

Edinburgh Research Explorer

The sequentially realizable functionals

Citation for published version:
Longley, J 2002, 'The sequentially realizable functionals' Annals of Pure and Applied Logic, vol. 117, no. 1-
3, pp. 1-93. DOI: 10.1016/S0168-0072(01)00110-5

Digital Object Identifier (DOI):
10.1016/S0168-0072(01)00110-5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Annals of Pure and Applied Logic

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/S0168-0072(01)00110-5
https://www.research.ed.ac.uk/portal/en/publications/the-sequentially-realizable-functionals(ffa38503-48ec-4d2d-b441-7fd01a575551).html

Annals of Pure and Applied Logic 117 (2002) 1–93
www.elsevier.com/locate/apal

The sequentially realizable functionals
John Longley ∗

LFCS, Division of Informatics, University of Edinburgh, The King’s Buildings,
Edinburgh EH9 3JZ, UK

Accepted 19 June 2001
Communicated by J.-Y. Girard

Abstract

We consider a notion of sequential functional of -nite type, more generous than the familiar
notion embodied in Plotkin’s language PCF. We study both the “full” and “e4ective” partial type
structures arising from this notion of sequentiality. The full type structure coincides with that
given by the strongly stable model of Bucciarelli and Ehrhard; it has also been characterized by
van Oosten in terms of realizability over a certain combinatory algebra. We survey and relate
several known characterizations of these type structures, and obtain some new ones. We show
that (in both the full and e4ective scenarios) every -nite type can be obtained as a retract of
the pure type 92, and hence that all elements of the e4ective type structure are de-nable in PCF
extended by a certain universal functional H . We also consider the relationship between our no-
tion of sequentially computable functional and other known notions of higher-type computability.
c© 2002 Elsevier Science B.V. All rights reserved.

MSC: 68Q55; 03D65; 03D45; 68Q05; 03B40

Keywords: Higher-type computability; Sequentiality; Finite type structures; PCF; Realizability;
Strong stability

Contents

1. Introduction . 2
1.1. Background . 2
1.2. Outline of the paper . 5

2. A combinatory algebra for sequential computation . 6
2.1. Construction of B and Be4 . 6
2.2. Combinatory completeness . 9
2.3. Irredundant realizers . 13
2.4. A -xed point combinator . 15

∗ Tel.: +44-0131-650-5140; fax: +44-0131-667-7209.
E-mail address: jrl@dcs.ed.ac.uk (J. Longley).

0168-0072/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0168 -0072(01)00110 -5

2 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

3. Realizability models . 16
3.1. Realizability models over B and Beff . 16
3.2. The SR functionals . 17
3.3. Modi-ed realizability . 19

4. Concrete data structures . 20
4.1. Basic de-nitions . 21
4.2. B as a universal object . 23
4.3. Sequential DCDSs and realizability . 27

5. The hypercoherence model . 29
5.1. An extensional collapse construction . 30
5.2. Sequential algorithms and hypercoherences . 32
5.3. E4ectivity in hypercoherences . 34
5.4. The stable order . 36

6. A presheaf model . 37
6.1. The Colson–Ehrhard characterization . 38
6.2. A presheaf presentation . 39

7. A universal type . 41
7.1. Call-by-value types . 42
7.2. Construction of H . 44
7.3. Properties of H . 48

8. Applications of universality . 52
8.1. Hypercoherences revisited . 52
8.2. Presheaves revisited . 55
8.3. The category of retracts of type 92 . 57

9. PCF and universal functionals . 60
9.1. Call-by-value PCF . 60
9.2. The language PCF +H . 62
9.3. Degrees of expressivity . 66
9.4. Types and universal functionals . 67

10. Synthetic domain theory . 73
10.1. Well-complete and replete objects . 73
10.2. The �-order . 75

11. Notions of higher-type computability . 77
11.1. General de-nitions . 77
11.2. Three notions of computability . 79

12. Conclusions and further directions . 84
12.1. Review of results . 84
12.2. The meaning of “sequentiality” . 85
12.3. Game-theoretic models . 87
12.4. A programming language for SR functionals . 88

Acknowledgements . 90
References . 91

1. Introduction

1.1. Background

The classic papers of Scott [57] and Plotkin [49] introduced the language for -nite
type computable functionals now widely known as PCF. These authors gave a denota-
tional semantics for this language using complete partial orders, and also pointed out
a certain mismatch between the language and its denotational model: because of the

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 3

“sequential” character of computations in PCF, there are elements of the model (such
as “parallel or”) that are in some sense computable but are not de-nable by PCF terms.

These early papers initiated a search for other denotational models that more pre-
cisely clari-ed the nature of sequential computation, and in particular gave a semantic
characterization of a fully abstract model of PCF. This generated an extensive body of
research (see e.g. [7]), which culminated around 1993, when several solutions to the
full abstraction problem were announced [2, 23, 44, 45].

The general problem of understanding sequentiality has both conceptual and practical
signi-cance, given that most widely used deterministic programming languages are
sequential in character. Much of the study of sequentiality to date has centred around
PCF—indeed, it is sometimes implicitly assumed that “sequential” computability is
synonymous with PCF-computability, at least for functionals of -nite type. However,
in a paper on game semantics for PCF [23], Hyland and Ong make the following
penetrating remarks: 1

Persisting in the background of these developments is a deeper, more philosophical
question of whether there is such a thing as a canonical notion of sequential
computation at higher type. Clearly, the kind of computation de7ned by PCF is at
least a contender for such a standard. But it seems to us that there is no compelling
evidence (yet) that PCF-style computation is the only acceptable notion of higher-
type sequentiality.
In fact it is unclear whether there are various inequivalent notions of higher-type
sequentiality, all of them equally appealing; or whether: : : there is just one notion
under di4erent guises.

The purpose of the present paper is to investigate an alternative notion of higher-
type sequentiality, more generous than the PCF one. We will show that this alternative
notion is both mathematically compelling, in that it admits a large number of prima
facie independent characterizations, and computationally appealing, in that it arises from
a natural and intuitive concept of sequential algorithm.

The class of functionals that we consider is not new. Its discovery is due in essence
to Bucciarelli and Ehrhard [10], who constructed a model of PCF involving a cate-
gory of domains and strongly stable functions. Ehrhard later showed that the relevant
part of this model could be more simply presented within the framework of hyper-
coherences [16]. The strongly stable model was originally conceived as a line of at-
tack on the PCF full abstraction problem, and as a step towards a more denotational
understanding of the Berry–Curien sequential algorithms model [6]. However, subse-
quent work showed that the strongly stable model is of considerable interest in its
own right. A crucial step was taken by Ehrhard [17], who showed that the notion of
strong stability admits a computational interpretation: every morphism in the strongly
stable model of PCF is “sequential” in the sense that it can be computed by a Berry–
Curien sequential algorithm. This line of investigation was continued in [18], where

1 See [23, pp. 18–19, 15].

4 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

Ehrhard showed that the strongly stable model is the extensional collapse of the se-
quential algorithms model. Next, in the autumn of 1996, van Oosten [47] discovered a
combinatory algebra embodying an appealing notion of sequential computation, and
showed that it yields a realizability model that coincides with the strongly stable model
at the -nite types. Exactly, the same combinatory algebra was discovered independently
by the present author early in 1997—this led to the investigation reported in the present
paper.

A simple example may be helpful at this point. Let �= 1⊥ be the two-element poset
with ⊥ � �, and let �� be the set of monotone functions �→�. Consider the function
F :��→ 2⊥ de-ned by

Fg =




true if g⊥ = �;
false if g⊥ = ⊥ but g� = �;
⊥ otherwise:

Intuitively, F tells us whether a function g is able to return a result without looking
at its argument. The function F is strongly stable, and it is in some sense sequentially
computable. Indeed, the reader familiar with the programming language Standard ML
[42] (a sequential language!) may enjoy verifying that F can be implemented as a func-
tion of type ((unit->unit)->unit)->bool, 2 using either exceptions or references.
Likewise, one can implement F using control features such as the call=cc operator of
Scheme [60], or the catch operator considered by Cartwright and Felleisen [13]. Al-
though these implementations make internal use of non-functional features, in terms of
their external behaviour they are perfectly “functional”, in the sense that given equal
inputs they yield equal outputs (provided these inputs are themselves functional). How-
ever, it is easily seen that F is not sequentially computable in the PCF sense, since
it is not monotone with respect to the pointwise order. Thus F , although in some
sense a functional program, cannot be implemented within the functional fragment
of ML.

In this paper the higher-type functionals in question will be called the sequentially
realizable (or SR) functionals, as distinguished from the PCF-sequential function-
als. In some sense, the SR functionals include all PCF-sequential functionals, to-
gether with the above function F and “all things like it”. Indeed, the SR function-
als provide an answer to the question of how far one can travel in a language such
as PCF + catch without sacri-cing the functional nature (i.e. extensionality) of
programs.

As with other classes of higher-type functionals, one may consider either the full
(continuous) partial type structure of SR functionals, or the e;ective type structure
that arises as its recursive analogue. These two -nite type structures will be our main
objects of study. The full type structure coincides exactly with that arising from Buc-
ciarelli and Ehrhard’s strongly stable model; however, for our present purposes we

2 Note that Standard ML is a call-by-value language. In a call-by-name language, F would have the simpler
type (unit->unit)->bool.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 5

prefer the name sequentially realizable to strongly stable, since (a) we wish to em-
phasize the computational aspect of these functionals and (b) the two de-nitions are
not constructively equivalent. (The latter point manifests itself in the fact that the
evident e4ective analogues of the two notions do not coincide—this point will be ex-
plained in Section 5.3.) The word realizable here should be understood in a rather
loose informal sense: the “realizers” in question might be either intensional objects
in a realizability model Ra la Hyland, sequential algorithms in the sense of Berry–
Curien, strategies in a game model, or programs in a language such as PCF + catch or
Standard ML.

1.2. Outline of the paper

The aims of the present paper are threefold. Firstly, we hope to provide evidence that
the notion of SR functional is in some sense a fundamental one. To this end, we collect
together a wide variety of characterizations of the (full and e4ective) SR functionals,
surveying various known descriptions and obtaining some new ones. Secondly, we
review some of the known results in a more conceptual light, and point out some
of the abstract relationships between existing constructions. Thirdly, we study some
intrinsic properties of the type structure of SR functionals: for example, that every
-nite type is a retract of the pure type 92, and that every element of the e4ective type
structure is PCF-de-nable from a certain universal functional H .

The rest of the paper is arranged as follows. In Section 2 we introduce van Oosten’s
combinatory algebra B, and its e4ective subalgebra Be4 . We prove that these are
indeed combinatory algebras, and obtain some basic properties of them. In Section 3
we construct realizability models from these combinatory algebras, in particular the
categories of modest sets over B and Be4 . These categories give rise to the full and
e4ective SR functionals respectively, and will play a central role in the rest of the
paper.

In Sections 4–6 we survey several other characterizations of the SR functionals, and
examine the connections between them. In Section 4 we study the relationship between
B and the concrete data structures (CDSs) considered by Berry and Curien. We show
that B can be seen as a universal (sequential) CDS, and that a good category of
CDSs and sequential functions embeds fully in Mod(B). We also show that sequential
algorithms are essentially equivalent to realizers in Mod(B). In Section 5 we study
the hypercoherence model, and give a new proof of van Oosten’s theorem that the
partial type structure in Mod(B) coincides with that in the Bucciarelli and Ehrhard
strongly stable model. Our proof exploits the connection with sequential algorithms,
and invokes Ehrhard’s result [18] relating sequential algorithms to the strongly stable
model. In Section 6 we consider another characterization of the strongly stable model
due to Colson and Ehrhard [14], and recast this as a presheaf construction of the SR
functionals.

Section 7 contains the central new result of the paper. In the type structure of (full
or e4ective) SR functionals, every -nite type arises as a retract of the pure type 92. The

6 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

key to this result is the construction of a retraction 93 / 92, which is inspired directly
by the combinatory algebra B. The next two sections present some applications of
this result. In Section 8 we use it to give a fairly simple (and more self-contained)
alternative proof of van Oosten’s theorem, and to show how one can obtain recursive
types as retracts of 92. In Section 9 we show that every e4ective SR functional is
de-nable in the language PCF extended with a single universal functional H of type
level 3. The language PCF + H gives us yet another handle on the SR functionals,
yielding various new results. We also prove a technical fact: there is no universal
SR functional of an essentially simpler type than that of H. Sections 7–9 are mostly
independent of Sections 4–6, except that Sections 8.1 and 9.4 refer to the material on
hypercoherences.

We then point out some of the connections between our results and other ideas in
semantics. In Section 10 we review our results from the standpoint of synthetic domain
theory. In Section 11 we consider the relationship between sequential realizability and
other possible notions of higher-type computability. We show that, in a suitable precise
sense, there can be no “ultimate” notion of higher-type computability that subsumes all
reasonable such notions. One may interpret this latter fact as a kind of “anti-Church’s
Thesis” for higher types.

We end the paper with a discussion of the signi-cance of our results, and of the
claim that they embody a natural notion of “sequential” higher-type functional. We
also mention some avenues for further research, including the possible applications of
the SR functionals to programming language design.

In the present paper we study the SR functionals mainly from a “denotational” point
of view, touching only intermittently on the issue of how they might be implemented
operationally. This latter question could cover both the design of particular syntactic
systems (programming languages) for implementing the SR functionals, and the use of
games as an intensional-semantical setting for modelling various operational paradigms.
We will survey some of this territory brieSy in Section 12.3; a more detailed study of
the SR functionals from an operational perspective may appear in a subsequent paper.

2. A combinatory algebra for sequential computation

2.1. Construction of B and Be4

We begin by describing the combinatory algebra B introduced by van Oosten in
[47]. We will follow van Oosten’s notation in certain respects.

Let N be the set of natural numbers (including 0), and let N⊥ = N�{⊥}. We will
identify partial functions N *N with total functions N→N⊥; we write NN

⊥ for the set
of such functions.

As a -rst step, let us consider informally the possible behaviour of an algorithm or
strategy � for computing a partial function F : NN

⊥ *N in a “sequential” way. Suppose
� is presented with a function g : N→N⊥ as an argument. In general, � will succes-
sively ask g for particular values g(n), and may eventually return a -nal answer for

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 7

Fig. 1. Part of a decision tree for a sequential strategy.

F(g) when it has learnt enough about g. At any stage, of course, the behaviour of �
may depend on the results of previous queries to g. This process may fail to reach a
-nal answer if either the behaviour of � or the requested value of g is unde-ned at
some stage, or if the dialogue between � and g continues forever.

We may represent the behaviour of such a strategy � as a (-nite or in-nite) deci-
sion tree. This consists of a set of nodes, each carrying a label which may be either
a question ?n or an answer !n (n∈N). At each node, the children are indexed by
(a subset of the) natural numbers. The way in which such a decision tree represents
a strategy should be clear from Fig. 1, which shows part of a decision tree together
with pseudocode for the corresponding part of the strategy. (Decision trees of this kind
will be very familiar to readers of e.g. [6, 13].)

Formally, we may identify the nodes of a decision tree with -nite sequences of
natural numbers: the root node is the empty sequence �, and the child m of the node
[m1; : : : ; mk] (if it exists) is the node [m1; : : : ; mk ; m]. (This is the notation we shall
use for displaying -nite sequences.) We write Seq(N) for the set of -nite sequences
of natural numbers (including �), and use �; �; : : : to range over Seq(N). (Note that
Roman letters will stand for natural numbers and Greek letters for sequences.) We
write m; � or �;m for the result of adjoining a new element at the beginning or end
of a sequence, and �; � for concatenation of sequences.

Likewise, we may identify the labels in a decision tree with elements of N + N,
where the left and right summands correspond to the tags ? and !, respectively. This
leads us to the following de-nition:

De�nition 2.1. A decision tree is formally a partial function � : Seq(N)→N + N. The
domain of � is the set of nodes in the tree.

One might ask whether we ought also to impose hygiene conditions on �: for
example, that the set of nodes of the tree is pre-x-closed, and that labels !n may
appear only on leaves of the tree. In fact, such conditions will not be necessary,

8 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

although trees that do not satisfy them will contain “dead” nodes that will never be
reached in any play of the strategy. Note also that the same question may be asked
twice on the same path through the tree, and this too may give rise to inaccessible
nodes.

The key observation in the construction of B is that nodes and labels can them-
selves be coded as natural numbers—that is, both Seq(N) and N + N admit injec-
tions into N. Let 〈· · ·〉 : Seq(N)�N be some e4ective coding for nodes: for example,
take

〈�〉 = 0; 〈m1; : : : ; mk〉 = 2m13m2 : : : pmk−1

k−1 pmk+1
k − 1;

where 〈m1; : : : ; mk〉 abbreviates 〈[m1; : : : ; mk]〉 and pi is the ith prime. Likewise, let
[?; !] : N + N�N be some e4ective coding for labels, for example

?(n) = 2n; !(n) = 2n + 1:

In general, we will require simply that these encoding operations are e4ective. It fol-
lows that the ranges of these encodings are semidecidable subsets of N, and that the
corresponding decoding operations are e4ective. (The particular codings given above
were chosen to be bijective, but this is not a necessary property and we will not assume
it below.)

Using these codings, we can represent a decision tree � : Seq(N)*N + N simply
by a partial function f : N *N (i.e. by an element f∈NN

⊥). Explicitly, we say f
represents � if for all �∈Seq(N) and l∈N + N we have

f(〈�〉) = [?; !](l) i4 �� = l:

Clearly, every partial function f∈NN
⊥ represents a unique decision tree �f, and for

every decision tree � there is a least partial function f� that represents it.
If f represents �, a play of � against a function g may be viewed as a dia-

logue between f and g. Thus, the procedure for playing a strategy against an ar-
gument gives rise to an operation | : NN

⊥×NN
⊥→N⊥. This operation is intuitively

sequentially computable; the following informal ML-style recursive de-nition gives
the idea.

fun play f g � =

(case f〈�〉 of

!n => n
| ?n => (case g(n) of m => play f g (�;m)))

fun | f g = play f g �

A minor modi-cation of this gives us an operation • : NN
⊥×NN

⊥→NN
⊥. In e4ect, we

use f to represent an in-nite forest of decision trees rather than just a single one:

fun • f g=(fn n => play f g [n])

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 9

These ideas may be expressed more formally as follows:

De�nition 2.2. (i) Let play : NN
⊥×NN

⊥×Seq(N)→N⊥ be the smallest partial function
such that, for all f; g∈NN

⊥, �∈Seq(N) and n; m∈N,
• if f〈�〉= !n then play(f; g; �) = n,
• if f〈�〉= ?n and g(n) =m then play(f; g; �) = play(f; g; (�;m)).

