
Digital Audio Watermarking by Magnitude Modification of
Frequency Components Using the CSPE Algorithm.

 Jian Wang (jwang@cs.nuim.ie), Ron Healy (rhealy@cs.nuim.ie), Dr. Joseph Timoney (jtimoney@cs.nuim.ie)

ABSTRACT:

In this paper we describe a process whereby the
magnitude of either one or two frequency components of
a signal is modified in order that it may be used to
encode a hidden message within a signal in such a way as
the casual observer would have no way of noticing the
presence of a hidden message. Previous work has used
filtering and signal addition to achieve the same goals.
The current work improves on this by using a recent
super-resolution component-identification technique to
isolate the components to modify, limiting the impact on
the quality of the signal.

Keywords: Signal processing, digital audio watermarking,
data hiding, Steganography

1.0 INTRODUCTION

The concept of Steganography, defined as “the art or
practice of concealing a message, image, or file within
another message, image, or file” [1] is not new.
Steganography may be combined with Cryptography in
order to make message data more secure even if the
presence of the message is discovered. Digital watermarking
of audio and video is a form of Steganography, in that the
audio/video can be used to ‘hide’ the presence of other
information.

In recent years there has been a marked increase in research
in the area of digital watermarking. This has been driven, in
part, by the needs of the Entertainment Industry to find
means for protecting, tracking or identifying intellectual
property such as photographs, music and movies. The SDMI
(The Secure Digital Music Initiative, a group consisting of
more than 200 companies in the fields of I.T., Music and
Entertainment, Consumer Electronics, Security and Internet
Service Providers) challenge at the turn of the century, with
regard to digital music, contributed to much investigation
into the area of digital watermarking over the intervening
years. Eventually, the SDMI folded, claiming that it was
awaiting developments in technology before implementing
digital rights management technologies. One of the reasons

identified for the SDMI’s failure was that the technologies
then available were insufficient to achieve the aim of
completely hiding an added watermark from those expert or
talented listeners described as ‘golden ears’. This meant that
there was no way of preventing detection and ultimate
removal of the watermark. The watermarking technology
that the SDMI purported to recommend to the Industry was
broken almost immediately [2].

There have been a number of alternative propositions for
hiding data in cover signals and most are successful to a
certain extent or in a given context. A good overview of the
theories in this area can be found in [3]. The basic premise
of watermarking schemes is that the information to be
watermarked w is added or embedded in the cover or host
signal s to produce a watermarked signal s’

 s + w = s’ (1)

This paper proposes a technique for hiding data in cover
audio signals, specifically music or spoken word, by the
identification and modification of the magnitude of
frequency components in the cover signal itself.

In part, the work is inspired by [4], a technique designed for
covert communications across a radio channel for military
applications, and follows on from an earlier work which
used the addition of multiple frequency components to
achieve a similar aim [5]. In [5] it was proposed that the
message to be embedded was to be separately generated.
This was then added to the host or cover audio. In this
paper, however, we instead propose that the host or cover is
itself modified in a controlled manner, rather than having
potentially destructive and/or detectable content added to it.
In both this paper and [5], the primary concern is for
inaudibility of the watermark and blind or semi-blind
detection, meaning that the decoder does not have any
knowledge of either the content of the cover audio or of the
embedded watermark prior to decoding. This restriction is
guided by the intended use of the technology.

In this paper, we present the results of experiments
performed to recover a bit sequence which was embedded in
a synthesised cover audio signal consisting of randomly
generated components. The decoding was performed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297011018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

without any reference to the original unwatermarked signal
or the watermark itself.

2.0 METHOD

A component value is first chosen which is used as the basis
for calculating which components to modify to hide the
message. The initial component choice may be dependent
on various factors, such as the type of audio used as
host/cover. For example, human speech generally consists
of lower frequency components – and less of them – than a
modern Rock or Pop song so hiding data in a recording of
speech would naturally limit the component of choice.
However, even in such a limited range, there are still
thousands of values to choose from.

The value of the chosen component becomes, in effect, a
private key and this value is needed in order to decode the
watermark – assuming that the presence of the watermark
has previously been detected. This adds to the security of
the technique when used in an environment where security
of the content of the hidden message is an issue.

