2,426 research outputs found

    Self-Selective Correlation Ship Tracking Method for Smart Ocean System

    Full text link
    In recent years, with the development of the marine industry, navigation environment becomes more complicated. Some artificial intelligence technologies, such as computer vision, can recognize, track and count the sailing ships to ensure the maritime security and facilitates the management for Smart Ocean System. Aiming at the scaling problem and boundary effect problem of traditional correlation filtering methods, we propose a self-selective correlation filtering method based on box regression (BRCF). The proposed method mainly include: 1) A self-selective model with negative samples mining method which effectively reduces the boundary effect in strengthening the classification ability of classifier at the same time; 2) A bounding box regression method combined with a key points matching method for the scale prediction, leading to a fast and efficient calculation. The experimental results show that the proposed method can effectively deal with the problem of ship size changes and background interference. The success rates and precisions were higher than Discriminative Scale Space Tracking (DSST) by over 8 percentage points on the marine traffic dataset of our laboratory. In terms of processing speed, the proposed method is higher than DSST by nearly 22 Frames Per Second (FPS)

    Orbital Debris-Debris Collision Avoidance

    Full text link
    We focus on preventing collisions between debris and debris, for which there is no current, effective mitigation strategy. We investigate the feasibility of using a medium-powered (5 kW) ground-based laser combined with a ground-based telescope to prevent collisions between debris objects in low-Earth orbit (LEO). The scheme utilizes photon pressure alone as a means to perturb the orbit of a debris object. Applied over multiple engagements, this alters the debris orbit sufficiently to reduce the risk of an upcoming conjunction. We employ standard assumptions for atmospheric conditions and the resulting beam propagation. Using case studies designed to represent the properties (e.g. area and mass) of the current debris population, we show that one could significantly reduce the risk of nearly half of all catastrophic collisions involving debris using only one such laser/telescope facility. We speculate on whether this could mitigate the debris fragmentation rate such that it falls below the natural debris re-entry rate due to atmospheric drag, and thus whether continuous long-term operation could entirely mitigate the Kessler syndrome in LEO, without need for relatively expensive active debris removal.Comment: 13 pages, 8 figures. Accepted for publication in Advances in Space Researc

    Data-driven based automatic routing planning for MASS

    Get PDF

    Adaptive smartphone-based sensor fusion for estimating competitive rowing kinematic metrics.

    Get PDF
    Competitive rowing highly values boat position and velocity data for real-time feedback during training, racing and post-training analysis. The ubiquity of smartphones with embedded position (GPS) and motion (accelerometer) sensors motivates their possible use in these tasks. In this paper, we investigate the use of two real-time digital filters to achieve highly accurate yet reasonably priced measurements of boat speed and distance traveled. Both filters combine acceleration and location data to estimate boat distance and speed; the first using a complementary frequency response-based filter technique, the second with a Kalman filter formalism that includes adaptive, real-time estimates of effective accelerometer bias. The estimates of distance and speed from both filters were validated and compared with accurate reference data from a differential GPS system with better than 1 cm precision and a 5 Hz update rate, in experiments using two subjects (an experienced club-level rower and an elite rower) in two different boats on a 300 m course. Compared with single channel (smartphone GPS only) measures of distance and speed, the complementary filter improved the accuracy and precision of boat speed, boat distance traveled, and distance per stroke by 44%, 42%, and 73%, respectively, while the Kalman filter improved the accuracy and precision of boat speed, boat distance traveled, and distance per stroke by 48%, 22%, and 82%, respectively. Both filters demonstrate promise as general purpose methods to substantially improve estimates of important rowing performance metrics

    Generation and Provision of Ship's Master Track Data and Metadata for Standardized Access

    Get PDF
    This thesis deals with the navigation tracks of the Research Vessel Polarstern and it provides a software application for statistical analysis of these tracks. The scope of this program follows two requirements. Firstly the program provides an assessment functionality for post processing of old tracks of R/V Polarstern to include all these tracks in long term storage and archiving system of AWI, the PANGAEA network. Secondly, it provides an online assessment tool to analyze the navigation information onboard the vessel in real time. The software application has been developed using Borland C++ Builder 6 environment under Windows 7 operating system. The numeric functions of this application are following ANSI standard of C++ programming language, and thus it could be implemented in any developing environments using this standard. A full description of the navigation systems onboard the R/V Polarstern has been reviewed to investigate how the possible connections and relations between different sensors act, to understand how the cruise track is produced and to find appropriate analysis methods. In particular, a statistical method is introduced for analyzing the navigational data of the vessel from different sources onboard. This method consists of several tests for detecting and identifying the outliers in the data. It follows a decision based filter that keeps the original data if it successfully passes the outlier tests. In addition, the filter replaces the outliers with appropriate solutions that are calculated using different routines such as transformation from different devices as well as interpolation and extrapolation procedures. This method provokes smoothing of the original data as well. As results of the online and the offline mode, the final product is a file, called “Master track”, which consists of seven columns. These columns are: the date and time of the records with one second interval, the evaluated position of the vessel given in geographical coordinates, the heading of the ship, the roll and pitch and finally a quality number that indicates the precision of the position. In addition a generalized version of the Master track is provided applying Ramer–Douglas–Peucker algorithm. At the end of this work some results are presented to show the improvements that have been achieved using the application. A sample Master track and the corresponding generalized track were finally published in PANGAEA

    Research on the methods of ship\u27s autonomous collision avoidance in complex environment

    Get PDF

    Design and Implementation of Running Support System by Providing Common Routes of Runners

    Get PDF
    This paper proposes the design and implementation of running support system using mobile devices. As technology continues to develop extremely quickly, new technologies provide more convenience, but their evolution simultaneously includes many problems. One of these problems, about which people are becoming more concerned, is the lack of exercise to maintain his/her health. Cellphones and smartphones have already become more intelligent and indispensable, and mobile applications (APPs) are no longer novel. Based on the integrated, multi-functional, personal customization, and other unique advantages of applications, modern society requires an exercise application that includes interaction, competition, and quality communication to encourage people to do more exercising. Such applications must motivate people to communicate with each other easily and discuss the daily process of their exercising. Such mobile applications might resemble a new kind of fitness application software that assists people become healthier. First, this paper performs survey research on the demand for health in daily life and what kind of exercise applications people might use to become healthier by smartphones. Our survey includes both people in Japan and from other countries. Through survey management, considering some specific samples, and analyzing their characteristics and flaws, we easily summarized and improved our application software. Next, based on the research results, it was not hard to find identical parts about the concepts of other exercise application software; we also explain our new design concept APP. Our explanation includes an automatic algorithm that generates a common path and a determination algorithm, both of which generate new fitness applications. In general, through these two algorithms, a common path was generated. In other words, the common path is the main concept that concerns new sport applications built on mobile phones. Finally, based on our design concept and the above algorithms, we implement fitness applications on an iOS that we call Run-Map-APP. DOI: 10.17762/ijritcc2321-8169.15075

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels
    • …
    corecore