(ii) For f∈NN
⊥ and n∈N, write fn for the least function such that fn〈�〉=f〈n; �〉

for all �. Let |; • be the operations de-ned by

f | g = play(f; g; �); f • g = �n:fn | g:
Let B be the applicative structure (NN

⊥; •).
(iii) We may also de-ne the dialogue between f and g to be the -nite or in-nite

sequence a1; b1; a2; b2; : : : constructed inductively as follows:
• for i¿0, ai+1 =f〈b1; : : : ; bi〉 if this is de-ned,
• for i¿0, if ai = ?ni then bi = g(ni) if this is de-ned.
We sometimes refer to the dialogue between fn and g as the dialogue between f and
g at n.

Note that play can be constructed by an iteration up to !. Clearly, we have f | g=p
(resp. (f • g)(n) =p) i4 the dialogue between f and g (at n) ends in !p.

As usual, we take • to be left-associative in expressions such as f • g • h. By abuse
of notation, we sometimes write B for the underlying set NN

⊥.
As is observed in [47], the construction of B is reminiscent of Kleene’s second

model K2, the partial combinatory algebra for “function realizability” (see [27]). In
both cases, the elements are functions from N to N, and at each stage in the application
of f to g, f either returns a result or requests further information about g. However,
B di4ers from K2 in two respects: -rstly, we use partial rather than total functions on
N; and secondly, at each stage f is allowed to specify the particular piece of further
information about g that it would like to see.

We will write � for the pointwise ordering on B. It is clear that (B;�) is a CPO
and that the functions play; | and • are monotone and continuous.

It is easy to check that if f; g∈NN
⊥ are partial recursive then so is f • g. This justi-es

the following de-nition:

De�nition 2.3. Let NN
⊥e4 be the subset of NN

⊥ consisting of the partial recursive func-
tions, and let Be4 be the applicative structure (NN

⊥e4 ; •). The elements of Be4 are called
e;ective elements of B.

2.2. Combinatory completeness

The main result of this section is that B and Be4 are both combinatory algebras: in
fact, there are elements k; s∈Be4 such that for all x; y; z ∈B we have

k • x • y = x; s • x • y • z = (x • z) • (y • z):
(The fact that B is a combinatory algebra was stated without proof in [47].)

10 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

Although the de-nition of application in B is fairly simple, the proof that it is
a combinatory algebra seems to require some e4ort, however it is tackled. This is
perhaps surprising: intuitively it seems fairly clear that for both k and s there are
sequential algorithms that mediate the appropriate interactions between x; y; z. How-
ever, a direct de-nition of s in particular would be very cumbersome, and it seems
more illuminating to obtain k; s indirectly via Curry’s combinatory completeness prop-
erty. We use the following standard notions from the theory of combinatory
algebras (cf. [4, Chapt. 5]).

De�nition 2.4. (i) Let V be an in-nite supply of formal variables, and suppose we
also have a formal constant c for each element c∈B. The formal expressions over B

are freely constructed from variables and constants via formal juxtaposition (a binary
operation). If x0; : : : ; xr are distinct variables, we write x0; : : : ; xr � e to mean that e is
a formal expression whose variables are among x0; : : : ; xr .

(ii) A valuation # for x0; : : : ; xr associates to each xi an element ai = #(xi) of B.
Formally, a valuation is an ordered list (x0 �→ a0; : : : ; xr �→ ar). If x0; : : : ; xr � e and # is
a valuation for x0; : : : ; xr , we de-ne the interpretation <e=# of e relative to # inductively
as follows:
• if c is a constant then <c=# = c,
• if x is a variable then <x=# = #(x),
• if e1e2 is a juxtaposition then <e1e2=# = <e1=# • <e2=#.

Our goal is to show the following: if x0; : : : ; xr � e then there exists f∈B such that
for all valuations #= (x0 �→ a0; : : : ; xr �→ ar) we have f • a0 • · · · • ar = <e=#. As a -rst
step, we prove an “uncurried” version of this, in which f takes the arguments a0; : : : ; ar

all together rather than separately. As a means of lumping arguments together, let us
say that an element b∈B represents a valuation (x0 �→ a0; : : : ; xr �→ ar) if b〈i; n〉= ai(n)
whenever 06i6r and n∈N. (Recall that 〈i; n〉 abbreviates 〈[i; n]〉; here we are crudely
using this as a pairing operation.)

Proposition 2.5. Suppose x̃ � e; where x̃ abbreviates x0; : : : ; xr : Then there is a
(canonical) element (%x̃:e)∈B such that whenever # is a valuation for x̃ and b
represents #; we have (%x̃:e) • b= <e=#. Moreover; if all the constants occurring in e
are e;ective then so is (%x̃:e).

Proof. By induction on the structure of e.
• For constants c∈B, let (%x̃:c) be the (least) partial function f such that for all

n; m, c(n) =m implies f〈n〉= !m. Clearly (%x̃:c) • b= c for all b∈B. Moreover, if
c is e4ective then so is (%x̃:c).

• For variables xi, let (%x̃:xi) be the partial function f given by

f〈n〉 =?〈i; n〉; f〈n; m〉 =!m:

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 11

Clearly, if b represents (x0 �→a0; : : : ; xr �→ar) then (%x̃:xi)•b=ai. Moreover, (%x̃:xi)
is always e4ective.

• For juxtapositions e1e2, suppose f1 = (%x̃:e1) and f2 = (%x̃:e2). First, we will con-
struct f∈B such that for all b we have f • b= (f1 • b) • (f2 • b). Intuitively, we
are trying to construct (for each argument n) a decision tree that combines all the
queries made to b by f1 and f2 in the right order. To determine what the label
should be at some node &= [m1; : : : ; mk] of this tree, we may regard & as a “script”
giving in advance the answers to the -rst k questions posed to b by f1 or f2. Using
this script, we can trace the dialogue through f1; f2 until the script runs out; at this
point, either f1 or f2 will determine the next move we should make. To formalize
this, let play1 : N×Seq(N)→N⊥ and play2 : N×N×Seq(N)→N⊥ be the smallest
partial functions satisfying the following conditions for all m;p; q; �; �; &:
– If f1〈�〉= ?q then play1(〈�〉; �) = ?q

and play1(〈�〉; (m; &)) = play1(〈�;m〉; &).
– If f1〈�〉= !(!p) then play1(〈�〉; �) = !p.
– If f1〈�〉= !(?q) then play1(〈�〉; &) = play2(〈�〉; 〈q〉; &).
– If f2〈�〉= ?q then play2(〈�〉; 〈�〉; �) = ?q

and play2(〈�〉; 〈�〉; (m; &)) = play2(〈�〉; 〈�;m〉; &).
– If f2〈�〉= !p then play2(〈�〉; 〈�〉; &) = play1(〈�;p〉; &).
(Note that �; � record our “current positions” in f1; f2, respectively.) Now de-ne f
by f〈n; &〉= play1(〈n〉; &).

Given any b and n, let us write (= r1; s1; r2; s2; : : : for the dialogue between f1 • b
and f2 • b at n. From the above de-nitions, it is easy to verify that the dialogue *
between f and b at n (omitting the -nal answer if there is one) has the form

a11; b11; : : : ; a1k1 ; b1k1 ; c11; d11; : : : ; c1l1 ; d1;l1 ; a21; b21; : : : ; c21; d21; : : : ;

where
– for each i¿0, a(i+1)1; : : : ; b(i+1)ki+1 , !ri is the dialogue between f1 and b at 〈n; s1;

: : : ; si〉;
– for each i¿0, ci1; : : : ; dili ; !si is the dialogue between f2 and b at ?ri.
(Intuitively, * “embodies” (and incorporates a subdialogue for the computation of
each ri and si.) In addition, if (ends in an answer ri = !p, then * also ends in !p
(immediately after bili). Thus it is clear that f has the desired property.
Finally, set (%x̃:e1e2) =f; then (%x̃:e1e2) • b= <e1e2=# provided both (%x̃:e1) • b=
<e1=# and (%x̃:e2) • b= <e2=#. Moreover, it is easy to see that if both (%x̃:e1) and
(%x̃:e2) are e4ective then so is (%x̃:e1e2).

The next step is to show that (%x̃:e) can be transformed into a representation of e
that takes its arguments one at a time. Some further notation will be helpful. If b; c∈B

and i∈N, de-ne b[c=xi]∈B as follows: if m= 〈i; n〉 for some n then b[c=xi](m) = c(n);
otherwise b[c=xi](m) = b(m). Note that if b represents (x0 �→ a0; : : : ; xr �→ ar) and 06i
6r, then b[c=xi] represents (x0 �→ a0; : : : ; xi �→ c; : : : ; xr �→ ar).

12 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

Proposition 2.6. Given any f∈B and i∈N; there is a (canonical) element curryi(f)
∈B such that for all b; c∈B we have curryi(f) • b • c=f • b[c=xi]: Moreover; if f
is e;ective then so is curryi(f).

Proof. Intuitively, we require the reverse of the previous construction: given a single
element f, we wish to separate out the queries made by f to b and c. Given n and
&, we would like (curryi(f) • b)〈n; &〉 to be the label L at & in a tree that computes
(f • b[c=xi])(n) from c alone; hence we want the value of curryi(f) at 〈〈n; &〉; �〉 to be
the label at � in a tree that computes L from b alone. Regarding � and & as scripts for
b and c, respectively, we may trace the course of the computation through f; when one
of the scripts runs out, we will know what the relevant value of curryi(f) should be.

Formally, let play′ : N×Seq(N)×Seq(N)→N⊥ be the smallest partial function sat-
isfying the following conditions for all m; n; p; q; �; �; &:

– If f〈�〉= !p then play′(〈�〉; �; �) = !(!p).
– If f〈�〉= ?〈i; n〉 then play′(〈�〉; �; �) = !(?n)

and play′(〈�〉; �; (m; &)) = play′(〈�;m〉; �; &).
– If f〈�〉= ?q where ¬∃n: q= 〈i; n〉, then play′(〈�〉; �; &) = ?q

and play′(〈�〉; (m; �); &) = play′(〈�;m〉; �; &).
Now de-ne curryi(f) by curryi(f)〈〈n; &〉; �〉=play′(〈n〉; �; &). As in the previous proof,
by examining the form of the dialogue between f and b[c=xi] at n, we may check that
it embodies the dialogue between curryi(f) • b and c at n, with subdialogues for the
computation of the required labels in curryi(f) • b. From this it is clear that curryi(f)
has the required property, and the e4ectivity condition is obvious.

It now follows readily that B, Be4 are combinatory algebras.

Theorem 2.7 (Combinatory completeness). (i) Suppose that x0; : : : ; xr�e. Then there
is an element (�∗x̃:e)∈B such that for all valuations #=(x̃ �→ ã) we have (�∗x̃:e)•a0 •
· · · • ar = <e=#. Moreover; if all constants appearing in e are e;ective then so is (�∗x̃:e).

(ii) There exist k; s∈Be4 such that for all x; y; z ∈B we have k • x •y = x; s • x •y • z
= (x • z) • (y • z).

Proof. (i) De-ne (�∗x̃:e) = (curry0(: : : (curryr(%x̃:e)) : : :)) • (�n:⊥): Note that for any
#= (x̃ �→ ã), the element (�n:⊥)[a0=x0] : : : [ar=xr] represents #. So by Propositions 2.6
and 2.5 we have

(�∗x̃:e) • a0 • · · · • ar = (%x̃:e) • (�n:⊥)[a0=x0] : : : [ar=xr] = <e=#:

The e4ectivity condition follows from those in Propositions 2.6 and 2.5.
(ii) Take k= (�∗xy: x), s= (�∗xyz:(xz) (yz)).

Remark 2.8. (i) The construction of B can be carried out more generally starting
from any in-nite set X equipped with injective coding functions Seq(X)�X and
X + X �X .

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 13

(ii) A combinatory algebra A closely related to B has recently been constructed
by Samson Abramsky, using ideas from Girard’s Geometry of Interaction and the
history-free game model of [2]. The construction of A makes use of coding operations
[L; R] : N+N�N and pair : N×N→N. The underlying set of A is NN

⊥, and application
is de-ned by the formula

f • g = L−1 ◦
(⋃

r¿0

hr

)
◦ f ◦ L;

where h=f ◦R ◦ !g ◦R−1 and !g= pair ◦ (id× g) ◦ pair−1. Further details and motiva-
tion are given in [33].

It turns out that A and B are equivalent in the sense of [32]. More particularly,
they have the same underlying set, and application in each is representable in the
other. It follows that A;B give rise to exactly the same category of modest sets (see
Section 3). However, the construction of A seems to be of independent interest for
several reasons—for instance, subject to some conditions on the coding operations, one
can identify a subalgebra Awb of well-bracketed strategies, which yields a realizability
model embodying the PCF notion of sequentiality (see [33]).

We will see in Section 4 that B and Be4 are �-algebras, though they are not
�-models. An interesting question, suggested to us by Luke Ong, is whether one can
-nd a good syntactic calculus (e.g. a suitable extension of untyped �-calculus) in which
all the e4ective elements of B are de-nable. One such calculus will be presented in
Section 9.2, but there may be more natural ones.

In the remainder of this section we establish some technical facts about B and Be4

which give further insight into their nature.

2.3. Irredundant realizers

We have already mentioned that our decision trees may contain redundancy in that
the same question may be asked more than once along a single path, and may also
contain inaccessible nodes for other reasons. We show here that any decision tree
may be “pruned” to yield an equivalent tree not su4ering from any of these kinds
of redundancy, and that moreover this pruning operation may be performed within B

itself.
In fact, we will consider two notions of irredundant element, according to whether

we are thinking of single decision trees or in-nite forests.

De�nition 2.9 (Irredundant elements). Let f be an element of B.
(i) f is |-irredundant if the following hold for all �; �∈Seq(N):

• If f〈�〉 is de-ned then it is a question or an answer.
• If f〈�〉 is de-ned and � is a proper pre-x of � then f〈�〉 is a question.
• If f〈�〉 is de-ned and � is a proper pre-x of � then f〈�〉 �=f〈�〉.

14 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

(ii) f is •-irredundant if f〈�〉=⊥ and fn is |-irredundant for each n, where fn〈�〉=
f〈n; �〉.

The important facts about irredundant elements are given by the following:

Proposition 2.10. (i) To each f∈B we may associate a |-irredundant element irr|(f)
such that irr|(f) | g=f | g for all g; and if f is already |-irredundant then irr|(f) =f.
Moreover; there is an element irr| ∈Be4 such that irr| •f = irr|(f) for all f.

(ii) Likewise; to each f∈B we may associate a •-irredundant irr•(f) such that
irr•(f) • g=f • g for all g; and if f is •-irredundant then irr•(f) =f. Moreover;
there is an element irr• ∈Be4 such that irr• •f = irr•(f) for all f.

Proof. (i) The informal idea behind the construction of irr|(f) from f is clear: we
simply drop all inaccessible nodes of f, and omit all repetitions of previously asked
questions, knowing that they must receive the same answer as before. Thus, to -nd out
what irr|(f)〈&〉 should be where &= [m1; : : : ; mk], we may engage in a dialogue with
f, using & as a script giving the answers to the -rst k distinct questions asked by f.
For this, we also need to carry around a -nite partial function / : N *N recording the
answers to previous questions.

Formally, let R be the set of -nite partial functions N *N, and let irr′(f) : N×R×
Seq(N)→N⊥ be the smallest partial function satisfying the following for all
m;p; q; �; &; /:
• If f〈�〉= !p then irr′(f)(〈�〉; /; �) = !p.
• If f〈�〉= ?q and /(q) =m, then irr′(f)(〈�〉; /; &) = irr′(f)(〈�;m〉; /; &).
• If f(�) = ?q and q =∈ dom /, then irr′(f)(〈�〉; /; �) = ?q

and irr′(f)(〈�〉; /; (m; &)) = irr′(f)(〈�;m〉; /∪{q �→m}; &).
Now de-ne irr|(f) by irr|(f)〈&〉= irr′(f)(�; ∅; &). Clearly, irr|(f)〈m1; : : : ; mk〉

=f〈t1; : : : ; tj〉 whenever the following conditions hold for some q1; : : : ; qj; r1; : : : ; rk :
• f〈t1; : : : ; ti−1〉= ?qi for 16i6j;
• r1; : : : ; rk are the distinct elements of the sequence q1; : : : ; qj in order of appearance,

and whenever qi = rh we have ti =mh;
• f〈t1; : : : ; tj〉 is of the form !p or ?q where q =∈{q1; : : : ; qj}.
Hence it is routine to verify that irr|(f) has the required properties.

It remains to show that there exists irr| ∈Be4 that embodies the above construction
of irr|(f) from f. Formally, let irr| be the least partial function satisfying the following
for all �= [m1; : : : ; mk] and � = [?q1; : : : ; ?qj]:
• If r1; : : : ; rl are the distinct elements of q1; : : : ; qj in order of appearance and l6k,

then irr|〈〈�〉; �〉= ?〈mh(1); : : : ; mh(j)〉, where each h(i) is determined by qi = rh(i).
• If � contains exactly k distinct questions and u is of the form !p or ?q where

q =∈{q1; : : : ; qj}, then irr|〈〈�〉; �; u〉= !u.
Clearly irr| is e4ective, and it is easy to verify that irr| •f = irr|(f) for any f.

(ii) We may now de-ne irr• ∈Be4 as the least partial function such that
• if irr|〈〈�〉; �〉= ?〈&〉 then irr•〈〈n; �〉; �〉= ?〈n; &〉;

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 15

• if irr|〈〈�〉; �〉= !u, then irr•〈〈n; �〉; �〉= !u,
and take irr•(f) = irr• •f. It is easy to see that irr•(f) has the required properties.

A similar proof in the context of game models appears in Section 5.4 of [30].
There is an analogy here with the Scott graph model P! [56]. In both B and

P! (and indeed in any �-algebra) we may identify a class of “canonical” elements,
and may associate to each element x a canonical element that represents the same
endofunction. Moreover, this canonical element can be computed from x within the
combinatory algebra itself. However, there is an important di4erence: in P! there is
a unique canonical element representing any given continuous function (namely its
graph), but in B there are usually many irredundant elements that represent a given
sequential function, corresponding to di4erent sequential algorithms (cf. Section 4).
This is essentially the observation that P! is a �-model while B is not.

2.4. A 7xed point combinator

In any combinatory algebra (A; ·), we say that an element y is a 7xed point combi-
nator if y · x = x · (y · x) for every x. It is well known that every combinatory algebra
has a -xed point combinator: for instance, we may de-ne one by Curry’s formula

y = (�∗xy:y(xxy))(�∗xy:y(xxy)):

On the other hand, for every x∈B we know that the function �x :y �→ x •y is contin-
uous with respect to the CPO structure of B, so it has a least -xed point.

Perhaps surprisingly, there are -xed point combinators in B that do not always
compute the least -xed point. Our aim here is to show that there is one that does. The
combinator de-ned above would probably suWce, but it is easier to prove the required
property for a more concretely de-ned element y.