The signal intended as the cover or host audio is segmented
into frames of uniform length and the frame is then analysed
using ‘Complex Spectral Phase Estimation’ (CSPE)
techniques [6] to identify the presence and magnitude of its
inherent components. Previously, FFT techniques have been
used to approximate the relative strengths of inherent
components. This would be inadequate for this project, as
exact measurement of components using the FFT is only
possible if the component is aligned with an analysis bin.
This is an unlikely occurrence in a real-world signal such as
recorded music or speech. Therefore, the FFT is an
inadequate solution to the problem of identifying exactly the
components present.

2.1 CSPE INTRODUCTION AND DESCRIPTION

The CSPE algorithm was introduced as a method to
accurately estimate the frequency of components that exist
within a short time frame. It was also designed to be
computationally efficient. It is actually related in some
aspects to the cross-spectrogram technique of [7]. The
principal of CSPE algorithm can be described as follows:

An FFT analysis is performed twice: firstly on the signal of
interest and the second time upon the same signal but

shifted in time by one sample. Then, by multiplying the
sample-shifted FFT spectrum with the complex conjugate of
the initial FFT spectrum, a frequency dependent function is
formed from which the exact values of the frequency
components it contains can be detected. The procedure of
the CSPE algorithm is depicted in block diagram form in
Figure 1.

Fig. 1: The flow diagram of CSPE

Mathematically, the algorithm can be described as follows.
Assume a real signal s0, and a one-sample shifted version of
this signal s1. Say that its frequency is β = q + δ where q is
an integer and δ is a fractional number. If b is an initial

phase, wn is the window function used in the FFT,
0wsF is

the windowed Fourier transform of 0s , and 1wsF is the

windowed Fourier transform of s1, then, from [6], we find

N
j

eD
2

 (2)

The frequency dependent CSPE function can be written as

 



























2

*2

2*

2*

)(

)()(Re2

)(

)
2

(10

n
w

n
w

n
w

bj

n
w

wswsw

DFD

DFDDFe

DFD
aFFCSPE

 (3)

The windowed transform requires multiplication of the time
domain data by the analysis widow, and thus the resulting
transform is the convolution of the transform of the window

1s

Windowing Windowing

FFT FFT

0s

Conjugate Multiply bin by bin

Angle

Frequency
Estimation

Shift 1
sample

function, wf, with the transform of a complex sinusoid.
Since the transform of a complex sinusoid is a pair of delta
functions in the positive and negative frequency positions,
the result of the convolution is merely a frequency-
translated copy of wf centred at +β and -β. Consequently,
with a standard windowing function, the ||Fw (Dn)|| term is
only considerable when k ≈ β and it decays rapidly when k
is far from β. Therefore, the analysis window must be
chosen carefully so that it decays rapidly to minimize any
spectral leakage into adjacent bins. If this is so it will render
the interference terms, i.e. the second and third terms, to be
negligible in Eq.(3). Thus, the CSPE for the positive
frequencies gives:

122

)(
4

 DDFaCSPE n
ww (4)

From Eq. (4). we find the CSPE frequency estimate











































2

)2(

2

))(
4

(

2

)(
4

2
)(

2
22

122

N
NeDFaN

DDFaN

CSPENf

N
jn

w

n
w

w
CSPE w

 (5)

The frequency dependent function as illustrated in Equation
(4) produces a graph with a staircase-like appearance where
the flat parts of the graph indicate the exact frequencies of
the components. The width of the flat parts is dependent on
the main-lobe width of window function used to select the
signal before FFT processing. An example of the output of
the CSPE algorithm is shown in Figure 2. Consider the
signal S1 which contains components with frequency values
(in Hz) of 17, 293.5, 313.9, 204.6, 153.7, 378 and 423. The
sampling frequency is 1024 HZ. A frame of 1024 samples in
length is windowed using a Blackman window and is
padded using 1024 zeros. The frequency dependent CSPE
function is computed as per Equation (5). As shown in
Figure 2, each component can be calculated and these are
identified with an arrow in the graph. The largest error
among all the estimates of the components frequencies is
approximately 0.15 Hz.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

bin index

Fre
que

ncy
 va

lue

Frequency estimation by improved CSPE

Fig. 2 Frequency estimation of 1S by CSPE

Notice too in Figure 2 that at the flat sections in the graph of
the CSPE result, the width of flat sections where the arrows
point are related to the width of the window’s main-lobe in
the frequency domain.

