature selection algorithms with rough sets theory

    Get PDF
    Rough Sets Theory has opened new trends for the development of the Incomplete Information Theory. Inside this one, the notion of reduct is a very significant one, but to obtain a reduct in a decision system is an expensive computing process although very important in data analysis and knowledge discovery. Because of this, it has been necessary the development of different variants to calculate reducts. The present work look into the utility that offers Rough Sets Model and Information Theory in feature selection and a new method is presented with the purpose of calculate a good reduct. This new method consists of a greedy algorithm that uses heuristics to work out a good reduct in acceptable times. In this paper we propose other method to find good reducts, this method combines elements of Genetic Algorithm with Estimation of Distribution Algorithms. The new methods are compared with others which are implemented inside Pattern Recognition and Ant Colony Optimization Algorithms and the results of the statistical tests are shown.IFIP International Conference on Artificial Intelligence in Theory and Practice - Knowledge Acquisition and Data MiningRed de Universidades con Carreras en Informática (RedUNCI

    FEATURE SELECTION APPLIED TO THE TIME-FREQUENCY REPRESENTATION OF MUSCLE NEAR-INFRARED SPECTROSCOPY (NIRS) SIGNALS: CHARACTERIZATION OF DIABETIC OXYGENATION PATTERNS

    Get PDF
    Diabetic patients might present peripheral microcirculation impairment and might benefit from physical training. Thirty-nine diabetic patients underwent the monitoring of the tibialis anterior muscle oxygenation during a series of voluntary ankle flexo-extensions by near-infrared spectroscopy (NIRS). NIRS signals were acquired before and after training protocols. Sixteen control subjects were tested with the same protocol. Time-frequency distributions of the Cohen's class were used to process the NIRS signals relative to the concentration changes of oxygenated and reduced hemoglobin. A total of 24 variables were measured for each subject and the most discriminative were selected by using four feature selection algorithms: QuickReduct, Genetic Rough-Set Attribute Reduction, Ant Rough-Set Attribute Reduction, and traditional ANOVA. Artificial neural networks were used to validate the discriminative power of the selected features. Results showed that different algorithms extracted different sets of variables, but all the combinations were discriminative. The best classification accuracy was about 70%. The oxygenation variables were selected when comparing controls to diabetic patients or diabetic patients before and after training. This preliminary study showed the importance of feature selection techniques in NIRS assessment of diabetic peripheral vascular impairmen

    Scalable approximate FRNN-OWA classification

    Get PDF
    Fuzzy Rough Nearest Neighbour classification with Ordered Weighted Averaging operators (FRNN-OWA) is an algorithm that classifies unseen instances according to their membership in the fuzzy upper and lower approximations of the decision classes. Previous research has shown that the use of OWA operators increases the robustness of this model. However, calculating membership in an approximation requires a nearest neighbour search. In practice, the query time complexity of exact nearest neighbour search algorithms in more than a handful of dimensions is near-linear, which limits the scalability of FRNN-OWA. Therefore, we propose approximate FRNN-OWA, a modified model that calculates upper and lower approximations of decision classes using the approximate nearest neighbours returned by Hierarchical Navigable Small Worlds (HNSW), a recent approximative nearest neighbour search algorithm with logarithmic query time complexity at constant near-100% accuracy. We demonstrate that approximate FRNN-OWA is sufficiently robust to match the classification accuracy of exact FRNN-OWA while scaling much more efficiently. We test four parameter configurations of HNSW, and evaluate their performance by measuring classification accuracy and construction and query times for samples of various sizes from three large datasets. We find that with two of the parameter configurations, approximate FRNN-OWA achieves near-identical accuracy to exact FRNN-OWA for most sample sizes within query times that are up to several orders of magnitude faster
    corecore