Lemma 2.11. There is an element y∈Be4 such that for all x∈B; y • x is the least
7xed point of �x.

Proof. Let i= s • k • k, so that i • x = x for all x. Let y0 be the element ⊥∈B (i.e.
the function �m:⊥), and de-ne inductively yk+1 = s • i • yk . Since y0⊆ y1, by induction
we have yk ⊆ yk+1 for every k. So take y=

⊔
yk . Since the yk are e4ective uniformly

in k, clearly y is e4ective.
Now take any x∈B. We have y0 • x =⊥, and so by induction we have yk • x = �k

x(⊥)
for each k. Since application is continuous, we have y • x =

⊔
�k
x(⊥), and this is the

least -xed point of �x.

It follows immediately that if x∈Be4 then the least -xed point of �x is also an
element of Be4 . For the rest of the paper, y will denote the element of Be4 given by
the above proof.

16 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

3. Realizability models

3.1. Realizability models over B and Be4

We now review the construction of the standard realizability models corresponding to
B and Be4 . We will focus almost entirely on the categories of modest sets over these
combinatory algebras; these are full subcategories of the corresponding realizability
toposes, but in this paper we shall only occasionally refer to the latter. We will use
the notation and terminology of [32], where further information on realizability models
may be found.

The following de-nition makes sense for any combinatory algebra (A; ·):

De�nition 3.1 (Modest sets). (i) A modest set X over A consists of a set |X | (called
the underlying set of X) together with a function assigning to each x∈ |X | a non-empty
set ‖x‖⊆A (called the set of realizers for x), such that

a ∈ ‖x‖ ∧ a ∈ ‖x′‖ ⇒ x = x′:

We sometimes write ‖x‖X for ‖x‖ to avoid ambiguity.
(ii) Suppose X; Y are two modest sets over A. A function f : |X |→ |Y | is said to be

tracked by r ∈A if for all x∈ |X | and a∈‖x‖X we have r · a∈‖fx‖Y . A morphism
f :X →Y is a function f : |X |→ |Y | that is tracked by some r ∈A. We write Mod(A)
for the category of modest sets over A and morphisms between them.

Remark 3.2. (i) The fact that Mod(A) is a category follows easily from the combina-
tory completeness of (A; ·). It is easy to see that Mod(A) is equivalent to the category
PER(A) of partial equivalence relations on A.

(ii) Typically, we are only interested in properties of modest sets up to isomorphism,
and we will often switch freely between di4erent representatives of the same isomor-
phism class, using whichever is most convenient. We may think of isomorphic modest
sets as di4erent presentations of essentially the same object.

One can think of a modest set X as a “datatype”, where for each value x∈ |X | we
have a set ‖x‖ of “intensional representations” of x. The category of modest sets turns
out to have very good properties (for more details see [32]):

Proposition 3.3. The category Mod(A) is cartesian closed and regular; and it has
7nite sums and a natural number object.

We recall the construction of exponentials in Mod(A). If X and Y are modest sets,
then YX is de-ned as follows: |YX | is the set of morphisms f :X →Y , and ‖f‖YX is
the set of elements r ∈A that track f. It is easy to check that YX is indeed a modest
set. The evaluation morphism YX ×X →Y is the obvious function |YX | × |X |→ |Y |.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 17

We now identify some important structure in Mod(B) and Mod(Be4). (Note at once
that Mod(Be4) is a non-full subcategory of Mod(B).) For the terminal object 1 in
both categories, we may take |1|= {∗}; ‖ ∗ ‖= {�m:⊥}. For the natural number object
N , we take |N |= N; ‖n‖= { 9n}, where 9n : 0 �→ n; m+1 �→⊥. It is easy to check that N
(equipped with the obvious zero and successor morphisms) is indeed a natural number
object in both Mod(B) and Mod(Be4).

Next we de-ne a lift operation −⊥ on objects of Mod(B). Let up :B→B be the
function de-ned by

up(r)(0) = 0; up(r)(n + 1) = r(n)

and for any object X , let X⊥ be the object given by

|X⊥| = |X | � {⊥}; ‖x‖X⊥ = {up(r) | r ∈ ‖x‖X }; ‖⊥‖X⊥ = {�n:⊥}:
The operation −⊥ clearly extends to a functor, and indeed a monad, on Mod(B), which
restricts well to a monad on Mod(Be4). In the case of N⊥, we will usually work with
the following simpler presentation: |N⊥|= N⊥; ‖x‖= { 9x} (where 9⊥= �m:⊥). It is easy
to check that this is isomorphic to the object given by the de-nition of −⊥.

In both categories, the object NN
⊥ has a particularly simple presentation. This will be

very useful in Section 7 when we consider call-by-value PCF and various extensions
of it.

Proposition 3.4. (i) Let B be the “object of realizers” in Mod(B); de7ned by |B|=
NN
⊥; ‖f‖= {f}. Then B∼=NN

⊥ in Mod(B).
(ii) Let Be4 be the object of realizers in Mod(Be4): |Be4 |= NN

⊥e4 ; ‖f‖= {f}.
Then Be4

∼=NN
⊥ in Mod(Be4).

Note that the operation • is representable in Be4 by the element �∗xy:xy. Hence it
is easy to see that the operation | is also representable in Be4 in the following sense:
there is an element bar∈Be4 such that for all f; g∈B and x∈N⊥; bar •f • g= 9x
i4 f | g= x. It follows that in both Mod(B) and Mod(Be4) there are morphisms
dot :NN

⊥ ×NN
⊥ →NN

⊥ and bar :NN
⊥ ×NN

⊥ →N⊥ corresponding to • and | , respectively.

3.2. The SR functionals

We are now ready to interpret the simple types in Mod(B). This will lead to our
de-nition of the sequentially realizable functionals, which are the primary objects of
study in this paper.

De�nition 3.5 (Simple types). (i) The simple types (or -nite types) are freely gener-
ated from a single ground type 90 via the binary type constructor →:

� := 90 | �1 → �2:

The pure types 90; 91; 92; : : : are de-ned by k + 1 = 9k→ 90.

18 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

(ii) For each type �, its interpretation in Mod(B) is the object <�= given by

< 90= = N⊥; <�1 → �2= = <�2=<�1=:

The interpretation <�= e4 in Mod(Be4) is de-ned analogously.

Note that the above gives the “call-by-name” interpretation of the simple types, i.e.
the one used for modelling the call-by-name version of PCF, as in [49]. We will
content ourselves with this for the time being, but in Section 7 we shall also consider
the call-by-value interpretation.

The sequentially realizable functionals themselves are introduced via a general notion
of (abstract) type structure. For now, we choose a de-nition of type structure that
matches our call-by-name interpretation of types.

De�nition 3.6. (i) A (call-by-name, partial) type structure T consists of the following:
• a set T � for each type �, where T 90 = N⊥,
• for each �; 9 a total “application” function ·�9 :T �→9×T �→T 9.

(ii) The type structures R; Re4 are de-ned by R� = |<�=|; R�
e4 = |<�= e4 |, with the ap-

plication functions given by the evaluation morphisms. We call the elements of R
the sequentially realizable (SR) functionals, and the elements of Re4 the e;ective SR
functionals.

Clearly, the type structures R; Re4 are both extensional, in the sense that if f · x = g · x
for all x then f = g.

Remark 3.7. (i) It should be clear already that both R and Re4 are in some sense
models of PCF. One can easily exhibit realizers for the basic arithmetical operations;
application and abstraction are given by the CCC structure of the category of modest
sets; and for each type � one can verify that the element y∈Be4 realizes -xed point
operators Y ∈R(�→�)→� and Ye4 ∈R(�→�)→�

e4 . One could prove directly at this stage that
this gives adequate interpretations of PCF in R and Re4 , but we will defer a formal
discussion of PCF until Section 9.

(ii) The reader may enjoy verifying that R 92 and R 92
e4 also contain a non-PCF-de-nable

element F with the following speci-cation (this is essentially the example given in the
Introduction):

Fg =




0 if g⊥ = 0;
1 if g⊥ = ⊥ but g0 = 0;
⊥ otherwise:

Unfortunately, many of the basic properties of R and Re4 are diWcult to prove directly
from the above de-nitions. For instance, it will turn out that Re4 can be identi-ed with
a substructure of R (that is, there are inclusions R�

e4 �R� commuting with application),

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 19

and that each R� is CPO with the ordering de-ned by

f � g ⇔ ∃q ∈ ‖f‖; r ∈ ‖g‖: q � r:

We will defer the proofs of these facts until we have gathered more information about
these type structures.

3.3. Modi7ed realizability

The construction given above will be the central one used in this paper. However,
we now brieSy consider another realizability construction that also gives rise to the
SR functionals: the modi7ed realizability model over B. The notion of modi-ed re-
alizability is due in essence to Kreisel [28]; modi-ed realizability toposes have been
extensively studied, e.g. in [22, 48]. For our purposes, it suWces to consider a much
smaller category, analogous to the category of modest sets.

In the following de-nition, A is any total combinatory algebra, and we suppose
moreover that we have an element 0∈A such that 0 · a= 0 for all a∈A. (The element
0 plays a technical role in the construction of modi-ed realizability models; it is not
too important for the purposes of this paper.)

De�nition 3.8 (Modi7ed modest sets). (i) A modi7ed modest set 3 X over a combi-
natory algebra A consists of a modest set X over A in the usual sense, together with a
subset PX ⊆A (called the set of potential realizers for X) such that 0∈PX and ‖x‖⊆PX
for all x∈ |X |.

(ii) Suppose X; Y are modi-ed modest sets over A. A function f : |X |→ |Y | is said
to be tracked in the modi7ed sense by r ∈A if r tracks f in the usual sense, and
furthermore for all a∈PX we have r · a∈PY . A morphism f :X →Y is a function
f : |X |→ |Y | that is tracked in the modi-ed sense by some r ∈A. We write mMod(A)
for the category of modi-ed modest sets.

(iii) We write U :mMod(A)→Mod(A) for the evident forgetful functor.

Modi-ed modest sets may be thought of as modest sets with some extra type in-
formation built in: we may regard PX as giving a “type” for realizers of elements of
X . It is easy to show that mMod(A) is a cartesian closed category. The exponential
YX is de-ned as follows: |YX | is the set of morphisms X →Y in mMod(A); ‖f‖YX is
the set of elements r that track f in the modi-ed sense; and PYX is the set (PX ⇒PY),
where we de-ne

(A⇒ B) = {r | ∀a ∈ A:r • a ∈ B}:
In the case A=B or Be4 , we may take 0= �m:⊥. Both mMod(B) and mMod(Be4)

have a natural number object N which may be described as follows: the underlying

3 Jaap van Oosten has pointed out that, in terms of the categorical properties of these objects within the
modi-ed realizability topos, the term “discrete” is perhaps more appropriate than “modest” in this context.
However, here we will stick with the term “modest” to maintain a sense of analogy with Section 3.1.

20 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

modest set of N is the object N described in Section 3.1, and PN = { 9⊥; 90; 91; : : :}. Like-
wise, there is an obvious candidate for N⊥ in these categories: the underlying mod-
est set is N⊥, and PN⊥ =PN . This means that as before we can give interpretations
<− =m; <− =m; e4 of the simple types in these categories, and hence obtain type structures
Rm; Rm; e4 from them.

Proposition 3.9. For A=B or Be4 ; the interpretation of the simple types in
mMod(A) agrees with that in Mod(A). That is; for each type � we have
U <�=m = <�= and U <�=m; e4 = <�= e4 . Hence Rm =R and Rm; e4 =Re4 .

Proof. For simplicity, we just consider the case A=B; the e4ective case is similar.
First, observe that the object N⊥ in mMod(B) is isomorphic to the object N ′

⊥ described
as follows: the underlying modest set of N ′

⊥ is again N⊥, but PN ′
⊥ is the whole of B.

We can de-ne an interpretation < − =′m of the simple types using N ′
⊥ instead of N ′,

and hence obtain a type structure R′
m; it is easy to show by induction on types that

R′
m =Rm.
We now show by induction on � that U <�=′m = <�= and P<�=′m =B. The base case is

trivial by de-nition of N ′
⊥. So suppose the hypotheses hold for � and 9. By the de-nition

of exponentials we have P<�→9=′m = {r | ∀a∈B: r · a∈B}=B, since B is total. It is now
clear that U <�→ 9=′m = <�→ 9=.

Remark 3.10. (i) The above argument is quite general, and shows that for any total
combinatory algebra A and object X ∈mMod(A) with PX =A, the functor U preserves
the -nite type structure over X .

(ii) Our category mMod(A) is restricted enough that it embeds fully in both the
modi-ed realizability topos mRT(A) and Streicher’s category MAss(A) of modi7ed
assemblies over A (see [61]). Both these embeddings preserve the cartesian closed
structure, but unfortunately (in the case A=B or Be4) neither of them preserves the
natural number object.

One reason for being particularly interested in our object N⊥ will become apparent
in Section 5. But we would also expect that in both mRT(B) and MAss(B), the -nite
types over the true natural number object yield the SR functionals.

4. Concrete data structures

In this section we consider the concrete data structures (CDSs) of Kahn and Plotkin
[24], together with the sequential algorithms and sequential functions studied by Berry
and Curien [6]. We will see that B can itself be regarded as a universal object for a
certain class of CDSs. It follows that a certain category of CDSs and sequential func-
tions can be identi-ed with a full subcategory of Mod(B), and that, moreover, there is
a strong connection between sequential algorithms of CDSs and realizers in Mod(B).

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 21

4.1. Basic de7nitions

We begin by recalling some de-nitions from [6]. We refer the reader to this paper
or to the books [15, 3] for further details and motivation.

De�nition 4.1. A concrete data structure (CDS) M consists of the following:
• a countable set CM of cells;
• a countable set of VM of values;
• a set EM ⊆CM ×VM of events, such that for all c∈CM there is at least one v such

that (c; v)∈EM ;
• an enabling relation �M between -nite subsets of EM and elements of CM , which is

well-founded in the following sense: there is no in-nite sequence c0; c1; : : : of cells
such that for each i there is a -nite set t⊆EM where t �M ci and t contains some
element (ci+1; v).

A state x of M is a subset of EM such that
• if (c; v)∈ x and (c; v′)∈ x then v= v′;
• if (c; v)∈ x then there exists a -nite set t⊆ x such that t � c.
We write (DM ;�) for the set of states of M ordered by inclusion. We also write D0

M

for the set of 7nite states of M .

If t � c we say that t is an enabling of c. We say that c is 7lled in a state x if
(c; v)∈ x for some v, and that c is accessible from x if c is not -lled in x but x
contains an enabling of c.

The well-foundedness condition implies that any non-empty CDS has at least one
cell c such that ∅ � c; such a cell is called initial. The second condition in the de-nition
of state ensures that every state is in some sense reachable. Note that the poset of states
is always a CPO.

We will restrict our attention mainly to CDSs with the following property:

De�nition 4.2. A CDS is deterministic, or is a DCDS, if for any state x and cell c; x
contains at most one enabling of c.

Two di4erent notions of morphism between DCDSs are of interest: the “extensional”
notion of sequential function, and the more “intensional” notion of sequential algorithm.
Sequential functions are simply certain functions between the relevant sets of states:

De�nition 4.3. A sequential function f :M→M ′ between DCDSs is a monotone and
continuous function f :DM →DM ′ such that, for any x∈DM and any c′ ∈CM ′ accessible
from f(x), if there exists a state y x such that c′ is -lled in f(y), then there is a
cell c∈CM accessible from x such that c is -lled in all such states y. Such a cell c
is called a sequentiality index of f for c′ at x.

Note that the sequentiality index c need not be unique: indeed, a sequential algorithm
can be regarded as telling us at each stage which cell c is to be -lled next. Several

22 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

equivalent de-nitions of sequential algorithm can be given; the following de-nition
(adapted from Section 2:5 of [15]) is in some sense intermediate between the “concrete”
and “abstract” de-nitions given in [6].

De�nition 4.4. If M;M ′ are DCDSs, the DCDS N =M ′M is de-ned as follows:
• CN =D0

M ×CM ′ (we will write the cell (x; c′) just as xc′).
• VN =CM + VM ′ (we denote the left and right inclusions by ?; !, respectively).
• Events of N are of two kinds:

– (xc′; ?c)∈EN i4 c is accessible from x in M ;
– (xc′; !v′)∈EN i4 (c′; v′)∈EM ′ .

• Instances of the enabling relation of N are of two kinds:
– (yc′; ?c) �N xc′ i4 x =y�{(c; v)} for some v;
– (x1c′1; !v

′
1); : : : ; (xnc′n; !v

′
n) �N xc′ i4 x = x1 ∪ · · · ∪ xn

and (c′1; v
′
1); : : : ; (c′n; v

′
n) �M ′ c′.

A sequential algorithm a :M→M ′ is simply a state of M ′M . The application operation
· :DM ′M ×DM →DM ′ is de-ned by

a · x = {(c′; v′) | ∃y � x: (yc′; !v′) ∈ a}:

It is shown in [15] that if M and M ′ are CDSs (resp. DCDSs) then so is M ′M . More-
over, for any sequential algorithm a :M→M ′ between DCDSs, the mapping a∗ : x �→
a ·x :DM →D′

M is a sequential function M→M ′. Conversely, every sequential function
between DCDSs is represented by at least one sequential algorithm in this way. Ac-
cordingly, we will sometimes use locutions such as “Let a∗ :M→M ′ be a sequential
function”.

Note that if (xc′; ?c)∈ a then c is a sequentiality index of a∗ for c′ at x. One can
alternatively de-ne sequential algorithms as sequential functions equipped with choice
functions for sequentiality indices satisfying certain properties (see e.g. [6, Section
4:4]).

Given sequential algorithms a :M→M ′ and b :M ′→M ′′, their composition ba :M→
M ′′ may be de-ned directly (if somewhat opaquely) as follows.
– (xc′′; !v′′)∈ ba i4 for some y′ = {(c′1; v′1); : : : ; (c′n; v

′
n)} and x1; : : : ; xn ∈D0

M with x = x1

∪ · · · ∪ xn, we have (xic′i ; !vi)∈ a for each i, and (y′c′′; !v′′)∈ b.
– (xc′′; ?c)∈ ba i4 for some y′ = {(c′1; v′1); : : : ; (c′n; v

′
n)}, x0; x1; : : : ; xn ∈D0

M with x = x0

∪ x1 ∪ · · · ∪ xn, and c′ ∈CM ′ , we have (xic′i ; !vi)∈ a for each i¿1; (y′c′′; ?c′)∈ b
and (x0c′; ?c)∈ a.