In addition, with CSPE, we can get the amplitude and phase
of the kth frequency component using the following
equations, where W(ω-fcspe(k)) is the Fourier Transform of
window function which has been shifted to fcspe(k) in
frequency domain.

))((

*2
0

kfcspeW
F

Amp sw
k 



 (6)















))((
*2

0

kfcspeW
F

Phase sw
k 

 (7)

2.2 EXPERIMENTAL EVALUATION OF CSPE

Experiments were designed to evaluate the performance of
the CSPE algorithm in correctly identifying frequency
components within a multiple-component signal. In each set
of experiments, a total of 500 signals with Sampling
Frequency 44100 Hz and containing components across the
human hearing range of 100 Hz to 20,000 Hz were
generated. Each signal contained many equally spaced
frequency components. The number of components in each
generated signal was not consistent. For each individual
signal, we have a unique, randomly-generated step constant
which defines the space between two neighbouring
frequency components of the signal. 500 step constants were
created range from 169 Hz to 668 Hz for 500 signals.
Equation (8) and (9) were designed to assess CSPE accuracy
in frequency estimation.

Denoting Freqestk as the value of estimated Frequency
components of signal k ; Freqorgk as the value of original
Frequency components of signal k; Mk as the number of
frequency components contained in Signal k; FreqError as
the frequency estimation error between Freqest and Freqorg
of signal k; MeanErrorcspe as the mean error of the CSPE
frequency estimation over N signals, for this experiment, N
= 500, M changes with signal step constant.

   

k

M

i
orgkestk

k M

iFreqiFreq
FreqError

k





 1 (8)

The frequency estimation error of each signal as computed
using Equation (8) is shown as Figure 3:

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Signal Index

Frequenc
y Estima

tion Error
 in

Hz

Fig. 3 CSPE Estimation Error for Each Signal

The distribution of frequency estimation error (FreqError)
is shown in Figure 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200

250

300

350

400

450

500

Frequency Estimation Error

Signal Cou
nts

Fig. 4 The distribution of Frequency Estimation Error

The mean error is calculated according to Equation （9）

N

FreqError
MeanError

N

k
k

cspe


 1 (9)

By data analysis, we note that 97.8% of signals analysed
using the CSPE algorithm resulted in a FreqError value of
less than 0.1 Hz, and the MeanErrorcspe is 0.0174 Hz,
meaning that the algorithm identified the component to
within 0.1 Hz in almost all cases. We conclude from these
results that the CSPE is extremely accurate in frequency
estimation for signals containing constant frequency signal
components. With accurate estimation of the frequency, the
amplitude and phase can be estimated using Eqs. (6) and (7).

3.0 MODIFYING COMPONENTS

Once the user-defined component has been identified in the
signal by the CSPE algorithm, its magnitude is then
calculated. It is then a matter of modifying the magnitude of
this component, weighting it against a second value from
within the signal, in order to represent a single bit ‘1’ or ‘0’.

We may choose to weight the user-defined components
against the average power of the frame in which the bit is to
be embedded. This was the procedure followed in both [4]
and [5]. We may also choose to modify the user-defined
component against a second component. This method has its
advantages and disadvantages but it is not our intention to
detail the process in this paper. However, using a second
component from within the signal as a comparison against
which the first user-defined component was weighted, led to
some problems in that, while the CSPE algorithm is very
accurate in identifying the components in a synthesised
signal with little variation, this may not be the same type of
component make-up as would be encountered in real world
signals, such as audio and speech.

