23 research outputs found

    Effective representations of the space of linear bounded operators

    Full text link
    [EN] Representations of topological spaces by infinite sequences of symbols are used in computable analysis to describe computations in topological spaces with the help of Turing machines. From the computer science point of view such representations can be considered as data structures of topological spaces. Formally, a representation of a topological space is a surjective mapping from Cantor space onto the corresponding space. Typically, one is interested in admissible, i.e. topologically well-behaved representations which are continuous and characterized by a certain maximality condition. We discuss a number of representations of the space of linear bounded operators on a Banach space. Since the operator norm topology of the operator space is nonseparable in typical cases, the operator space cannot be represented admissibly with respect to this topology. However, other topologies, like the compact open topology and the Fell topology (on the operator graph) give rise to a number of promising representations of operator spaces which can partially replace the operator norm topology. These representations reflect the information which is included in certain data structures for operators, such as programs or enumerations of graphs. We investigate the sublattice of these representations with respect to continuous and computable reducibility. Certain additional conditions, such as finite dimensionality, let some classes of representations collapse, and thus, change the corresponding graph. Altogether, a precise picture of possible data structures for operator spaces and their mutual relation can be drawn.Work partially supported by DFG Grant BR 1807/4-1Brattka, V. (2003). Effective representations of the space of linear bounded operators. Applied General Topology. 4(1):115-131. https://doi.org/10.4995/agt.2003.20141151314

    Comparing hierarchies of total functionals

    Full text link
    In this paper we consider two hierarchies of hereditarily total and continuous functionals over the reals based on one extensional and one intensional representation of real numbers, and we discuss under which asumptions these hierarchies coincide. This coincidense problem is equivalent to a statement about the topology of the Kleene-Kreisel continuous functionals. As a tool of independent interest, we show that the Kleene-Kreisel functionals may be embedded into both these hierarchies.Comment: 28 page

    Rethinking the notion of oracle: A link between synthetic descriptive set theory and effective topos theory

    Full text link
    We present three different perspectives of oracle. First, an oracle is a blackbox; second, an oracle is an endofunctor on the category of represented spaces; and third, an oracle is an operation on the object of truth-values. These three perspectives create a link between the three fields, computability theory, synthetic descriptive set theory, and effective topos theory

    On the Semantics of Intensionality and Intensional Recursion

    Full text link
    Intensionality is a phenomenon that occurs in logic and computation. In the most general sense, a function is intensional if it operates at a level finer than (extensional) equality. This is a familiar setting for computer scientists, who often study different programs or processes that are interchangeable, i.e. extensionally equal, even though they are not implemented in the same way, so intensionally distinct. Concomitant with intensionality is the phenomenon of intensional recursion, which refers to the ability of a program to have access to its own code. In computability theory, intensional recursion is enabled by Kleene's Second Recursion Theorem. This thesis is concerned with the crafting of a logical toolkit through which these phenomena can be studied. Our main contribution is a framework in which mathematical and computational constructions can be considered either extensionally, i.e. as abstract values, or intensionally, i.e. as fine-grained descriptions of their construction. Once this is achieved, it may be used to analyse intensional recursion.Comment: DPhil thesis, Department of Computer Science & St John's College, University of Oxfor

    Set theory and the analyst

    Get PDF
    This survey is motivated by specific questions arising in the similarities and contrasts between (Baire) category and (Lebesgue) measure - category-measure duality and non-duality, as it were. The bulk of the text is devoted to a summary, intended for the working analyst, of the extensive background in set theory and logic needed to discuss such matters: to quote from the Preface of Kelley [Kel]: "what every young analyst should know"

    Proof mining in metric fixed point theory and ergodic theory

    Get PDF
    In this survey we present some recent applications of proof mining to the fixed point theory of (asymptotically) nonexpansive mappings and to the metastability (in the sense of Terence Tao) of ergodic averages in uniformly convex Banach spaces.Comment: appeared as OWP 2009-05, Oberwolfach Preprints; 71 page

    Two constructive embedding-extension theorems with applications to continuity principles and to Banach-Mazur computability

    No full text
    We prove two embedding and extension theorems in the context of the constructive theory of metric spaces. The first states that Cantor space embeds in any inhabited complete separable metric space (CSM) without isolated points, X, in such a way that every sequentially continuous function from Cantor space to Z extends to a sequentially continuous function from X to R. The second asserts an analogous property for Baire space relative to any inhabited locally non-compact CSM. Both results rely on having careful constructive formulations of the concepts involved. As a first application, we derive new relationships between “continuity principles ” asserting that all functions between specified metric spaces are pointwise continuous. In particular, we give conditions that imply the failure of the continuity principle “all functions from X to R are continuous”, when X is an inhabited CSM without isolated points, and when X is an inhabited locally non-compact CSM. One situation in which the latter case applies is in models based on “domain realizability”, in which the failure of the continuity principle for any inhabited locally non-compact CSM, X, generalizes a result previously obtained by Escardó and Streicher in the special case X = C[0, 1]. As a second application, we show that, when the notion of inhabited complete separable metric space without isolated points is interpreted in a recursion-theoretic setting, then, for any such space X, there exists a Banach-Mazur computable function from X to the computable real numbers that is not Markov computable. This generalizes a result obtained by Hertling in the special case that X is the space of computable real numbers

    Two Constructive Embedding-Extension Theorems with Applications to Continuity Principles and to Banach-Mazur Computability

    No full text
    We prove two embedding and extension theorems in the context of the constructive theory of metric spaces. The first states that Cantor space embeds in any inhabited complete separable metric space (CSM) without isolated points, X, in such a way that every sequentially continuous function from Cantor space to Z extends to a sequentially continuous function from X to R. The second asserts an analogous property for Baire space relative to any inhabited locally non-compact CSM. Both results rely on having careful constructive formulations of the concepts involved
    corecore