This agrees with the indirect de-nition of composition given in [15, Section 2:6]. One
can check that ba · x = b · (a · x), so composition for sequential algorithms agrees with
composition for sequential functions. We write SeqAlg for the category of DCDSs
and sequential algorithms. A major result of [6] is that SeqAlg is a cartesian closed
category, with the exponential M ′M de-ned as above. However, it is well known
that the category SeqFun of DCDSs and sequential functions is not cartesian
closed.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 23

The following condition was recognized by Curien as de-ning an interesting class
of CDSs (see [15, De-nition 2:1:10]):

De�nition 4.5. A CDS M is called sequential if, for any cell d and any state x such
that d is not -lled in x, if there exists a state y x such that d is -lled in y, there is a
cell c accessible from x such that c is -lled in all such states y. Such a cell c is called
a sequentiality index of M for d at x. We write SSeqFun for the category of sequential
DCDSs with sequential functions, and SSeqAlg for the category of sequential DCDSs
with sequential algorithms.

We will sometimes implicitly assume that a sequential CDS M comes equipped with
a choice of sequentiality index cd; x for each d and x to which the above conditions
apply. Curien pointed out that sequential DCDSs are closed under -nite products and
exponentials—that is, SSeqAlg is a sub-CCC of SeqAlg. In fact, one can show that
every sequential CDS is isomorphic to a sequential DCDS, and so the categories of
sequential CDSs and sequential DCDSs are equivalent.

Remark 4.6. The above de-nitions all have fairly evident e;ective analogues. For this,
we need to work with CDSs M equipped with enumerations of CM and VM—that is,
identi-cations of CM and VM with (not necessarily r.e.) subsets of N. An e;ective state
of M is one that is given by a partial recursive function CM *VM (more precisely, by
a partial recursive function N *VM whose domain is contained in CM). If M;M ′ are
DCDSs, a sequential function f :M→M ′ is e;ective if, for all e4ective states x∈DM

and c′ ∈CM ′ satisfying the conditions of De-nition 4.3, a sequentiality index of f for
c′ at x can be recursively computed from c′ and a recursive index for x (one need
not assume that di4erent indices for x yield the same sequentiality index). An e;ective
sequential algorithm M→M ′ is just an e4ective state of M ′M (note that enumerations
for M;M ′ induce an enumeration for M ′M in a standard way). One may then check, by
a routine e4ectivization of the standard proofs, that the e4ective sequential functions are
precisely the maps induced by e4ective sequential algorithms. Such functions clearly
map e4ective states to e4ective states.

We write SeqAlge4 (resp. SeqFune4) for the category of enumerated DCDSs and
e4ective sequential algorithms (resp. functions). It is clear that SeqAlge4 is cartesian
closed, with the same exponentials as SeqAlg.

We say an enumerated DCDS M is e;ectively sequential if for all cells d and
e4ective states x satisfying the requirements in De-nition 4.5, a sequentiality index for
d at x can be recursively computed from d and an index for x (again, we need not
assume extensionality). We write SSeqFune4 and SSeqAlge4 for the respective full
subcategories of SeqFune4 and SeqAlge4 consisting of e4ectively sequential DCDSs.

4.2. B as a universal object

The key observation of this section is that the combinatory algebra B can be viewed
as (the set of states of) a concrete data structure. The cells of this CDS are just the

24 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

natural numbers; the values are also the natural numbers; every pair (c; v) is an event;
and the enabling relation is given by ∅ � c for all c (all cells are initial). The states
are then precisely the partial functions from cells to values, that is, elements of NN

⊥.
We will denote this CDS by B (note that DB

∼=B).
It is easy to see that B is a sequential DCDS. Note that B can also be described as

a countably in-nite product (in either SeqFun or SeqAlg) of copies of a single-cell
CDS N whose values are the natural numbers.

Any CDS M can be “embedded” in B in such a way that the states of M are identi-ed
with a subset of the states of B. Speci-cally, we pick some identi-cations of CM , VM

with subsets of N (or we suppose such identi-cations are given by the hypothesis that
CM , VM are countable). States of M are then identi-ed with certain partial functions
N *N, i.e. states of B. (We take these partial functions to be unde-ned outside the
subset of N corresponding to CM .) This gives us a continuous inclusion BM :DM ,→DB

between CPOs.
For convenience, we will assume henceforth that CM ; VM actually are subsets of N

for every M that we consider. Furthermore, in De-nition 4.4, we identify VN =CM +VM ′

with the set {?c | c∈CM}∪ {!v′ | v′ ∈VM ′} where ?; ! : N→N are the coding functions
introduced in Section 2.

The following tells us when the embedding BM is well behaved.

Proposition 4.7. For a DCDS M; the following conditions are equivalent:
(i) M is sequential.

(ii) BM is a sequential function i∗ :M→B.
(iii) M is a retract of B in SeqFun.
(iv) M is a retract of B in SeqAlg.

Proof. (i) ⇒ (ii): Any sequentiality index of M for c at x is also a sequentiality index
of BM for c at x. (Note that if c =∈CM then a sequentiality index of BM for n at x is
not needed.) So BM = i∗ for some sequential algorithm i.

(ii) ⇒ (iii): It suWces to construct a sequential function j∗ :B→M such that
j∗i∗ = idM . Let us say that a cell d is supported in a state y of B if there is a state x of
M such that i∗(x)�y and d is -lled in i∗(x). Write �y for the set of cells supported
in y, and de-ne j∗(y) to be the restriction of y to �y. Clearly, j∗ is monotone and
continuous, and j∗i∗ = idM . Moreover, it is routine to check that j∗ is sequential.

(iii) ⇒ (i): Assume M
f∗→B

g∗→M is any retraction in SeqFun, and suppose we are
given x∈DM and d not -lled in x such that d is -lled in some y x. Since g∗f∗(x) =
x, we may take c′ to be a sequentiality index of g∗ for d at f∗(x); note that c′ is -lled
in f∗(y). We can now take c a sequentiality index of f∗ for c′ at x, and check that c
is a sequentiality index of M for d at x.

(iii) ⇒ (iv): It suWces to show that the only sequential algorithm representing the
sequential function idM is the identity. Clearly, for any state x and cell c accessible
from x there is a state y x in which c is -lled: take any v such that (c; v)∈EM , and
set y = x∪{(c; v)}. Moreover, the only sequentiality index of idM for c at x is c itself.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 25

This is enough, by the characterization of sequential algorithms as functions equipped
with choices of sequentiality indices [6, Section 4:4].

Condition (iv) ⇒ (iii) is trivial.

The above proposition shows that B is a universal object in the categories SSeqFun
and SSeqAlg. We henceforth suppose that each sequential DCDS M comes equipped
with some choice of sequential algorithms iM ; jM representing i∗; j∗ respectively.

Since SSeqAlg is cartesian closed, we have that BB is a retract of B—that is, B is a
reCexive object in SSeqAlg. In fact, one can choose a retraction BB / B that gives rise
in the standard way to precisely the applicative structure (B; •). This is not the case
for the particular retraction given by Proposition 4.7, but the following proposition
establishes the relevant retraction. The force of this proposition is that irredundant
realizers are sequential algorithms. (Throughout this section, “irredundant” will mean
•-irredundant; we also make free use of the identi-cation DB

∼=B.)

Proposition 4.8. (i) To any sequential algorithm a :B→B there corresponds an irre-
dundant element ra ∈B such that r • b= a · b for all b∈B.

(ii) The map I∗ : a �→ ra constitutes a sequential function BB→B.
(iii) The map I∗ is a bijection between sequential algorithms B→B and irredundant

elements of B.
(iv) The map J∗ : r �→ I−1

∗ (irr•(r)) constitutes a sequential function B→BB.

Proof. (i) Given a sequential algorithm a, we may construct a realizer r = ra as follows.
For each n∈N, let /n : Seq(N)*D0

B be the (unique) smallest partial function with the
following properties:
• /n(�) = ∅.
• If /n(�) = x and (xn; ?m)∈ a, then /n(�; v) = x∪{m �→ v}.
We now take r to be the smallest partial function such that, for all n; �, if /n(�) = x
and (xn; l)∈ a (where l may be ?c or !v) then r〈n; �〉= l.

We -rst check that r is irredundant. If r〈n; �〉= l then from the de-nition l is a
question or an answer. If moreover � is a proper pre-x of � then /n(�; v) is de-ned
for some v, so if y = /n(�) then (yn; ?m)∈ a for some m, whence r〈n; �〉= ?m. Finally,
we have (m; v)∈ /n(�; v)� /n(�), and so if x = /n(�) then (xn; ?m) =∈ a, so r〈n; �〉 �= ?m.

Next, we show that r realizes b �→ a ·b, that is, (r •b)(n) = v i4 ∃x � b: (xn; !v)∈ a.
By de-nition, (r •b)(n) = v i4 there is a sequence c1v1 : : : ckvk such that (ci; vi)∈ b for
16i¡k, and if xi denotes /n〈v1; : : : ; vi〉 then (xin; ?ci+1)∈ a for 06i¡k and (xkn; !v)
∈ a. So for the left-to-right implication above we may take y = xk , since xk ⊆ x.
Conversely, given x⊆ b with (xn; !v)∈ a, let y0 = x, and while yi �= ∅ let (yi+1n; ?di) be
the unique enabling of yin in a (recall that BB is a DCDS), where yi =yi+1�{(di; wi)}.
By the well foundedness of the enabling relation we have yk = ∅ for some k. But then
the sequence dk−1wk−1 : : : d0w0 satis-es the above requirements for c1v1 : : : ckvk .

(ii) Suppose given a :B→B and c accessible from ra such that c is -lled in rb for
some b a. Since rb is irredundant, c must have the form 〈n; �〉. Let � =m1; : : : ; mk

26 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

be the shortest pre-x of � such that 〈n; �〉 is not -lled in ra; then ra〈n; &〉 is a question
for any proper pre-x & of �. So let x = /n(�) as above. It is easy to check that xn is
a sequentiality index of I∗ for c at a.

(iii) If r ∈B is irredundant, then for each n and �=m1; : : : ; mk such that r〈n; �〉
is de-ned, let �n;� be the (least) -nite partial function such that for 06i¡k, if
r〈n; m1; : : : ; mi〉= ?qi then �n; �(qi) =mi+1. Now de-ne

ar = {(�n;�n; l) | n ∈ N; � ∈ Seq(N); l = r〈n; �〉}

(here l may be either a question or an answer). Clearly ar is a sequential algorithm
B→B, and it is straightforward to check that a = ar i4 r = ra.

(iv) Suppose given r ∈B, and xn accessible from a= ar such that xn is -lled in as

for some s r. Let {(yn; ?c)} be an enabling of xn in a, where x =y∪{(c; v)} and
y = �n;� as above. Then for any s as above, we have that 〈n; �; v〉 is accessible from
irr•(r) and -lled in irr•(s). Next, one can see by applying (iii) above to the realizer
irr•(irr•) that the map irr• is a sequential function B→B. So take d a sequentiality
index of this map for 〈n; �; v〉 at r. Then d is clearly a sequentiality index of J∗ for
xn at r.

Since J∗I∗ = id, by the proof of Proposition 4.7 we have that JI = id.
Clearly, morphisms 1→B in SeqAlg correspond precisely to elements of B. So by

the above proposition, applying the functor Hom(1;−) to the composite

B× B J×id−→BB × B ev−→B

gives precisely the function • :B×B→B.

Remark 4.9. (i) By standard facts about reSexive objects in CCCs (see [4]), the above
gives an alternative proof that (B; •) is a combinatory algebra. In fact, it proves more:
namely, that B is a �-algebra. That is, if M;N are formal meta-expressions over B

(possibly involving �∗) and M =� N , then <M =# = <N =# for all valuations #. It would
be interesting to know what �-theory is induced by the interpretation of pure �-terms
in B.

It is clear, however, that B is not a �-model, since B does not have enough points
(see [4, Section 5:5])—di4erent irredundant elements can realize the same function
B→B.

(ii) An alternative way of viewing the above results is the following: given the
monoid M of realizable endofunctions on B (i.e. sequential endofunctions on NN

⊥),
one can obtain SSeqFun as a full subcategory of its Karoubi envelope K(M). This
is interesting because the de-nition of M is much less cumbersome than that of
SSeqFun. However, K(M) is strictly larger than SSeqFun, as it is easy to -nd
realizable idempotents on B (and even projections) whose kernel is not a concrete
domain (see [24]).

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 27

Remark 4.10. One can easily obtain an e4ective analogue of Proposition 4.7, showing
that B is a universal object in both SSeqFune4 and SSeqAlge4 . One can also show that
the retraction (I; J) :BB / B described by Proposition 4.8 lives in SeqAlge4 , and induces
a bijection between e4ective sequential algorithms B→B and irredundant elements of
Be4 . Clearly, morphisms 1→B in SeqAlge4 correspond to elements of Be4 , and so
the retraction (I; J) gives rise to exactly the combinatory algebra Be4 .

Remark 4.11. It is shown by Laird [30] that the interpretation in SSeqAlge4 of the
language HPCF (an idealized functional language with control) is fully abstract and
universal; it follows that the interpretation in SSeqAlg is fully abstract. Similar results
for the language PCF + catch are obtained by Kanneganti, Cartwright, Curien and
Felleisen [12, 25]. 4 We now see that one can give simple proofs of these results by
exploiting the universality of B.

Let L be HPCF or PCF+catch; write 90 for the type of natural numbers in L,
and n + 1 for the type 9n→ 90. Working in SSeqAlge4 , we note that B is a retract of
< 91=, so we have a retraction < 92= / < 91=. Next, one shows explicitly that both halves of
this retraction are de-nable in L. It follows easily that <�= is an L-de-nable retract
of < 91= for any simple type �. Since every morphism 1→ < 91= in SeqAlge4 is clearly
L-de-nable, the same holds for every morphism 1→ <�=. Full abstraction follows,
since any two states x; y of an object M in SSeqAlge4 can easily be distinguished
by a morphism M→ < 90 =. (We will use this technique again in Section 9 to obtain a
universality result for the SR functionals.)

4.3. Sequential DCDSs and realizability

Armed with the above results, we can formulate a precise connection between CDSs
and modest sets over B: speci-cally, SSeqFun can be fully embedded in Mod(B).

We de-ne a functor E :SSeqFun→Mod(B) as follows. Given M a sequential
DCDS, we take |EM | to be the set DM of states of M , and for each x∈DM let
‖x‖EM be the singleton set {iM∗(x)}. Given f :M→M ′ a sequential function, take
Ef =f :DM →DM ′ . Note that if a :M→M ′ is any sequential algorithm representing
f then ra≡ I(iM ′ ◦ a ◦ jM) is a realizer for Ef.

Likewise, we have a functor Ee4 :SSeqFune4 →Mod(Be4) given as follows: |Ee4M |
is the set of e4ective states of M , and ‖x‖Ee4M = {iM∗(x)} (note that if x is an e4ective
state then iM∗(x)∈Be4). If f :M→M ′ is an e4ective sequential function then Ee4f is
the restriction of f to e4ective states. Note that if a is an e4ective sequential algorithm
representing f then the realizer ra de-ned as above is e4ective, since (we may assume)
iM ′ and jM are e4ective.

4 In [25] the proof is worked out for a variant of PCF+catch including error values, but the same technique
works for the error-free version.

28 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

Proposition 4.12. The functors E and Ee4 are full and faithful.

Proof. The faithfulness of E is trivial; the faithfulness of Ee4 follows from the fact
that any continuous map DM →DM ′ is determined by its action on e4ective states. To
see that E is full, let g be any morphism EM→EM ′, realized by r ∈B say. Then
jM ′ ◦ J∗(r) ◦ iM is a sequential algorithm M→M ′, representing a sequential function
g∗ such that Eg∗ = g. Similarly for Ee4 .

Remark 4.13. (i) Note that if f :M→M ′ is e4ective then the realizers for Ee4f are
precisely the e;ective realizers for Ef. This is because an arbitrary state of M;M ′ is a
least upper bound of e4ective states, and so any realizer that takes e4ective states of
M to e4ective states of M ′ also does the same for arbitrary states.

(ii) The above is an instance of a well-known piece of folklore about realizability
models in general: given a category C with a universal and reSexive object X giving
rise to a combinatory algebra A, there is a full functor E :C→Mod(A) such that
Ef =Eg i4 Hom(1; f) = Hom(1; g).

(iii) All the modest sets in the image of either E or Ee4 have the special property
that every element has just one realizer. Such objects are (up to isomorphism) precisely
the projective modest sets (see e.g. [32]).

(iv) It is immediate from Propositions 4.7 and 4.12 that the object B∼=NN
⊥ is a

universal object in the subcategory of Mod(B) corresponding to SSeqFun; similarly
for Be4 in Mod(Be4).

The above results establish the correspondence between sequential functions M→M ′

and morphisms EM→EM ′. There is also a close relationship between sequential algo-
rithms and realizers in B. The correspondence is not a perfect bijection—intuitively,
there are more realizers than sequential algorithms—but it is fairly strong:

Proposition 4.14. Let M;M ′ be sequential DCDS. Then there are sequential algo-
rithms V :M ′M →B and W :B→M ′M such that
• if a :M→M ′ is a sequential algorithm representing a sequential function f; then

V · a tracks Ef;
• if r ∈B tracks Ef; then W · r is a sequential algorithm representing f;
• W ◦ V = id;
• V ◦W is realized by an element of B.
If moreover M;M ′ are e;ectively sequential; then V;W are e;ective and induce a
similar correspondence between e;ective sequential algorithms and realizers in Be4 ;
furthermore; V ◦W is realized by an element of Be4 .

Proof. Since SeqAlg is cartesian closed, composition and application of sequential
algorithms are themselves given by sequential algorithms. So there are sequential
algorithms V;W de-ned by

V = �a: I · (iM ′ ◦ a ◦ jM); W = �r: jM ′ ◦ (J · r) ◦ iM :

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 29

The -rst two conditions are then clear (cf. the proof that E is a full functor). The
third condition holds because JI = id; jM iM = id and jM ′ iM ′ = id. The fourth condition
is immediate since, by Proposition 4.8(i), every sequential algorithm B→B is realized
by an element of B. The e4ective versions of these conditions are straightforward
given that iM ; jM ; iM ′ ; jM ′ are e4ective (an appeal to Remark 4.13(i) is needed for the
second condition).

This gives us a particular retraction (V;W) :M ′M / B in SSeqAlg. In general, this is
not identical to the chosen retraction (i; j) for M ′M , although the “translations” i ◦W
and V ◦ j are of course realizable by elements of B. We thus have the following
relationship between EM ′EM and E(M ′M):

Proposition 4.15. The exponential EM ′EM in Mod(B) is isomorphic to an obvious
quotient Q of E(M ′M); where |Q| is the set of sequential functions M→M ′; and
‖f‖Q is the union of the (singleton) sets ‖a‖E(M ′M) where a ranges over sequential
algorithms representing f. Similarly in the e;ective case.