3.1 DYNAMICALLY SELECTING COMPONENTS

We decided to make the process of choosing the
component(s) to modify as flexible as possible by making
this a dynamically chosen pair of values, dependent on the
user-defined value but also dependent on the signal under
consideration and reliant on the ability of the CSPE
algorithm to detect and identify the components that the
watermarking process would use. We defined the
components which would be chosen for modification as

being the nearest components above and below the user-
defined value by more than a calculated threshold as
illustrated in Equation (10) where compA is the highest
CSPE-detected frequency component that is lower than the
user-defined component u, by more than the threshold k
while compB is a CSPE-detected frequency component
above the user-defined component by the same threshold
amount

 (compA < (u - k)) < u < (compB > (u + k)) (10)

What is interesting to note, using the formula in Equation
(10) for defining which component we need to modify, and
in which frames of the cover signal, is that only
approximately half of the frames will require any
modification. This is because the relationship between the
values of the two chosen components in any given frame
may already fit the criteria used for representing a ‘1’ or a
‘0’. In this case they would not have to be modified in any
way. This consideration makes this method far more
favourable than [5],

When modifying the amplitude of a frequency component,
care must be taken to ensure that we do not introduce any
noticeable artefact which would result in an impact on
sound quality. Similarly, we must ensure that the alteration
we make to the magnitude of the chosen component is not
so great as to have a negative impact on the timbre of the
original signal.

We define a set of rules that would lead to the modification
of only one of the components (compA or compB) in
approximately half the frames. This is achieved by setting
the rule (Amp refers to Amplitude)

If bit=1 let Amp(compA) > Amp (compB) + margin

If bit=0 let Amp (compB) > Amp(compA) + margin

The system would then compare the magnitude of both
components (compA and compB) in any given frame before
deciding if any modification would be required in order to
satisfy these criteria, depending on the bit to be embedded
and the magnitudes of the two components in that particular
frame. If they are already in the correct relationship, no
modification is required. If, however, they are not in the
correct relationship, we must modify at least one of them.
The decision to modify a component leads another question.
Let us assume that the magnitude of compA is lower than
that of compB, in a frame in which it needs to be of a higher
magnitude to represent a ‘1’ bit.

3.2 MODIFYING THE MAGNITUDE

As mentioned in Section 2.0.2, the CSPE algorithm can be
used to accurately identify a component within a signal, and
then to calculate its phase and amplitude. In order to
increase the magnitude of a particular frequency component
in the cover signal S(t), we add a component at a defined
magnitude and matched to the phase of the component it is
being combined with, as illustrated in Equation (11):

S(t)= S(t)+(rAmp-lAmp+threshold)cos(2π(compA)t+lp) (11)

where rAmp, lAmp, compA and lp define amplitude of
compB, amplitude of compA, Frequency of compA, phase
of compA.

Similarly, if we decide to reduce the magnitude of a
component S(t) so that it satisfies the requirements for
embedding a ‘1’ bit, we do this by reducing the magnitude
of the component to the right of the user-defined component
value, by adding in a component that is o180 out of phase
with the original component in the signal as follows:

S(t)= S(t)+(rAmp-lAmp+threshold)cos(2π(compB)t+ π-rp) (12)

where compB and rp define amplitude and phase of compB.

4.0 DECODING

In order to process candidate audio for detection and
decoding of a potential embedded watermarked message,
the system must first be provided with the user-defined
value used as a basis for calculating the embedding values,
along with the rules that define a ‘1’ bit and a ‘0’ bit. The
candidate audio signal is then segmented into frames using
the same frame size as was used for embedding. The system
calculates the magnitude of the embedded component, and
performs a simple comparison. From this comparison the
watermarked bit sequence can be recreated. It would be a
comparatively simple matter of applying the CSPE
algorithm to identify the two components above and below
the user-defined value by more than a pre-defined threshold.
These two components would then have their magnitude
compared and a ‘1’ or a ‘0’ bit would be determined
according to the rules used in their embedding.

5.0 EVALUATION OF WATERMARKING SCHEME

A series of experiments was carried out to evaluate the
performance of this codec, based on the same 500 signals as
introduced in Section 2.2. For each signal, a randomly
generated binary bit-sequence of length 150 was embedded
by means of modification of the magnitude of components
as described in Section 3. The system then decoded the
modified signal in order to detect the watermarked code.

