439 research outputs found

    ИНТЕЛЛЕКТУАЛЬНЫЙ числовым программным ДЛЯ MIMD-компьютер

    Get PDF
    For most scientific and engineering problems simulated on computers the solving of problems of the computational mathematics with approximately given initial data constitutes an intermediate or a final stage. Basic problems of the computational mathematics include the investigating and solving of linear algebraic systems, evaluating of eigenvalues and eigenvectors of matrices, the solving of systems of non-linear equations, numerical integration of initial- value problems for systems of ordinary differential equations.Для більшості наукових та інженерних задач моделювання на ЕОМ рішення задач обчислювальної математики з наближено заданими вихідними даними складає проміжний або остаточний етап. Основні проблеми обчислювальної математики відносяться дослідження і рішення лінійних алгебраїчних систем оцінки власних значень і власних векторів матриць, рішення систем нелінійних рівнянь, чисельного інтегрування початково задач для систем звичайних диференціальних рівнянь.Для большинства научных и инженерных задач моделирования на ЭВМ решение задач вычислительной математики с приближенно заданным исходным данным составляет промежуточный или окончательный этап. Основные проблемы вычислительной математики относятся исследования и решения линейных алгебраических систем оценки собственных значений и собственных векторов матриц, решение систем нелинейных уравнений, численного интегрирования начально задач для систем обыкновенных дифференциальных уравнений

    Unitary Embedding for Data Hiding with the SVD

    Get PDF
    Steganography is the study of data hiding for the purpose of covert communication. A secret message is inserted into a cover file so that the very existence of the message is not apparent. Most current steganography algorithms insert data in the spatial or transform domains; common transforms include the discrete cosine transform, the discrete Fourier transform, and discrete wavelet transform. In this paper, we present a data-hiding algorithm that exploits a decomposition representation of the data instead of a frequency-based transformation of the data. The decomposition transform used is the singular value decomposition (SVD). The SVD of a matrix A is a decomposition A = USV T in which S is a nonnegative diagonal matrix and U and V are orthogonal matrices. We show how to use the orthogonal matrices in the SVD as a vessel in which to embed information. Several challenges were presented in order to accomplish this, and we give effective solutions to these problems. Preliminary results show that information-hiding using the SVD can be just as effective as using transform-based techniques. Furthermore, different problems arise when using the SVD than using a transform-based technique. We have applied the SVD to image data, but the technique can be formulated for other data types such as audio and video

    Combining and Steganography of 3D Face Textures

    Get PDF
    One of the serious issues in communication between people is hiding information from others, and the best way for this, is deceiving them. Since nowadays face images are mostly used in three dimensional format, in this paper we are going to steganography 3D face images, detecting which by curious people will be impossible. As in detecting face only its texture is important, we separate texture from shape matrices, for eliminating half of the extra information, steganography is done only for face texture, and for reconstructing 3D face, we can use any other shape. Moreover, we will indicate that, by using two textures, how two 3D faces can be combined. For a complete description of the process, first, 2D faces are used as an input for building 3D faces, and then 3D textures are hidden within other images.Comment: 6 pages, 10 figures, 16 equations, 5 section

    Combining Haar Wavelet and Karhunen Loeve Transforms for Medical Images Watermarking

    No full text
    International audienceThis paper presents a novel watermarking method, applied to the medical imaging domain, used to embed the patient's data into the corresponding image or set of images used for the diagnosis. The main objective behind the proposed technique is to perform the watermarking of the medical images in such a way that the three main attributes of the hidden information (i.e. imperceptibility, robustness, and integration rate) can be jointly ameliorated as much as possible. These attributes determine the effectiveness of the watermark, resistance to external attacks and increase the integration rate. In order to improve the robustness, a combination of the characteristics of Discrete Wavelet and Karhunen Loeve Transforms is proposed. The Karhunen Loeve Transform is applied on the sub-blocks (sized 8x8) of the different wavelet coefficients (in the HL2, LH2 and HH2 subbands). In this manner, the watermark will be adapted according to the energy values of each of the Karhunen Loeve components, with the aim of ensuring a better watermark extraction under various types of attacks. For the correct identification of inserted data, the use of an Errors Correcting Code (ECC) mechanism is required for the check and, if possible, the correction of errors introduced into the inserted data. Concerning the enhancement of the imperceptibility factor, the main goal is to determine the optimal value of the visibility factor, which depends on several parameters of the DWT and the KLT transforms. As a first step, a Fuzzy Inference System (FIS) has been set up and then applied to determine an initial visibility factor value. Several features extracted from the Co-Occurrence matrix are used as an input to the FIS and used to determine an initial visibility factor for each block; these values are subsequently re-weighted in function of the eigenvalues extracted from each sub-block. Regarding the integration rate, the previous works insert one bit per coefficient. In our proposal, the integration of the data to be hidden is 3 bits per coefficient so that we increase the integration rate by a factor of magnitude 3

    Comparison of DCT, SVD and BFOA based multimodal biometric watermarking systems

    Get PDF
    AbstractDigital image watermarking is a major domain for hiding the biometric information, in which the watermark data are made to be concealed inside a host image imposing imperceptible change in the picture. Due to the advance in digital image watermarking, the majority of research aims to make a reliable improvement in robustness to prevent the attack. The reversible invisible watermarking scheme is used for fingerprint and iris multimodal biometric system. A novel approach is used for fusing different biometric modalities. Individual unique modalities of fingerprint and iris biometric are extracted and fused using different fusion techniques. The performance of different fusion techniques is evaluated and the Discrete Wavelet Transform fusion method is identified as the best. Then the best fused biometric template is watermarked into a cover image. The various watermarking techniques such as the Discrete Cosine Transform (DCT), Singular Value Decomposition (SVD) and Bacterial Foraging Optimization Algorithm (BFOA) are implemented to the fused biometric feature image. Performance of watermarking systems is compared using different metrics. It is found that the watermarked images are found robust over different attacks and they are able to reverse the biometric template for Bacterial Foraging Optimization Algorithm (BFOA) watermarking technique
    corecore