Since, in general, there is no canonical sequential algorithm representing a sequential
function, the object Q (and hence EM ′EM) is not usually projective. We therefore have
some kind of a conceptual explanation for why SSeqFun fails to be cartesian closed: the
desired exponentials live naturally in Mod(B), but they take us outside the subcategory
corresponding to SSeqFun.

This is an example of a very common phenomenon: by passing from some category
of objects to a category of partial equivalence relations on them, we often obtain a
much richer structure. An abstract account of this phenomenon is given in [8].

5. The hypercoherence model

In the last section we explored the connections between the realizability model over
B and the sequential algorithms model. In this section we relate both of these to
the strongly stable model due to Bucciarelli and Ehrhard, as embodied in Ehrhard’s
category of hypercoherences. In [47], van Oosten gave a direct proof that the SR
functionals coincide exactly with the strongly stable functionals of -nite type. Here
we follow a more scenic route to this result via the modi-ed realizability model and
the sequential algorithms model. Our proof invokes a theorem of Ehrhard [18] which
states that the hypercoherence model may be obtained as an extensional collapse of
the sequential algorithms model. (We will give our own proof of Ehrhard’s theorem
in Section 7.)

We discuss some of the insights that the hypercoherence model provides, particularly
with regard to the stable order on the SR functionals. We also point out a curiosity,
namely the failure of the e;ective analogue of Ehrhard’s result.

30 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

5.1. An extensional collapse construction

We start by considering the extensional collapse of the sequential algorithms model,
as studied by Ehrhard [18]. We give a cheap proof that this construction yields pre-
cisely the SR functionals, by relating it to the modi-ed realizability model described
in Section 3.3.

It will be convenient to recast the de-nitions of Section 3.3 in terms of partial
equivalence relations (PERs). As in Section 3.3, take 0= �m:⊥. By a modi7ed PERX
on B we will mean a set PX ⊆B with 0∈PX , together with a partial equivalence
relation ∼X on PX (that is, a symmetric, transitive relation on PX). We say that r ∈B

realizes a morphism X →Y of modi-ed PERs if for all a; b∈B we have

a ∈ PX ⇒ r • a ∈ PY ; a ∼X b⇒ r • a ∼Y r • b:
A morphism of modi-ed PERs is an equivalence class of such realizers, under the
equivalence relation

q ∼ r ⇔ ∀a ∈ B:q • a ∼Y r • a:
The category MPER(B) of modi-ed PERs on B is clearly equivalent to mMod(B).

The modi-ed modest sets <�=m thus correspond to the modi-ed PERs M� = (P�;∼�)
de-ned as follows:

P 90 = { 9⊥; 90; 91; : : :};
x ∼ 90 y⇔ x = y;

P�→9 = (P� ⇒ P9);

q ∼�→9 r⇔∀x; y:x ∼� y ⇒ q • x ∼9 r • y:
Next we consider the obvious interpretation < − = s of types in SSeqAlg:

< 90= s = N; <�→ 9= s = <9=<�= ss ;

where N is the CDS with a single cell which may be -lled by any natural number.
De-ne a partial equivalence relation ≈� on the states of <�= s inductively as follows:

x ≈ 90 y ⇔ x = y; a ≈�→9 b ⇔ ∀x; y ∈ D(<�= s): x ≈� y ⇒ a · x ≈9 b · y:

Remark 5.1. The structures (D(<�= s);≈�) are exactly the objects ([�]SEQ∗ ;≈) de-ned
in Section 6 of [18]. The interpretation [�]SEQ was there de-ned within the category
of sequential structures, a larger category than SeqAlg. However, we have already
seen that SSeqAlg is a full sub-CCC of SeqAlg, and it is shown in [9, Chap. 5]
that SeqAlg is a full sub-CCC of the category of sequential structures. Thus, all the
sequential structures [�]SEQ lie within the sub-CCC corresponding to SSeqAlg.

One can view each structure (D(<�= s);≈�) as a modi-ed modest set N� = (Q�;≈�):
we take Q� to be the set of realizers for elements of E(<�= s)—these are in bijec-
tive correspondence with states of <�= s—and just transport ≈� along this bijection.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 31

By Proposition 4.14 it is clear that there are application morphisms N�→9×N�→N9

realized essentially by •.
The de-nitions of M� and N� look very similar, and indeed they turn out to be

isomorphic:

Proposition 5.2. For each type �; we have M�
∼=N� in MPER(B); moreover; these

isomorphisms commute with the application morphisms M�→9×M�→M9 and N�→9×
N�→N9.

Proof. By induction on �. The isomorphism M 90
∼=N 90 is easy. So suppose c�; d�

realize an isomorphism M�→N� and its inverse, respectively, and likewise for 9.
Let V : <9=<�= ss →B and W :B→ <9=<�= ss be the sequential algorithms given by Proposi-
tion 4.14, and suppose v; w∈B are the corresponding realizers for morphisms E(<�→
9= s)�E(B). By Proposition 4.14 we have that if r ∈Q�→9 then v • r ∈ (Q� ⇒ Q9). We
therefore have the following diagram of subsets of B and realizable functions between
them (we label each arrow with an appropriate realizer):

P�→9 ≡ (P� ⇒ P9)
�∗xy:c9(x(d�y))
−−−−−→←−−−−−

�∗xy:d9(x(c�y))

(Q� ⇒ Q9)
w
�
v
Q�→9:

Hence we obtain realizers c�→9; d�→9 for the composite functions P�→9�Q�→9. It is
routine to verify (using the induction hypothesis) that c�→9 and d�→9 realize morphisms
M�→9→N�→9 and N�→9→M�→9, respectively; that these morphism commute with
application; and hence that they are mutually inverse.

Now, consider the type structure E, where E� is the subquotient of Q� by ≈�, and the
application operations are induced by •. This type structure is known as the extensional
collapse of the sequential algorithms model. The following is now immediate from the
above and Proposition 3.9:

Corollary 5.3. The type structure E is isomorphic to the type structure R of SR
functionals.

Remark 5.4. (i) The e4ective analogue of this result also goes through: the extensional
collapse Ee4 of the evident interpretation <− = s; e4 in the e4ective sequential algorithms
model SSeqFune4 is isomorphic to the type structure of e4ective SR functionals. Note
that the sets Pe4 ; � are de-ned by working entirely within Be4 , whereas the sets Qe4 ; �

are de-ned via the interpretation of � in the “full” sequential algorithms model. But
this does not matter since it is easily shown that Pe4 ; � =P�∩Be4 (cf. Remark 4.13(i)).

(ii) From the results mentioned in Remark 4.11, the e4ective sequential algorithms
model (for simple types) coincides exactly with the closed term models of HPCF and
PCF + catch modulo observational equivalence. From this and the above results, it
follows directly that Re4 is the extensional collapse of either of these languages: more
precisely, Re4 is isomorphic to the subquotient of the type structure of closed terms by

32 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

the logical relation induced by observational equivalence at ground type. Informally,
this means that every e4ective SR functional can be written in HPCF or PCF + catch.

We would expect that many other programming languages should give rise to Re4

in this way. See Section 12.3 for further discussion.

5.2. Sequential algorithms and hypercoherences

We now recall some de-nitions concerning hypercoherences, and state the main
theorem of Ehrhard [18]. For more background on hypercoherences, see this paper
or [16].

De�nition 5.5 (Hypercoherences). (i) A hypercoherence X is a countable set |X | to-
gether with a set (X of non-empty -nite subsets of |X |, such that {a}∈(X for each
a∈ |X |. We call |X | the underlying set and (X the atomic coherence of X .

(ii) The domain D(X) generated by a hypercoherence X is the set of all subsets
x⊆ |X | such that for all non-empty -nite u⊆ x we have u∈(X . We will refer to the
elements x∈D(X) as states of X .

(iii) The coherence C(X) generated by X is the set of non-empty -nite subsets
A⊆D(X) such that, for all non-empty -nite u⊆ |X |, u / A implies u∈(X , where u / A
means

∀a ∈ u:∃x ∈ A:a ∈ x ∧ ∀x ∈ A:∃a ∈ u:a ∈ x:

The intuition here is that |X | is some set of “atoms of information”, and (X speci-es
which -nite combinations of atoms are “consistent”. (Note, however, that the notion
of consistency may be a rather odd one, since subsets of consistent sets need not be
consistent!) The domain D(X) can then be seen as the set of consistent “states” of X ,
where consistency is determined by looking at -nite subsets. In fact D(X) (ordered
by inclusion) is always a qualitative domain. The coherent subsets A of D(X) are,
roughly speaking, those such that any -nite “cross-section” u of A looks consistent.
The coherent subsets are meant to generalize the notion of consistent pair of states in
the theory of stable domains: they are those subsets for which we require morphisms
to preserve the meets. This is reSected in the next de-nition:

De�nition 5.6 (Strong stability). Let X; Y be hypercoherences. A strongly stable
function X →Y is a continuous function f :D(X)→D(Y) such that for any A∈C(X)
we have f(A)∈C(Y) and f(

⋂
A) =

⋂
f(A). We write HC for the category of

hypercoherences and strongly stable functions.

It is shown in [16, 17] that HC is a cartesian closed category, indeed a sub-CCC of
the category of dI-domains with coherence. Given hypercoherences X; Y , the exponen-
tial Z =YX may be de-ned explicitly as follows: |Z | is the set of pairs (x; b) where

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 33

x∈D(X) is -nite and b∈ |Y |; and for non-empty -nite w⊆ |Z | we have w∈((Z) i4

L1(w) ∈ C(X) ⇒ (L2(w) ∈ ((Y) ∧ (L2(w) a singleton ⇒ L1(w) a singleton)):

In addition, we have a hypercoherence N of natural numbers, de-ned by

|N |= N; (N = {{n} | n ∈ N}:
The associated domain D(N) is the familiar domain N⊥. This means that we have an
interpretation < − =HC of the simple types in HC, giving rise to a type structure H in
the sense of De-nition 3.6 (take H� =D(<�=HC)∼= Hom(1; <�=HC)). We call H the type
structure of strongly stable functionals.

The following result appears as Theorem 5 of [18]:

Theorem 5.7 (Ehrhard). The type structures E and H are isomorphic.

From this and Corollary 5.3 above, we may immediately recover the main result
of [47]:

Corollary 5.8 (van Oosten). The type structures H and R are isomorphic.

Remark 5.9. (i) The proof of Theorem 5.7 is non-constructive: an appeal to KXonig’s
Lemma is needed to show that every in7nite element of H is represented by a sequential
algorithm (see [18, Section 6]). The failure of the e4ective analogue of the theorem
(see below) shows that the non-constructivity is essential.

(ii) If preferred, one could invoke van Oosten’s result and deduce Ehrhard’s theorem
as a corollary. We will give an alternative proof of Theorem 5:8, not dependent on
either [18] or [47], in Section 8.1 below.

(iii) It is interesting to compare Ehrhard’s result in [18], which we have invoked
above, with his earlier construction of the hypercoherence model as the extensional
collapse of the extensional sequential algorithms model (see [17]). Roughly speaking,
in [18] we -rst de-ne an interpretation of all types without regard to extensionality, and
then pick out a type structure by the extensional collapse construction, whereas in [17]
we carve out the subset of extensionally well-behaved algorithms at each type level,
and use only this in de-ning the interpretation of the next type level. Intuitively, this
corresponds exactly to the di4erence between exponentials in modi7ed and standard
realizability models.

The connection between the construction of [18] and modi-ed realizability is made
precise above. One might hope to make a similar precise link between the construction
of [17] and standard realizability, yielding yet another proof of van Oosten’s result,
and indeed we initially tried to do this. The precise connection seems elusive, but for
an interesting reason. In both [17, 18] Ehrhard works in the category of sequential
structures (cf. Remark 5.1), and it turns out that in [17] this extra generality is quite
essential: even the sequential structure used to interpret the type (90

2→ 90)→ 90 falls

34 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

outside the class of CDSs. We are thus unable to transfer the results of [17] to the
realizability model.

The hypercoherence presentation of R shows a remarkable fact: the “computational”
notion of sequential realizability can be captured exactly by a preservation property
with a -nitary character.

Many properties of the SR functionals that are hard to prove from the de-nition of
R are relatively easy for H . One such property concerns the e;ective presentability of
the -nite elements (other examples appear in Section 5.4). Speci-cally, let H�

0 be the
poset of -nite elements of (H�;⊆). In view of the -nitary nature of the construction
of exponentials in HC, the following fact is clear (we omit the detailed proof):

Proposition 5.10. There are bijections �� : N→H�
0 for each type �; with respect to

which
• the ordering and (pairwise) consistency relations on H�

0 are decidable;
• the (binary) meet operations H�

0 ×H�
0 →H�

0 are recursive;
• the application operations H�→9

0 ×H�
0 →H9

0 are recursive.
Moreover; codes for these operations may be obtained recursively from codes for
� and 9.

It follows that the evident 7nitary analogue R-n of R (in which we take 2⊥ instead
of N⊥ as the ground type) is decidable. That is, the set R�

-n and the application func-
tions ·�9 can be computed recursively from �; 9 (so that, for example, the size of R�

-n
is recursive in �. An important result of Loader [31] shows that the corresponding
statement fails for PCF-sequentiality).

5.3. E;ectivity in hypercoherences

Next, we draw attention to a surprising anomaly. The e4ective analogue of
Theorem 5.7 fails: that is, the extensional collapse of the e4ective sequential algo-
rithms model does not coincide with the evident r.e. submodel of the hypercoherence
model. We give an example to show that, even at -rst order types, there are r.e. strongly
stable functions that are not represented by any e4ective sequential algorithm. This is
somewhat analogous to the result due to Trakhtenbrot [63] that there exist r.e. elements
of the Milner model that are not PCF-de-nable. However, the two situations are in
fact quite distinct, so we cannot simply re-use known examples of the Trakhtenbrot
phenomenon in our setting.

We should clarify what we mean by an r.e. element of the hypercoherence model.
By an enumerated hypercoherence we shall mean a hypercoherence X together with a
bijection between |X | and a subset of N; the r.e. states of X are then those x∈D(X)
that correspond under this bijection to r.e. subsets of N. It is easy to give a standard
enumeration for each of the hypercoherences <�=HC : for < 90=HC =N we may take the
identity enumeration; and given enumerations for X; Y we may obtain an enumeration
for Z =YX using some standard e4ective codings for pairs and -nite sets. We shall

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 35

always consider each <�=HC as being equipped with this standard enumeration; it is
worth remarking that the atomic coherence (<�=HC then corresponds to a decidable set
of -nite subsets of N. The e4ective states of these hypercoherences are of course closed
under application, and so they constitute a substructure He4 of H .

For convenience, we will identify states of the CDS N , and states of the hyper-
coherence N , with elements of N⊥. In the following proposition, we write � = 90→ 90→ 90
and 9= 90→ 90→ 90→ 90.

Proposition 5.11. There exists an r.e. element t ∈D(<9=HC) such that there is no ef-
fective sequential algorithm a∈ <9= s; e4 with a · x ·y · z = txyz for all x; y; z ∈N⊥.

Proof. Let X be the hypercoherence <9=HC . We may identify |X | with the set of tuples
(x; y; z; w) where x; y; z ∈N⊥ and w∈N. Let A; B be disjoint but recursively inseparable
r.e. subsets of N: for example, take

A = {e |’e(0) = 0}; B = {e |’e(0) = 1};

where ’e is the eth partial recursive function. Now let t⊆ |X | be the set

{(x; 1; 1; 1) | x ∈ N} ∪ {(x; 0;⊥; 0) | x ∈ A} ∪ {(x;⊥; 0; 0) | x ∈ B}:

Then t is r.e. since both A; B are r.e. To see that t ∈D(X), -rst let Y = <�=HC , and for
each x∈N let tx = {(y; z; w) | (x; y; z; w)∈ t} considered as a subset of |Y |. It is easy
to check that tx ∈D(Y) for each x (there are just three possibilities for tx). But now
since X =YN , we can see from the de-nition of exponentials in HC that if u is any
non-empty -nite subset of t then u ∈ (X . Thus t ∈D(X).

Now suppose, for contradiction, that a is an e4ective sequential algorithm represent-
ing t. Then for x∈N we have that a · x is an e4ective sequential algorithm representing
tx, recursive in x. If M is the CDS <�= s, we may identify CM with the set of pairs (y; z)
with y; z ∈N⊥, and VM with the set {?y; ?z} ∪ {!w |w∈N}, where ?y; ?z correspond to
requests for the -rst and second arguments, respectively. Now for each x∈N we have
a · x∈D(M), and it is easy to see that ((1; 1); !1)∈ a · x. Using the sequentiality of a · x,
we can deduce that the cell (⊥;⊥) is -lled with either ?y or ?z in a · x. Furthermore,
since a · x is recursive in x, there is a recursive function of x telling us which of these
is the case. But such a function clearly separates A and B, giving us a contradiction.

By Remark 5.4, the above proposition suWces to show that the type structure Re4 is
not isomorphic to He4 . We will see in Section 7 that Re4 is a proper substructure of
He4 . It appears that Re4 is the “right” e4ective analogue of the SR functionals, while
He4 seems to be something of a curiosity. It is possible, of course, that our choice of
e4ectivization of HC is not the best one—there may be another notion of e4ectivity,

36 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

de-ned directly in terms of hypercoherences, which does agree with Re4 —but we feel
this is rather unlikely.

5.4. The stable order

The set of states of any hypercoherence are naturally ordered by inclusion. It is
known e.g. from [16] that for a function space YX , this ordering coincides with Berry’s
stable order on functions. The stable order also plays an important role in the theory of
sequential functions. Here we brieSy consider how the stable order -ts into the picture
described in this section and the last.

We -rst recall some standard notions. A poset (X;6) is called stable if whenever
x; y∈X have a common upper bound, they have a greatest lower bound x∧y. A
function f :X →Y between such posets is stable if whenever x; y∈X have an upper
bound we have f(x∧y) =f(x)∧f(y). It is well known that the states of a DCDS
(resp. hypercoherence) form a stable poset, and moreover that sequential functions
(resp. strongly stable functions) are stable.

If X; Y are stable posets, the stable order 6s on stable functions X →Y is de-ned
as follows:

f 6s g ⇔ ∀x; y ∈ X :x 6 y ⇒ f(x) = f(y) ∧ g(x):

The category of stable posets and stable functions is cartesian closed: the exponential
[X ⇒s Y] is the set of stable functions X →Y ordered by 6s.

For DCDSs, the stable order admits alternative characterizations:

Proposition 5.12. Suppose f; g :M→M ′ are sequential functions between DCDSs.
Then the following are equivalent:
(i) f6s g.

(ii) There exist sequential algorithms a; b with a∗ =f; b∗ = g such that a� b.
(iii) There exist realizers q∈‖Ef‖; r ∈‖Eg‖ such that q� r.

