123 research outputs found

    Chaotic iterations versus Spread-spectrum: chaos and stego security

    Full text link
    A new framework for information hiding security, called chaos-security, has been proposed in a previous study. It is based on the evaluation of unpredictability of the scheme, whereas existing notions of security, as stego-security, are more linked to information leaks. It has been proven that spread-spectrum techniques, a well-known stego-secure scheme, are chaos-secure too. In this paper, the links between the two notions of security is deepened and the usability of chaos-security is clarified, by presenting a novel data hiding scheme that is twice stego and chaos-secure. This last scheme has better scores than spread-spectrum when evaluating qualitative and quantitative chaos-security properties. Incidentally, this result shows that the new framework for security tends to improve the ability to compare data hiding scheme

    Better security levels for broken arrows

    Full text link

    Digital Audio Watermarking by Magnitude Modification of Frequency Components Using the CSPE Algorithm

    Get PDF
    In this paper we describe a process whereby the magnitude of either one or two frequency components of a signal is modified in order that it may be used to encode a hidden message within a signal in such a way as the casual observer would have no way of noticing the presence of a hidden message. Previous work has used filtering and signal addition to achieve the same goals. The current work improves on this by using a recent super-resolution component-identification technique to isolate the components to modify, limiting the impact on the quality of the signal

    Digital Audio Watermarking by Magnitude Modification of Frequency Components Using the CSPE Algorithm

    Get PDF
    In this paper we describe a process whereby the magnitude of either one or two frequency components of a signal is modified in order that it may be used to encode a hidden message within a signal in such a way as the casual observer would have no way of noticing the presence of a hidden message. Previous work has used filtering and signal addition to achieve the same goals. The current work improves on this by using a recent super-resolution component-identification technique to isolate the components to modify, limiting the impact on the quality of the signal

    Watermarking security

    Get PDF
    International audienceThis chapter deals with applications where watermarking is a security primitive included in a larger system protecting the value of multimedia content. In this context, there might exist dishonest users, in the sequel so-called attackers, willing to read/overwrite hidden messages or simply to remove the watermark signal.The goal of this section is to play the role of the attacker. We analyze means to deduce information about the watermarking technique that will later ease the forgery of attacked copies. This chapter first proposes a topology of the threats in Section 6.1, introducing three different concepts: robustness, worst-case attacks, and security. Previous chapter has already discussed watermark robustness. We focus on worst-case attacks in Section 6.2, on the way to measure watermarking security in Section 6.3, and on the classical tools to break a watermarking scheme in Section 6.4. This tour of watermarking security concludes by a summary of what we know and still do not know about it (Section 6.5) and a review of oracle attacks (Section 6.6). Last, Section 6.7 deals with protocol attacks, a notion which underlines the illusion of security that a watermarking primitive might bring when not properly used in some applications

    Digital audio watermarking for broadcast monitoring and content identification

    Get PDF
    Copyright legislation was prompted exactly 300 years ago by a desire to protect authors against exploitation of their work by others. With regard to modern content owners, Digital Rights Management (DRM) issues have become very important since the advent of the Internet. Piracy, or illegal copying, costs content owners billions of dollars every year. DRM is just one tool that can assist content owners in exercising their rights. Two categories of DRM technologies have evolved in digital signal processing recently, namely digital fingerprinting and digital watermarking. One area of Copyright that is consistently overlooked in DRM developments is 'Public Performance'. The research described in this thesis analysed the administration of public performance rights within the music industry in general, with specific focus on the collective rights and broadcasting sectors in Ireland. Limitations in the administration of artists' rights were identified. The impact of these limitations on the careers of developing artists was evaluated. A digital audio watermarking scheme is proposed that would meet the requirements of both the broadcast and collective rights sectors. The goal of the scheme is to embed a standard identifier within an audio signal via modification of its spectral properties in such a way that it would be robust and perceptually transparent. Modification of the audio signal spectrum was attempted in a variety of ways. A method based on a super-resolution frequency identification technique was found to be most effective. The watermarking scheme was evaluated for robustness and found to be extremely effective in recovering embedded watermarks in music signals using a semi-blind decoding process. The final digital audio watermarking algorithm proposed facilitates the development of other applications in the domain of broadcast monitoring for the purposes of equitable royalty distribution along with additional applications and extension to other domains

    2D Watermarking: Non Conventional Approaches

    Get PDF

    Digital watermark technology in security applications

    Get PDF
    With the rising emphasis on security and the number of fraud related crimes around the world, authorities are looking for new technologies to tighten security of identity. Among many modern electronic technologies, digital watermarking has unique advantages to enhance the document authenticity. At the current status of the development, digital watermarking technologies are not as matured as other competing technologies to support identity authentication systems. This work presents improvements in performance of two classes of digital watermarking techniques and investigates the issue of watermark synchronisation. Optimal performance can be obtained if the spreading sequences are designed to be orthogonal to the cover vector. In this thesis, two classes of orthogonalisation methods that generate binary sequences quasi-orthogonal to the cover vector are presented. One method, namely "Sorting and Cancelling" generates sequences that have a high level of orthogonality to the cover vector. The Hadamard Matrix based orthogonalisation method, namely "Hadamard Matrix Search" is able to realise overlapped embedding, thus the watermarking capacity and image fidelity can be improved compared to using short watermark sequences. The results are compared with traditional pseudo-randomly generated binary sequences. The advantages of both classes of orthogonalisation inethods are significant. Another watermarking method that is introduced in the thesis is based on writing-on-dirty-paper theory. The method is presented with biorthogonal codes that have the best robustness. The advantage and trade-offs of using biorthogonal codes with this watermark coding methods are analysed comprehensively. The comparisons between orthogonal and non-orthogonal codes that are used in this watermarking method are also made. It is found that fidelity and robustness are contradictory and it is not possible to optimise them simultaneously. Comparisons are also made between all proposed methods. The comparisons are focused on three major performance criteria, fidelity, capacity and robustness. aom two different viewpoints, conclusions are not the same. For fidelity-centric viewpoint, the dirty-paper coding methods using biorthogonal codes has very strong advantage to preserve image fidelity and the advantage of capacity performance is also significant. However, from the power ratio point of view, the orthogonalisation methods demonstrate significant advantage on capacity and robustness. The conclusions are contradictory but together, they summarise the performance generated by different design considerations. The synchronisation of watermark is firstly provided by high contrast frames around the watermarked image. The edge detection filters are used to detect the high contrast borders of the captured image. By scanning the pixels from the border to the centre, the locations of detected edges are stored. The optimal linear regression algorithm is used to estimate the watermarked image frames. Estimation of the regression function provides rotation angle as the slope of the rotated frames. The scaling is corrected by re-sampling the upright image to the original size. A theoretically studied method that is able to synchronise captured image to sub-pixel level accuracy is also presented. By using invariant transforms and the "symmetric phase only matched filter" the captured image can be corrected accurately to original geometric size. The method uses repeating watermarks to form an array in the spatial domain of the watermarked image and the the array that the locations of its elements can reveal information of rotation, translation and scaling with two filtering processes
    • …
    corecore