The difference between these two code sequences can be
calculated in terms of equation below, where DCode
denotes code sequence obtained in decode side, ECode
denotes code sequence embedded in the signal.
CodecPrecision denotes the precision of the decode process
with code length L for signal k, MeanPrecision denotes
average error of the decode process over N signals. In this
experiment, L and N are set to 150 and 500 respectively.
The results of this experiment are depicted in Figure 5.

   

L

iECodeiDCodeL
sionCodecPreci

L

i
k





 1 (12)

N

sionCodecPreci
ionMeanPrecis

N

k
k

 1
)(

 (13)

0 50 100 150 200 250 300 350 400 450 500

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

Signal Index

Pre
cisio

n of
 Co

dec

Fig. 5 Precision of Codec for each Signal

The distribution of CodecPrecision is shown in Figure 6.

0.986 0.988 0.99 0.992 0.994 0.996 0.998 1
0

50

100

150

200

250

300

350

400

450

500

Precision of Codec

Signal Cou
nts

Fig. 6 The distribution of Precision of Codec

From the experiment results, it can be seen that 99.2% of
signals produce a CodecPrecision value of 1 (100%). This
means that, from 500 randomly generated signals with
multiple components of different frequency spacing,
watermarked with a binary bit-sequence of 150 bits, 99.2%
of these signals were decoded to the exact 150 bit sequence.
Only 0.8% (a total of 4) of the 500 signals was not decoded
perfectly. Of those not perfectly decoded, the bit sequence
recovery rate was above 98.66%. The MeanPrecision
computed using Equation (13) is 0.9999 (99.99%).
Therefore, the performance of this codec is almost perfect
for this experiment with the synthesised signals.

Furthermore, the decode experiment in this case represented
a single iteration of a bit sequence over the length of a
signal. Given that any real world use of such a scheme
would enable a bit sequence to be embedded repeatedly in a
cover signal, it would be possible to increase the
effectiveness of the decode process by, for example,
repeated decoding and using the mode of the results.

6.0 CONCLUSION

We have proposed an application that utilises the super-
resolution capabilities of the CSPE algorithm to accurately
identify individual components of an audio signal, calculate
their magnitudes and then alter magnitude as appropriate to
represent a particular bit value.

Experimental tests using 500 synthesised signals
incorporating multiple randomly generated components
embedded with a bit sequence of length 150 showed an

accuracy of completely perfect decoding of 99.2% with an
average overall accuracy of 99.999%.

Future work will determine how to calculate and set the
magnitude so signal watermarking is perceptually invisible,
by evaluating whether to modify the component to the left
or right of the user-defined frequency value, or both.

Also, the impact of accidental and deliberate attacks on the
watermarked signal will be evaluated.

7.0 REFERENCE

[1] Merriam-Webster Online Dictionary.

http://www.merriam-webster.com/dictionary/steganography

[2] S. A. Craver, M. Wu, and B. Liu, “Reading between the
lines: Lessons from the SDMI challenge,” in 10th USENIX
Security Symposium. Washington, DC, 2001.

[3] Moulin, P., & Koetter, R., “Data-Hiding Codes”, Proc.
Of the IEEE, Vol. 93, No. 12, Dec. 2005.

[4] Gopalan, K., et al, ‘Covert Speech Communication Via
Cover Speech By Tone Insertion’, Proc. of the 2003 IEEE
Aerospace Conference, Big Sky, MT, March 2003.

[5] Healy, R. & Timoney, J. ‘Digital Audio Watermarking
with Semi-Blind Detection For In-Car Music Identification’
Audio Engineering Society 36th International Conference,
Michigan, USA. June 2-4, 2009 (in press)

[6] K. M. Short and R. A. Garcia, “Signal Analysis using
the Complex Spectral Phase Evolution (CSPE) Method”,
Audio Engineering Society 120th Convention, May 2006,
Paris, France

[7] Douglas Nelson, “Cross Spectral Methods for
Processing Speech”, Journal of the Acoustic Society of
America, vol. 110, No.5, pt.1, Nov.2001, pp.2575-2592

[8] The online Webster Dictionary. http://www.webster-
dictionary.net/definition/interpolation