Proof. (i)⇒ (ii): Given f6sg, take any b such that b∗ = g, and de-ne

a = {(xc′; ?c) ∈ b | true} ∪ {(xc′; !v′) ∈ b | (c′; v′) ∈ f(x)}:

It is routine to verify that a is a sequential algorithm and that a∗ =f.
(ii)⇒ (i): The evaluation morphism D(M ′M)×D(M)→D(M ′) is stable, and so we

obtain a stable function D(M ′M)→ [D(M) ⇒s D(M ′)] mapping a �→ a∗. So if a� b
then a∗6s b∗.

Condition (ii) ⇔ (iii) follows easily from Proposition 4.8.

For hypercoherences, as we have already remarked, the stable order on morphisms
X →Y coincides with the inclusion order on D(YX). Furthermore, this ordering on the
type structure H can alternatively be characterized in terms of E or R:

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 37

Proposition 5.13. Suppose x∈H�; x′ ∈E� and x′′ ∈R� all correspond under the iso-
morphisms H ∼=E∼=R; and similarly for y; y′; y′′. The following are equivalent:
(i) x�y in the inclusion order.

(ii) There exist sequential algorithms a∈ x′; b∈y′ such that a� b.
(iii) There exist realizers q∈‖x′′‖; r ∈‖y′′‖ such that q� r.

Proof. (i)⇒ (ii): For 7nite elements x; y this is Lemma 6 of [18]. One can extend
the result to in-nite elements by an application of KXonig’s Lemma exactly as in [18,
Theorem 5]. Let (rn) be the standard increasing sequence of -nite retractions on H�,
and let (pn) be the corresponding sequence of retractions on D�≡D(<�= s), as described
in [18]. Each of these retractions has a -nite image consisting entirely of -nite ele-
ments, and the lub of each sequence is the identity. Suppose x�y, and for each n let
xn = rn(x); yn = rn(y). Since these are -nite elements, there exist an� bn in the image
of pn that represent the corresponding elements x′n; y

′
n ∈E�. In this case, we will say

that cn = (an; bn) represents zn = (xn; yn).
For each n there is a sequence c0� · · · � cn in D�×D�, where each ci represents

zi: for instance, take (an; bn) representing zn and set ci = (pi(an); pi(bn)). Moreover,
each zi is represented by only -nitely many pairs, since the image of pi is -nite. So
by KXonig’s Lemma, there exists an in-nite sequence c0� c1� · · · where ci represents
zi. By taking c=

⊔
ci in D�×D�, we obtain a; b representing x′; y′ as required.

Condition (ii)⇒ (i) is Lemma 7(i) of [18].
(ii)⇔ (iii): By Proposition 5.12, (ii) holds i4 there are realizers q′� r′ for the

elements corresponding to x; y, respectively, in the modi-ed modest set N�. So by
Proposition 5.2, (ii) holds i4 the corresponding property holds for M�. But this is
clearly equivalent to (iii), by inspection of the proof of Proposition 3.9.

It follows immediately from Proposition 5.13 that the relation on each R� given
by condition (iii) above is a complete partial order. What seems to be the analogous
question for PCF-sequentiality is still open: for the games models of PCF (for example),
it is not known whether the extensional collapse at each simple type is a CPO with
the evident ordering.

6. A presheaf model

We now consider a characterization of the type structure R due to Colson and
Ehrhard [14], inspired by the notion of reducibility from proof theory. As we shall
see, it is a fairly short step from this to a description of R in terms of presheaves over
the monoid of sequential endofunctions on NN

⊥ . For us, the interest of these results
is twofold: -rstly, they yield yet another mathematical characterization of R, quite
di4erent in Savour from those we have considered so far; and secondly, they reveal
a sense in which sequential realizability may be seen as “canonically” extending the
familiar notion of -rst-order sequentiality to higher types.

38 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

6.1. The Colson–Ehrhard characterization

We -rst summarize the crucial de-nitions and the main result from [14]. As before
we write NN

⊥ for the set of all partial functions N *N, and we suppose we have a stan-
dard pairing function 〈−;−〉 : NN

⊥ ×NN
⊥→NN

⊥ , with corresponding projections fst; snd.
For each type � we de-ne a set L�, and a set L�

! of functions from NN
⊥ to L�, by

simultaneous induction as follows:
• L 90 = N⊥.
• L 90

! is the set of sequential functions NN
⊥→N⊥ in the sense of Milner [41] and

Vuillemin [64] (equivalently, the functions NN
⊥→N⊥ realizable by an element of B).

• L�→9 is the set of all functions f :L�→L9 such that for all g∈L�
! we have f ◦ g

∈L9
!.

• L�→9
! is the set of all functions f : NN

⊥→L�→9 such that for all g∈L�
! the function

�r : NN
⊥ : f(fst r)(g(snd r)) is in L9

!.
The sets L� constitute a type structure L, which can be seen as arising naturally

from the set of sequential functions NN
⊥→N⊥.

The set NN
⊥ , obviously, plays an important role in the above de-nition. We shall also

consider the hypercoherence N! that intuitively corresponds to NN
⊥ . We can de-ne

N! directly as follows: |N!|= N×N; and for non-empty -nite w⊆ |N!| we have
w∈((N!) i4

L1(w) a singleton ⇒ L2(w) a singleton:

One can check that D(N!)∼= NN
⊥ , and that N! is indeed the product of ! copies of N

in HC.
We now import the main result of [14]. For the sake of completeness we give a

summary of the proof.

Theorem 6.1 (Colson/Ehrhard). L∼=H .

Proof (Outline). The key lemma is the following: if X; Y are hypercoherences, a set-
theoretic function D(X)→D(Y) is a strongly stable map X →Y provided for every
strongly stable map g :N!→X , the function f ◦ g :N!→Y is strongly stable. This
is proved as follows. Suppose f satis-es the proviso: we need to show that f is
!-continuous and preserves coherent sets and their meets. For continuity, one shows
that every !-chain in D(X) is the image of a “generic” chain in D(N!) via a strongly
stable map g. The strong stability of f ◦ g then implies that f preserves the lub of
this chain. For coherent sets, one shows that every coherent set in X is the image of
a coherent set in N! via a strongly stable map g. Again, the strong stability of f ◦ g
then gives us that f preserves this coherent set and its meet.

One then shows that at all types � there are bijections L�∼=D(<�=HC) and L�
!
∼=D

(N!⇒ <�=HC) that commute with the application maps. This is reasonably straightfor-
ward by simultaneous induction on �, using the above lemma.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 39

6.2. A presheaf presentation

Next, we relate L to a type structure arising from a certain category of presheaves.
In the -rst instance, consider the two-object category C consisting of the sets 1 and NN

⊥
together with all Milner–Vuillemin sequential functions between them. (Equivalently,
C may be described as the full subcategory of SeqFun consisting of the objects 1 and
B.) For typographical convenience, we will write B for the object NN

⊥ of C.
The presheaf category over C is simply the category [Cop;Set] of functors Cop→Set

and natural transformations between them. Given F;G :Cop→Set, we write Nat(F;G)
for the set of natural transformations F→G. It is well known that the presheaf cat-
egory over any small category is cartesian closed. In the case of our category C,
for F;G :Cop→Set we may describe GF explicitly as follows: GF(1) = Nat(F;G);
GF(B) = Nat(hB×F;G), where hB = HomC(−; B); and GF(f) is induced by precom-
position with HomC(−; f)× idF .

We can obtain an interpretation of the simple types in [Cop;Set] by -xing on an
interpretation of the type 90. Let M 90 :Cop→Set be the functor de-ned as follows:
M 90(1) =L 90 = N⊥, M 90(B) =L 90

!, and the action of M 90 on morphisms is given by pre-
composition. At higher types we then de-ne M�→9 to be the exponential MM�

9 in
[Cop;Set]. The following proposition spells out the relationship between the functors
M� and the sets L�; L�

!:

Proposition 6.2. (i) For each type �; there are bijections �� :M�(1)∼= L� and
��
! :M�(B)∼= L�

!; and the action of M� on morphisms corresponds under these bi-
jections to precomposition.

(ii) For each �; 9; the function M�→9(1)×M�(1)→M9(1); (�; x) �→ �1(x) corre-
sponds under these bijections to the application function L�→9×L�→L9.

Proof. By simultaneous induction on �. For type 90, (i) holds by de-nition of M 90. So
suppose (i) holds for � and 9. We -rst establish the bijection ��→9 :M�→9(1)∼= L�→9.
Suppose �∈M�→9(1), and let f = �9 ◦ �1 ◦ (��)−1 :L�→L9. By the naturality of � at
each x : 1→B, we have that

�9
! ◦ �B ◦ (��

!)−1 = f ◦ − : L�
! → L9

!:

In particular, for any g∈L�
! we have f ◦ g∈L9

!; thus f∈L�→9. Conversely, suppose
f∈L�→9; then f−≡f ◦− is a map from L�

! to L9
!. Set

�1 = (�9)−1 ◦ f ◦ ��; �B = (�9
!)−1 ◦ f− ◦ ��

!:

It is routine to check that this de-nes a natural transformation �∈M�→9(1). Moreover,
the above constructions are mutually inverse, since any � :M�→M9 is uniquely de-
termined by �1, by naturality at each x : 1→B. We thus have the required bijection
��→9.

We now establish the bijection ��→9
! :M�→9(B)∼= L�→9

! . Suppose �∈M�→9(B); then
� is a natural transformation hB×M�→M9, so in particular we have �1 : NN

⊥ ×M�(1)

40 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

→M9(1) and �B : Hom(B; B)×M�(B)→M9(B). Let f : NN
⊥→L9L�

be the function ob-
tained from �1 by currying and composing with the given bijections. First note that
for all x∈NN

⊥ and all g∈L�
!, by the naturality of � at each y : 1→B we have that

�B(kx; g) =f(x) ◦ g∈L9
!, where kx is the constant morphism B→B corresponding to

x. (Here, for clarity, we have omitted a few �s, as we shall generally do from now
on.) Thus f(x)∈L�→9 for each x. Next, we wish to show that f∈L�→9

! . Given
any g∈L�

! and any e :B→B, by naturality of � at each y : 1→B we have that
�B(e; g) = (�r: f(er)(gr))∈L9

!. Now note that fst; snd are sequential functions and so
correspond to morphisms B→B. Note also that L�

! is closed under precomposition
with sequential functions NN

⊥→NN
⊥ since this corresponds to the action of M� on mor-

phisms B→B. Hence, given any g′ ∈L�
!, setting e = fst and g= g′ ◦ snd, we have that

(�r: f(fst r)(g′(snd r)))∈L9
!; thus f∈L�→9

! .
Conversely, suppose f∈L�→9

! . Reversing the above argument, given any g∈L�
! and

any e :B→B, there is a morphism d :B→B given by r �→ 〈er; r〉. Since (�r: f(fst r)
(g(snd r)))∈L9

! and L9
! is closed under precomposition with d, we have that (�r: f(er)

(gr))∈L9
!. So de-ne

�1(x; a) = f(x)(a); �B(e; g) = �r: f(er)(gr):

It is routine to check that this de-nes a natural transformation �∈M�→9(B).
Once again, the above constructions are mutually inverse since �B is uniquely deter-

mined by �1. This gives us our bijection ��→9
! . The remaining clauses of the proposition

are now immediate from the construction of ��→9 and ��→9
! .

As usual, we can now obtain a type structure by taking global elements. For each �
let P� = Hom(1; M�), and consider the P� as equipped with the functions P�→9×P�

→P9 induced by the evaluation morphisms in [Cop;Set]. Clearly, we may identify P 90

with N⊥, so this de-nes a type structure P. From the above proposition we easily
deduce the following:

Corollary 6.3. P∼=R.

Proof. The object 1 of [Cop;Set] is just the constant functor {∗}, which clearly coin-
cides with the representable functor h1 = Hom(−; 1). So by the Yoneda Lemma, mor-
phisms 1→M� correspond naturally to elements of M�(1)∼= L�. Moreover, it is easy
to see that the bijections P�∼= L� respect the application operations, so P∼= L as type
structures. Combining this with Theorem 6.1 and Corollary 5.8, we have that P∼=R.

The above characterization of the SR functionals using the category C was chosen
to mesh well with the de-nition of L given in [14]. However, we can now dispense
with the object 1 in C to obtain a more aesthetically pleasing presentation. Let M be
the monoid of sequential endofunctions on NN

⊥ , as in Remark 4.9(ii), and let I be the
full inclusion M ,→C. It is easy to show the following:

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 41

Proposition 6.4. The categories [Cop;Set] and [Mop;Set] are equivalent.

Proof. This follows trivially from the fact that 1 arises as an absolute coequalizer of
two morphisms B�B within C, and the Yoneda embedding exhibits [Mop;Set] as the
free cocompletion of M (see e.g. [39, Section 1:5]).

Under this equivalence, the object M 90 corresponds to the right M-set N whose
carrier is the set of sequential functions NN

⊥→N⊥, with right M-action given by pre-
composition. We thus have the following pleasant mathematical characterization of the
SR functionals:

Theorem 6.5. The type structure generated from N in [Mop;Set] is isomorphic to R.

Remark 6.6. (i) The object N bears very little relation to the natural number object
in [Mop;Set], which is a much more boring M-set with a trivial M-action.

(ii) In the light of the universal property mentioned above, [Mop;Set] is in some
sense a “canonical” extension of M to a cartesian closed category. The above result
(and indeed the result of Colson and Ehrhard) therefore suggests that the SR functionals
are in some way a canonical extension of the notion of in-nitary -rst-order sequentiality
(embodied by M) to higher types.

(iii) The in-nite arity of the functions embodied by M is quite essential here. If
we work with presheaves over the category of 7nitary Milner–Vuillemin sequential
functions, there is nothing to impose continuity at higher types.

(iv) There seems to be some analogy between [Mop;Set] and its relation to the
realizability model over B, and Mulry’s recursive topos [43] and its relation to the
e4ective topos. However, we have not explored this connection.

(v) The type structure L has an evident e4ective analogue Le4 : the only di4erence
in the de-nition is that we take L 90

!; e4 to be the set of functions NN
⊥→N⊥ realizable by

an element of Be4 . We also have an e4ective analogue of P: let Me4 be the monoid
of Be4 -realizable endofunctions of NN

⊥ ; let N be the right Me4 -set of Be4 -realizable
functions NN

⊥→N with action given by precomposition; and let Pe4 the type structure
over N in [Mop

e4 ;Set]. The proof of Proposition 6.2 then goes through and establishes
that Pe4

∼= Le4 .
However, we cannot yet establish the e4ective analogue of Theorem 6.5, since we

do not yet have a connection between Le4 and Re4 . We will -ll this gap in Section 8.2.

7. A universal type

We now come to the main new result of the paper. We show that in R the type 92
is a universal type, in the sense that every type � is a retract of 92. More speci-cally,
for every type � there are SR functionals R��R 92 that compose to give the identity on
R 92; thus, R 92 in some sense “contains” all higher types. The same also holds for Re4 .

42 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

This gives us a very good grasp of these type structures, and numerous other results
then follow fairly easily.

For ease of presentation, at this point in the paper we will shift the focus of our
attention to the call-by-value SR functionals, rather than the call-by-name ones we
have studied so far. Mathematically, this does not make a big di4erence, and one can
easily recover the call-by-name version of our results from the call-by-value version.
In Section 7.1 we explain precisely the call-by-value interpretation of types that we
are considering.

We then show in Sections 7.2 and 7.3 that the (call-by-value) type 93 is a retract of
92—it follows easily from this that every type is a retract of 92. The required morphism
I : 93→ 92 is easy to construct, and the bulk of the work involves the morphism H : 92→ 93.
We give the construction of H in Section 7.3, and the veri-cation that I ◦H = id in
Section 7.3, along with other facts.

Some applications of this result will be given in Sections 8 and 9.

7.1. Call-by-value types

So far we have been considering the call-by-name interpretation of types in Mod(B)
as given by De-nition 3.5 (we will write this interpretation here as < − =N , and the
corresponding type structure as RN). At this point in the paper we switch our attention
to the call-by-value interpretation < − =V , de-ned essentially as follows:

< 90=V ∼= N; <�1 → �2=V ∼= (<�2=V⊥)<�1=V :

By taking R�
V = |<�=V | we obtain a call-by-value type structure, that is, a family of sets

R�
V together with partial application functions · :R�→9

V ×R�
V *R9

V . Similarly we de-ne
the e4ective call-by-value interpretation < − =V;e4 in Mod(Be4), and the corresponding
call-by-value type structure RV;e4 . (These turn out to be the appropriate objects for
giving interpretations of call-by-value PCF—see Section 9.1 below.)

The reason for this shift is that the functional H lives most naturally in the call-by-
value setting. We emphasize, however, that this is really just a matter of convenience.
Indeed, the type structures RN and RV may each be recovered from the other, since
each object <�=V can be de-ned as a retract of some <9=N , and vice versa (see e.g.
[32, Chap. 6]). This means that the results we are interested in will transfer easily
between the two settings. We can therefore regard RN and RV as being in some sense
just di4erent presentations of the same thing.

For the rest of this section, we will write <− = for <− =V , and R for RV . Since most
of the theorems and proofs in this section work identically in the full and e4ective
settings, we will use undecorated notation when we could be referring to either case,
and use the subscripts full and e4 when we need to be speci-c. Thus, B may refer to
either Bfull or Be4 .

The interpretation < − = (in both the full and e4ective cases) is given up to iso-
morphism by the above de-nition, but it will greatly simplify our task to work with
judiciously chosen on-the-nose representations of these objects. Speci-cally, we take < 90=

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 43

to be the object N as in Section 3.1, < 91=∼=NN
⊥ to be the object of realizers B given by

De-nition 3:4. For our representation of < 92=, we need the following ad hoc de-nition:

De�nition 7.1 (Semi-irredundant realizers). We will call an element r ∈B semi-irre-
dundant if, for all �; �∈Seq(N),
• if r〈�〉 is de-ned then it is a question or an answer;
• if r〈�〉 is de-ned and � is a pre-x of � then r〈�〉 is de-ned;
• if � is a pre-x of � and r〈�〉= r〈�〉= ?n then �= �.

Comparing this with De-nition 2.9(i), any |-irredundant element is clearly semi-
irredundant, but a semi-irredundant element may have inaccessible nodes underneath
answer nodes. Note that if r is semi-irredundant then irr|(r)� r. (In this section, unlike
in Section 4, we will use “irredundant” without quali-cation to mean |-irredundant.)

We now de-ne <92= as follows:

|< 92=| = {F |F is a morphism B→ N⊥};
‖F‖< 92= = {r | r is semi-irredundant ∧ ∀g ∈ B: r | g = F(g)}:

(Our reasons for choosing this semi-irredundant representation will become more ap-
parent in Section 7.2 below.) It is easy to check that <92=∼=NB

⊥ . Note that every
semi-irredundant realizer belongs to some ‖F‖X ; in fact, we may de-ne an equiv-
alence relation ∼ on semi-irredundant realizers by setting r∼ r′ i4 r; r′ ∈‖F‖X for
some F .

For <93= we take the following object:

|< 93=| = {O |O is a morphism < 92=→ N⊥};
‖O‖< 93= = {r | ∀F ∈ < 92=: ∀t ∈ ‖F‖: r | t = O(F)}:

For all other types �→ 9 we may take <�→ 9== <9= <�=⊥ as usual. This completes the
de-nition of < − =.

We remark brieSy on the relationship between the full and e4ective interpretations
of these types. Clearly <90=full and <90=e4 are identical, and < 91=e4 can be identi-ed with a
subobject of < 91=full. The observation above that every semi-irredundant r realizes some
F ∈ <92= (valid in both the full and e4ective settings) yields the following easy facts:
every F ∈ <92=e4 extends uniquely to an element F̂ ∈ <92=full, and every realizer for F is
also a realizer for F̂ . The relationship between <93=e4 and <93=full is much less obvious—it
will be established in Theorem 7.13.

The pure call-by-value types excluding 90, at least, have counterparts in the hyper-
coherence model. Indeed, we may de-ne

< 91=HC = N!;

< 9n→ 90=HC = (< 9n =HC ⇒ N) (n ¿ 0);

44 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

where N! is as de-ned in Section 6. We will consider this interpretation in Section 8
below. (The absence of a good lifting operator in HC is an obstacle to interpreting
arbitrary call-by-value types.)

7.2. Construction of H

We now work towards the main result: in both Mod(Bfull) and Mod(Be4), the
object <93= is a retract of <92=. As we shall see, the construction of the retraction is
directly inspired by the combinatory algebra B.

The easy half of the retraction will be the morphism I : 93→ 92 de-ned as follows.
Let bar : B×B→N⊥ be the morphism de-ned by (f; g) �→f | g, as in Section 3.1.
Currying this, we obtain a morphism B→NB

⊥ , and hence a morphism b : < 91=→ <92=,
mapping f to f | −. Now let I : <93=→ <92= be the morphism induced by precomposition
with b: that is,

I = − ◦ b : (< 92=⇒ < 90=⊥) → (< 91=⇒ < 90=⊥):

Note that b is realized by the element irr| of Section 2.3, and I itself is realized by
–= �∗xy: x(irr|y).

Obviously, we cannot hope for a one-sided inverse to b : < 91=→ <92=, since there is no
canonical choice of sequential algorithm for each type 2 function; but in some sense
a one-sided inverse to I is the next best thing. We will, in fact, de-ne a morphism
H : <92=→ <93= such that H ◦ I = id <93=. Since the construction of H is rather involved, we
begin with an informal explanation.

We think of the type 91 as the object B, and 92 as the object B equipped with the partial
equivalence relation ∼ de-ned above. Any element of B will realize some morphism
B→N⊥ (that is, 91→ 90), since each element of B has just one realizer; but an element
r of B will realize a morphism 92→ 90 only if r acts extensionally on ∼-classes. The
morphism I essentially takes a morphism (B; ∼)→N⊥ and treats it as a morphism
B→N⊥, just by forgetting the equivalence relation.

The morphism H , on the other hand, takes a morphism F : B→N⊥, given by an
arbitrary realizer r, and converts it into a morphism ext(F) : B→N⊥ that acts exten-
sionally with respect to ∼, and can hence be treated as a morphism (B; ∼)→N⊥. In
some sense, ext(F) will be the largest subfunction of F that is ∼-extensional, so we
may think of H as a kind of “extensionalizer”.

We de-ne ext(F) from F in something like the following way: for any r ∈B, if
there is a number n such that F(r′) = n for all r′∼ r, we take ext(F)(r) = n; if there
is no such n then we take ext(F)(r) =⊥. (This is not quite right, but it gives the
basic idea; cf. De-nition 7.4(i).) Thus, ext(F) “homogenizes” F with respect to ∼.
However, it is not immediately clear that ext(F)(r) can be computed by a sequential
algorithm: it seems, on the face of it, we would need to test in-nitely many realizers
r′∼ r. The key to the proof is the observation that in some sense there are essentially
only -nitely many such realizers r′, and so it suWces to test a -nite set of realizers
that are representative of all of them.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 45

We need to show, of course, that this testing can all be done within B, so that
we obtain a realizer for ext(F). Finally, we show that the passage from F to ext(F)
can itself be performed within B, uniformly in F , so that we obtain a realizer for the
morphism H .

We approach the formal construction of H by -rst establishing some facts about the
set of realizers for an arbitrary type 2 function F . For any F ∈ <92=, we de-ne its trace,
written tr F , to be the set of all pairs (g; Fg) where g : N *N is a -nite partial function
(given as a -nite set of ordered pairs) which is minimal such that Fg is de-ned. (Of
course, this is exactly the trace in the sense of the hypercoherence model, although we
will not need this fact.) Clearly, F is determined by tr F , since Fh= n i4 (g; n)∈ tr F
for some g⊆ h. Moreover, if p is any irredundant realizer for F , there is a bijective
correspondence between elements of tr F and nodes � such that p〈�〉 is an answer.
Explicitly, (g; Fg)∈ tr F corresponds to � if p〈�〉= !Fg and whenever �; m is a pre-x
of � and p〈�〉= ?n we have g(n) =m. (Note that in this situation the size of dom g is
exactly the length of �.)

We write F �F ′ if tr F ⊆ tr F ′. We say F is 7nite if tr F is -nite. The following
observations now provide the key to the whole construction:

Lemma 7.2. Suppose F ∈ <92= is 7nite. Then
(i) F has only 7nitely many irredundant realizers; each with 7nite domain;

(ii) any realizer p∈‖F‖ extends exactly one of these irredundant realizers;
(iii) the set of minimal realizers can be e;ectively computed (as a 7nite list of 7nite

graphs) from tr F .

Proof. (i) Clearly, if p is an irredundant realizer for F then dom p consists of all 〈�〉
such that � is a pre-x of some � with p〈�〉 an answer. But by the above remarks, if
F is -nite then there are just -nitely many such �; hence dom p is -nite. Moreover,
for each (g; Fg)∈ tr F , p induces a total order 4g

p on dom g, where n 4g
p n′ i4 there

exist proper pre-xes �; �′ of � with p〈�〉= n; p〈�′〉= n′ and � a pre-x of �′. Clearly,
p may be recovered from tr F together with the orders 4g

p as follows: if the elements
of dom g in the order 4g

p are precisely n1; : : : ; nl then we have

p〈gn1; : : : ; gni〉 =?ni+1 for 0 6 i ¡ l; p〈gn1; : : : ; gnl〉 =!Fg:

But since there are only -nitely many combinations of total orders 4g
p on the sets

dom g, there can be only -nitely many irredundant realizers p.
(ii) If p is any semi-irredundant realizer for F then irr|(p) is an irredundant realizer

for F , and p extends irr|(p). Furthermore, if q is any irredundant realizer for F such
that p extends q, then irr|(q) = q and irr|(p) extends irr|(q); hence clearly q= irr|(p).

(iii) Given tr F (where for each element (g; Fg), g is given as a -nite list of pairs),
we may e4ectively compute the -nite set of all possible families of orderings (4g

| (g; Fg)∈ tr F) in which each 4g is a total order on dom g. Moreover, for each such
family (4g), we may e4ectively determine whether the 4g all arise from some irre-
dundant realizer p (this happens provided the above formulae for p in terms of the

46 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

4g do not give rise to clashes). If the 4g do all arise from some p, we may e4ec-
tively compute the graph of p itself according to the above formulae. Thus, we may
e4ectively compute the -nite set of (graphs of) irredundant realizers for F .

The force of this proposition is that we may -nd a -nite set of realizers for F that is
representative of all of them. Part (ii) depends on the fact that our realizers for F are
already semi-irredundant rather than arbitrary elements that track F . Note in passing
that the set of irredundant realizers for a -nite F is exactly the same in the full and
e4ective settings.

The next lemma establishes a useful connection between the trace ordering on type 2
functions and the pointwise ordering on their realizers.

Lemma 7.3. Suppose given F;G ∈ <92= such that F �G. Then for any irredundant re-
alizer q∈‖G‖ there is an irredundant realizer p∈‖F‖ such that p� q. Moreover; if
F is 7nite then p can be chosen to be 7nite (and hence e;ective).

Proof. Recall that the answer nodes of q correspond bijectively to the elements of
tr G. Let p be the restriction of q to arguments 〈�〉 where � is a pre-x of some
answer node � corresponding to an element of tr F . Clearly p⊆ q, and it is easy to
see that p tracks F . Moreover, if F is -nite then there are -nitely many answer nodes
corresponding to elements of tr F ; hence p has -nite domain.

We are now ready to construct the morphism H . We proceed in several steps,
beginning with the following de-nition:

De�nition 7.4. (i) Suppose F;G0 ∈ <92= with G0 -nite. We say that F uniformly yields
n on G0 if, for every irredundant realizer p0 ∈‖G0‖ we have Fp0 = n, and moreover
for all q�p0 in B we have Fq= n only if q=p0.

(ii) We provisionally de-ne a function HF : |<92=|→ |<90=| as follows: For each G ∈ <92=,
set HF(G) = n i4 there is some -nite G0�G such that F uniformly yields n on G0.

The second condition in part (i) of the above de-nition—the minimality requirement
on p0—is the point that was omitted in our informal de-nition of H . To ensure that
part (ii) of the above de-nition is sound, we need to show that G0, if it exists, is
unique. This and other useful information is given by the following proposition.

Proposition 7.5. Suppose given F;G ∈ <92=; p an irredundant realizer for G; r an
irredundant realizer for F; and some 7nite G0�G such that F uniformly yields n
on G0. Then

(i) r |p= n;
(ii) if p0 is the smallest subfunction of p such that r |p0 = n; then p0 is an irredun-

dant realizer for G0;
(iii) if G1�G is 7nite and F uniformly yields n on G1; then G1 =G0.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 47

Proof. (i) By Lemma 7.3 we may choose p′�p such that p′ is an irredundant realizer
for G0. But then Fp′ = n, so r |p′ = n, whence r |p= n.

(ii) The above realizer p′ has the property that for all q�p′ in B we have Fq= n
i4 q=p′. So if p0 is as given then p0 =p′; thus p0 is an irredundant realizer for G0.

(iii) The realizer p0 is de-ned without reference to G0. So if G1 is as given then
p0 realizes both G0 and G1, so G0 =G1.

Proposition 7.6. For each F ∈ <92=; the function HF de7ned above is realizable; i.e. is
an element of <93=.

Proof. Let r be an irredundant realizer for F . Note that if F uniformly yields n on
some G0 and p0 is an irredundant realizer for G0, then the answer node of r that
produces the result of the computation of r |p0 corresponds to the element (&; n) of
tr F , where & is the graph of p0.

This suggests that we restrict r to a realizer r′ de-ned as follows. If � is an answer
node of r corresponding to an element (&; n)∈ tr F , where & is the graph of some
irredundant realizer p0 for some -nite G0 ∈ <92=, then take r′〈�〉 to be !n if F uniformly
yields n on G0, ⊥ otherwise. If a∈N is not of the form 〈�〉 for such an answer node
�, then take r′a= ra. Clearly r′ is irredundant, and from the above observation it is
easy to see that r′ tracks HF .

For the e4ective case, we also need to check that if r is e4ective then so is r′.
Suppose r is e4ective and irredundant; then given a such that ra= !n we must have
a= 〈�〉 for some �. Now given an answer node � of r we may e4ectively compute
the values of r〈�〉 for all pre-xes � of �; from this we may e4ectively obtain the
element (&; n) corresponding to �. We may then e4ectively decide whether & is the
graph of an irredundant element p0; if so, p0 necessarily realizes some -nite G0, and
we may e4ectively obtain tr G0 from &. By Lemma 7.2, from tr G0 we may e4ectively
compute the -nite list of all irredundant realizers for G0; and since r is e4ective, it is
semi-decidable whether F uniformly yields n on G0. Combining all this information
we see that r′ is e4ective.

We have thus de-ned a set-theoretic function H : |<92=|→ |<93=|. Note that the de-ni-
tions of H in the full and e4ective settings agree: given F ∈ <92=full such that F has an
e4ective realizer and so restricts to an element Fe4 ∈ <92=e4 , the element He4Fe4 coincides
with the restriction of HfullF to <92=e4 .

The last step in the construction is to show that the function H is itself realizable.
In fact, exactly the same realizer will work in the full and e4ective settings. In the
light of the above remarks, it suWces to show:

Proposition 7.7. There is an element h∈Be4 such that; for all F ∈ <92=full; if r ∈‖F‖
then h • r ∈‖HF‖.

Proof. Essentially, this amounts to showing that the construction of r′ from r in the
previous proof can be carried out within Be4 itself. However, since this construction

48 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

works only on irredundant realizers and we require h to work on all semi-irredundant
realizers, we had better de-ne h= �∗x:h′(irr|x), where h′ embodies the above construc-
tion.

A completely formal de-nition of h′ would be unilluminating, so we content our-
selves with an anthropomorphic description of the algorithm embodied by the ath
decision tree in the forest represented by h′, for an arbitrary a∈N.

We -rst ask the question a (that is, h′〈a〉= ?a). Suppose this receives the answer b.
If either a is not of the form 〈�〉 or b is not of the form !n, we simply return b as our
-nal result (that is, h′〈a; b〉= !b). Otherwise, we ask the question 〈�〉 for every pre-x
� of � in turn. From the answers received so far, we now “know” the element (&; n) in
the previous proof. If & is not the graph of an irredundant realizer p0, we simply give
up and diverge. Otherwise, we now know p0 and hence the trace of the functional G0

it realizes. Let p1; : : : ; pN be the list of all irredundant realizers of G0, which we now
know. We wish to check whether our argument r satis-es r |pi = n for each i. To do
this, we -rst simulate the play of r against p1, by asking questions to r, and ourselves
providing the answers to the questions r asks using our knowledge of p1. If in fact
r |p1 = n′, at some point we will receive the answer !n′. If n′ �= n, we again hang up
and diverge. If n′ = n, we then proceed to the simulation of r against p2, and so on.
Finally, if we complete the simulation of r against each of the pi and have received
the answer n in every case, we return n as our -nal result.

It should be clear that h′ may be given e4ectively, and that if r is an irredundant
realizer for F then h′ • r is the realizer r′ for HF described in the previous proof. It
follows that h is also e4ective, and tracks H as required.

This completes the construction of H .

7.3. Properties of H

We next show that H is indeed a one-sided inverse to I . For this, we need to
establish some special properties of realizers for elements O∈ <93=. By de-nition, r is a
realizer for some such O i4 r acts extensionally on semi-irredundant realizers, that is,
r |p= r | q whenever p∼ q.

Proposition 7.8. Suppose r realizes O∈ <93=; p realizes F ∈ <92=; and OF = n∈N. Let
p0 be the unique smallest 7nite subfunction of p such that r |p0 = n. Then

(i) dom p0 is pre-x-closed; i.e. if 〈�〉 ∈ dom p0 and � is a pre7x of � then 〈�〉 ∈
dom p0;

(ii) p0 realizes some F0 ∈ <92= such that OF0 = n;
(iii) for all �; p0〈�〉 is an answer i4 � is a leaf in p0 (i.e. � is not a proper pre7x

of any � where 〈�〉 ∈ dom p0).

Proof. (i) Extend p0 to a function p1 by setting p1〈�〉= !0 whenever 〈�〉 =∈ dom p0

and � is a pre-x of some � with 〈�〉 ∈ dom p0. Then dom p1 is -nite and

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 49

pre-x-closed, and since p was semi-irredundant, so is p1. Thus p1 realizes some
F1 ∈ <92=. Furthermore, since p0�p1 we have r |p1 = n, so OF1 = n. Now let p2 =
irr|(p1); then p2 also realizes F1, and so r |p2 = n since r realizes O. Thus, we have
p0; p2�p1 with r |p0 = r |p2 = n; hence p0�p2 by minimality of p0.

Now suppose if possible that dom p0 is not pre-x-closed. Take �; � such that
〈�〉 ∈ dom p0 and � is the shortest pre-x of � such that 〈�〉 =∈ dom p0. Then p2〈�〉= !0,
so by irredundancy 〈�〉 =∈ dom p2, contradicting p0�p2. So dom p0 is already pre-x-
closed, and p1 =p0.

(ii) Since p is semi-irredundant, it now follows that p0 is semi-irredundant, and so
realizes some F0 ∈ <92= where OF0 = n.

(iii) By (i), p3 = irr|(p0) also realizes F0, and so r |p3 = n. Since p3�p0, by
minimality of p0 we have p3 =p0, so p0 is irredundant. In particular, if p0〈�〉 is
an answer then � is a leaf in dom p0. For the converse, suppose � is a leaf but
p0〈�〉 is a question. Let p4 be obtained as a restriction of p0 simply by removing the
value at 〈�〉. Clearly p4 also realizes F0, and so r |p4 = n, contradicting the minimality
of p0.

Part (iii) of the above proposition is not actually required below, but it provides
some additional insight into the situation. The proof of part (i) shows why we need
the notion of semi-irredundant realizer: in general the element p1 is not irredundant
even if p is, so if we assumed only that r |p′ = n for all irredundant realizers p′ of
F1, we would be unable to show that r |p2 = r |p1. On the other hand, if we took as
‖F‖ the set of all p tracking F , we would lose the property that every realizer for a
-nite F extends one of the -nitely many irredundant realizers (Lemma 7.2(ii)).

Theorem 7.9. For the morphisms

< 93=
I
�
H
< 92=

de7ned above; we have H ◦ I = id <93=.

Proof. Suppose O∈ <93=, and take any irredundant r ∈‖IO‖. It is easy to see that
r ∈‖O‖: take any G ∈ <92= and note that for any g∈‖G‖ we have

r | g = (IO)(g) = O(�f: g |f) = OG:

Let r′ be the realizer for H (IO) obtained from r as in the proof of Proposition 7.6.
To show that H (IO) =O it will suWce to show that r′ = r. So suppose � is an answer
node of r corresponding to (&; n)∈ tr IO, where & is the graph of an irredundant real-
izer p0 ∈‖G0‖ for some -nite G0. We wish to know that r′〈�〉= r〈�〉 (note that we
automatically have r′a= ra for all a not of this form). But r〈�〉= !n, and so to show
that r′〈�〉= !n it is enough to show that IO uniformly yields n on G0.

Proof. Suppose q0 is any irredundant realizer for G0. Since r realizes O, we have
r | q0 =OG0 = r |p0 = n. Now let q1 be the least subfunction of q0 such that

50 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

(IO)q1 = n—that is, such that r | q1 = n. Then by Proposition 7.8(ii), q1 is an irredun-
dant realizer for some G1�G0 such that OG1 = n. But now by Lemma 7.3 we may
-nd a realizer p1 ∈‖G1‖ such that p1�p0. Since r realizes O, we have r |p1 = n.
But p0 is clearly minimal such that r |p0 = n, and so p1 =p0. Hence G1 =G0, and
since q0 is a minimal realizer for G0 we have q1 = q0. So q0 is minimal such that
(IO)q0 = n; thus IO uniformly yields n on G0 as required.

Remark 7.10. It is natural to ask whether H (or some other one-sided inverse to I)
can be characterized by a universal property involving I—for instance, as an adjoint or
Kan extension. At present, the answer would seem to be no. However, one can obtain
a characterization of this kind if one decomposes I into two components.

Speci-cally, let Z be the modest set de-ned by

|Z | = {F : B→ N⊥ | ∀g ∈ B: F(g) = F(irr|(g))}; ‖F‖Z = ‖F‖< 92=:

Let I1 : Z→ <92= be the evident inclusion; it is easy to see that I1 has a one-sided inverse
H1. Also I factors through I1 via a morphism I0 : <93=→Z . Let H0 be the restriction of
H to Z ; then we have H0I0 = id. The morphism H0H1 is not exactly our morphism H ,
but at least it is a one-sided inverse to I . Moreover, one can characterize H0 and H1

abstractly as follows: H0 is a right adjoint of I0 with respect to the stable ordering,
and H1 is a right adjoint of I1 with respect to the pointwise ordering.

It is perhaps surprising that no simpler characterization of a one-sided inverse to I
is possible, if this is indeed the case.

It is now an easy step to show that every type is a retract of 92:

Theorem 7.11 (Universality of 92). In Mod(B); every object <�= is a retract of <92=.

Proof. We -rst prove the result for all pure types 9n. Clearly < 90=; <91=; <92= are all retracts
of <92=. We have shown above that <93= / <92=; and from a retraction (i; j) : <n + 1= / < 9n= we
obtain a retraction (− ◦ j;− ◦ i) : <n + 2= / <n + 1=. By composing such retractions, we
have < 9n= / <92= for all n¿3.

To extend the result to arbitrary types, we just need to know that every object <�= is
a retract of some < 9n=. This is a well-known piece of folklore. For call-by-name types it
is proved in [23, Section 8.1], and in fact the same proof also works for call-by-value
types without any modi-cation.

Remark 7.12. If (i; j) : <�= / <92= is a retraction in Mod(B), it is immediate that i; j
themselves live in the type structure R: essentially i∈R�→ 92 and j∈R92 → �.

We thus have that for the call-by-value SR functionals, type 92 is universal among
simple types. Of course, exactly the same result holds for the call-by-name SR func-
tionals, and one way to see this is as follows. By the results of [32, Chap. 6], every

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 51

object <�=N is a retract of some <9=V , and by the above results, this is in turn a retract
of <92=V , which is a retract of <92=N .

It is interesting to compare our results with the situation for other known type
structures. In both the full and e4ective Scott models, which correspond to a version
of PCF with parallel operators, type 91 is already universal. (This follows easily from
the fact that every -nite type is a de-nable retract of Plotkin’s T!—see [37, Lemma
5:2].) However, in the full or e4ective games models, corresponding to pure PCF, there
is no universal -nite type. 5

Using Theorem 7.11 we can easily establish the following fact, whose proof we have
been deferring since Section 3.2:

Theorem 7.13. (i) RV; e4 is a substructure of RV; full; i.e.; there are inclusions B� : R�
V; e4

,→R�
V; full that commute with the application operations.

(ii) Likewise; RN; e4 is a substructure of RN .

Proof. (i) The required inclusions B 90; B91 are obvious, and since every F ∈R92
V; e4 extends

to a unique F̂ ∈R92
V; full, we have a canonical inclusion B92. For all other types �, the proof

of Theorem 7.11 gives retractions (ie4 ; je4) : <�=e4 → <92=e4 and (ifull; jfull) : <�=full→ <92=full

such that ie4 ; ifull have a common realizer, as do je4 ; jfull. De-ne B� to be the set-
theoretic composition jfull ◦ B92 ◦ ifull. Then any realizer for any x∈ <�=e4 is also a realizer
for B�(x)∈ <�=full. Since for each �; 9 the application maps <�→ 9=× <�=→ <9= in the
full and e4ective settings have a common realizer, the functions B� all commute with
application. It follows easily that each B� is mono.

(ii) This follows from (i) using the fact that every call-by-name type is a retract of a
call-by-value type in both the full and e4ective settings (cf. [32, Chap. 6]); moreover,
the corresponding idempotents clearly commute with the inclusion RV; e4 ,→RV .

Remark 7.14. The situation of the above theorem is typical for notions of higher-type
partial functional: the computable objects obtained hereditarily as those that act on
computable arguments can just as well be seen as acting on arbitrary continuous argu-
ments. (For instance, the e4ective analogue of the Scott-continuous functionals yields
a substructure of the full Scott-continuous type structure.) The situation is radically
di4erent for (hereditarily) total notions of computability: not all e4ective total type 2
operations on the total recursive functions can be extended to an e4ective total opera-
tion on arbitrary total functions (see e.g. [50]).

Remark 7.15. We end this paragraph with some informal remarks on the computational
complexity of H . Although we do not know what is the best way to measure complexity
at higher types precisely, it is intuitively clear that the main factor contributing to the
complexity of H is the number of irredundant realizers for G0 that have to be tested
in turn. In the worst case, this is factorial in the size of dom p0 (call this n), and

5 I am grateful to Samson Abramsky and Martin Hyland for informing me of this fact.

52 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

each irredundant realizer p1 itself has size n. Moreover, n is essentially the number of
queries made by F to the given realizer p for G. Thus, if we are given realizers r; p
for F;G, respectively, the time taken up by H in the computation of HFG is at most
t: t!, where t is the time taken by F in the computation of Fp.

Some results to the e4ect that H is inherently infeasible have recently been obtained
by Royer [54].

8. Applications of universality

One consequence of Theorem 7.11 is that, for many questions about the SR func-
tionals, it suFces to consider low types. In this section we illustrate this principle by
giving an alternative proof of van Oosten’s theorem (Theorem 5:8), and by obtaining
in a simple way an e4ective analogue of the presheaf characterization of Section 6.2.
We also consider the category of retracts of <92= as a category of domains, and indicate
how one can interpret recursive types there. Further applications of the universality
theorem will be given in the next section.

8.1. Hypercoherences revisited

We now use Theorem 7.11 to give an alternative proof that the full SR functionals
coincide with the strongly stable functionals (cf. Section 5.2). Unlike the proofs in
[18, 47], which both involve elaborate inductions up the type structure, our proof
concentrates on types 92 and 93; the extension to arbitrary types is then trivial. Since the
main interest of the proof is conceptual rather than technical, and result itself is not
new, we concentrate on the main ideas, omitting some of the details.

The call-by-value interpretation <�=HC for pure types � �= 90 was given in Section 7.1.
de-ne sets D� for all pure types � by

D 90 = N; D� = D(<�=HC) for � �= 90:

These come equipped with partial application operations ·�9 : D�→ 9×D� *D9 where
� is pure and 9= 90. Our goal is to establish bijections �� : R�∼=D� that commute
with application (note that R� here means R�

V; full). We will write R 9n; D 9n; � 9n simply
as Rn; Dn; �n.

The bijections �0 and �1 are evident. For �2, we proceed as follows. For each
k¿0, let [k] be the Sat hypercoherence with atoms 0; : : : ; k − 1; then there are evident
retractions [k] /N in HC, and the corresponding projections N→N form a chain
whose limit is the identity. We also have retractions Nk /N! corresponding to the
projection from N! onto its -rst k factors. Using these, we can construct a chain
of retractions ([k]k⇒ [k]) / (N!⇒N), with corresponding projections Qk on N!⇒N
where

⊔
/k = id. Note that each Qk : D2→D2 has a -nite image consisting entirely of

-nite elements. We regard D2 as equipped with the usual order on states of <92=HC ; the
image of each Qk is then a full sub-poset of D2.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 53

Likewise, in Mod(B) we have evident retracts [k]⊥ /N⊥ for each k, and so we can
construct increasing sequence of retractions /k : R2→R2 corresponding precisely to the
Qk . We regard R2 as equipped with the trace ordering as in Section 7.2, so that the
image of each /k is a full sub-poset of R2.

Proposition 8.1. For each k there is an order-isomorphism Im Qk
∼= Im /k . Moreover;

these isomorphisms commute with the retractions (Im Ql) / (Im Qk) and (Im /l) /
(Im /k) for l6k; and with the application operations.

Proof. We wish to show that the poset Pk of elements of [k]k⊥⇒ [k]⊥ in Mod(B)
(with the trace ordering) is isomorphic to the poset Qk of states of [k]k⇒ [k] in HC.
But Pk is easily seen to be isomorphic to the poset Sk of Milner–Vuillemin sequential
functions with the stable ordering (use the embedding SSeqFun→Mod(B) of Section
4.3). The bijection Sk

∼=Qk is given by Bucciarelli and Ehrhard [10, Proposition 3],
and this is an order-isomorphism since, for hypercoherences, the inclusion order on
function spaces coincides with the stable order.

The isomorphisms Pk
∼=Qk clearly respect application. They yield isomorphisms

Im /k
∼= Im Qk , and the coherence conditions are easily veri-ed.

Let D2
-n =

⋃
Im Qk , R2

-n =
⋃

Im /k . It is clear from the construction that D2 is the
chain-completion of the full sub-poset D2

-n. We also know that any element x∈R2 is
a least upper bound

⊔
/k(x) of elements of R2

-n. To establish the order-isomorphism
�2 : R2∼=D2, it therefore suWces to check:

Proposition 8.2. R2 (with the trace ordering) is a CPO.

Proof. It suWces to check that any chain x1� x2� · · · where xk ∈ Im /k has a least
upper bound in R2. This is an easy application of KXonig’s Lemma, analogous to that
in [18, Theorem 5] or our Proposition 5.13.

In order to show that Mod(B) and HC contain the same morphisms at type 93,
we characterize the hypercoherence structure of <92= in terms of the realizability model.
Recall that in Mod(B) we have a surjective morphism b : <91=→ <92= mapping f to f |−,
realized by irr|. The crucial step will be to show that all chains and coherent sets in
<92= arise, via b, from chains and coherent sets in <91=. This will allow us to reduce
questions about type 92→ 90 to questions about 91→ 90. (The basic idea here is inspired
by Colson and Ehrhard [14].)

Lemma 8.3. (i) Under the bijections �1 and �2; the morphisms R1→R2 in Mod(B)
correspond exactly to the strongly stable maps D1→D2 in HC. In particular; the
function b corresponds to a strongly stable map.

(ii) For every increasing chain x0� x1� · · · in R2; there is an increasing chain
y0�y1� · · · in R1 such that b(yi) = xi for all i.

54 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

(iii) For every coherent set U ⊆R2 (that is; for every set corresponding to a
coherent subset of D2); there is a coherent set V ⊆R1 such that b(V) = (U).

Proof. (i) It is easy to give a de-nition of a retraction (<91=⇒ <92=) / <92= that works
uniformly for both Mod(B) and HC. The corresponding idempotents are then identi-ed
by �2, and the result follows easily.

(ii) By Proposition 8.2, take x =
⊔

xi in R2. Let r be any irredundant realizer for x.
By Lemma 7.3, we may take irredundant realizers ri for the xi such that ri� r and (by
inspection of the proof of Lemma 7.3) ri� ri+1. Thus the ri form an increasing chain
in R1, and xi = b(ri) for each i.

(iii) An important lemma (see e.g. [14, Lemma 3:2]) says that in any hypercoher-
ence X , every coherent set is the image of a coherent set in N! via a strongly stable
map N!→X . So take W ⊆R1 coherent and g : R1→R2 strongly stable such that g(W)
corresponds to U . By (i), g may be regarded as a morphism <91=→ <92= in Mod(B). Sup-
pose r ∈B tracks g; then g factors through b via a morphism g̃ : <91=→ <91= tracked by r.
But now g̃ : R1→R1 is a strongly stable map, so V = g̃(W) is coherent in R1, and
b(V) =U .

Proposition 8.4. Under the bijection �2; the morphisms R2→N⊥ in Mod(B) corre-
spond exactly to the strongly stable maps D2→N⊥ in HC.

Proof. Given O : <92=→N⊥ in Mod(B), we have O ◦ b : <91=→N⊥ and so O ◦ b∈R2.
Hence O ◦ b is strongly stable. We wish to check that O is strongly stable, that is,
• O respects chains and their lubs;
• O respects coherent sets and their meets.
Suppose x0� x1� · · · is a chain in R2 with lub x. By Lemma 8.3(ii), take y0�y1� · · ·
in R1 such that b(yi) = xi, and let y =

⊔
yi, so that b(y) = x. Since O ◦ b is strongly

stable it respects the chain (yi) and its limit; hence O respects the chain (xi) and its
limit.

Likewise, given U ⊆R2 coherent, by Lemma 8.3(ii) take V ⊆R1 coherent such that
b(V) =U . Since b is strongly stable, we have b(

∧
V) =

∧
U . But now O ◦ b respects

the coherent set V and its meet; hence O respects the coherent set U and its meet.

We thus obtain a bijection �3 : R3∼=D3 that respects application. We can now easily
extend the isomorphism to all pure types:

Theorem 8.5. For every n there is a canonical bijection �n : Rn∼=Dn; and these bijec-
tions respect application.

Proof. We already know the result for n= 0; 1; 2. We will prove by induction (starting
from n= 2) that there is a bijection �n+1 : Rn+1∼=Dn+1 that respects application, and
moreover there are retractions (in; jn) : <n + 1= / < 9n= in both Mod(B) and HC which are
identi-ed under �n+1 and �n.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 55

For n= 2, we already have a bijection �3 respecting application. Since we may de-ne
a retraction (<92=⇒ <93=) / <93= uniformly in both Mod(B) and HC, we have a bijection
between morphisms R3→R2 in Mod(B) and strongly stable maps D3→D2 in HC.
In particular, H is present as a strongly stable map in HC. Moreover, since the map
b : <91=→ <92= is present in both models, the map I =− ◦ b is present in both models.
We therefore have retractions (I; H) : <93= / <92= in both Mod(B) and HC as required.

For the induction step, given in and jn in both models as above, let in+1 = �f : 9n: f ◦
jn and jn+1 = �g : n + 1 : g◦ in Clearly (in+1; jn+1) is a retraction <n + 2= / <n + 1= in both
models. The corresponding idempotent on <n + 1= may be de-ned in either model as
�f : 9n:f ◦ jn ◦ in, and clearly these idempotents commute with the bijection �n+1, since
by hypothesis the latter respects application. By restricting � = n+1 to the image of the
idempotents, we therefore obtain a bijection �n+2 : Rn+2∼=Dn+2. Clearly this respects
application, and the retractions (in+1; jn+1) in the two models are identi-ed under �n+2

and �n+1.

It is now routine to extend the isomorphism to arbitrary pure call-by-value types � by
transporting the bijections �n along appropriate retractions <�= / < 9n=, de-ned (uniformly
for both models) as in the proof of Theorem 7.11. Similarly, it is straightforward to
obtain a isomorphism for the corresponding call-by-name type structures, since any
call-by-name type may be obtained as a de-nable retract of a pure call-by-value type
(cf. [32, Chap. 6]). We omit the uninteresting details.

8.2. Presheaves revisited

As a second application of the universality of type 92, we are able to obtain the
e4ective analogue of Theorem 6.5: the type structure Pe4 obtained from [Mop

e4 ;Set]
(see Remark 6.6(v)) coincides with Re4 . This is perhaps a rather surprising fact, since
in the de-nition of [Mop

e4 ;Set] there is no obvious reason why morphisms between
“e4ective” objects should themselves be e4ective. It seems that the proof essentially
requires a result such as Theorem 7.11.

Recall that Me4 is the monoid of endofunctions of NN
⊥ realizable in Be4 . In [Mop;

Set] and [Mop
e4 ;Set], we have an object N given by the set of sequential (resp. ef-

fectively sequential) functions NN
⊥→N⊥, with right action given by precomposition.

We also have an object which we shall call N!, given by the set of sequential (resp.
e4ectively sequential) functions NN

⊥→NN
⊥ with right action given by precomposition;

note that in both categories N! is the unique representable object.
In both categories, the call-by-name interpretation of the simple types is given by

< 90=N = N; <�→ 9=N = <9=<�=NN :

We also have the call-by-value interpretation for pure types other than 90:

< 91=V = N!; <�→ 90=V = N<�=V :

56 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

It is routine to check that these interpretations “agree” in the sense that each ob-
ject <�=N is a de-nable retract of some object <9=V in the expected way (as in [32,
Chap. 6]) and vice versa. From this and Theorem 6.5 it follows that the type structure
arising from < − =V in [Mop;Set] (with the obvious convention for type 90) coincides
with RV .

Let us write PV ; PV; e4 for the type structure arising from < − =V in [Mop;Set],
[Mop

e4 ;Set], respectively, by taking global elements; likewise for PN ; PN; e4 . We are
now equipped to prove the main result:

Theorem 8.6. PV; e4
∼=RV; e4 .

Proof. Clearly the global elements of <91=V =N! canonically correspond to elements
of NN

⊥e4 =R91
V; e4 . Next, the global elements of <92=V correspond to morphisms N!→N,

and by the Yoneda lemma these canonically correspond to underlying elements of the
Me4 -set N, that is, to elements of R92

V; e4 .
In the full model, the M-set <92= may be described explicitly as follows: the elements

are the equivariant maps N!×N!→N, and the right M-action is given by

f · g = �(p; q): f(p ◦ g; q):

A similar description works in the e4ective model. The crux of the problem is to
characterize the morphisms <92=→ < 90= in the e4ective model—that is, to determine what
are the Me4 -equivariant maps R from Hom(N!×N!;N) (with the above monoid
action) to N.

We -rst check that any such morphism R is determined by its action on global
elements of <92=. Given any f∈Hom(N!×N!;N) and any h∈NN

⊥, the value of
R(f)(h)∈N⊥ is clearly determined by R(f) ◦ kh, where kh : NN

⊥→NN
⊥ is the constant

map picking out h. But

R(f) ◦ kh = R(f · kh) = R(�(p; q):f(p ◦ kh; q))

is clearly determined by R ◦ �f;h, where �f;h : 1→Hom(N!×N!;N) is the equiv-
ariant map picking out the element �(p; q):f(p ◦ kh; q).

Next, note that any morphism R : <92=→ < 90= in the e4ective model extends to a mor-
phism 9R : <92=→ < 90= in the full model as follows. Clearly, any morphism f : N!×N!

→N in the e4ective model extends uniquely to a morphism 9f : N!×N!→N in
the full model; moreover, any morphism N!×N!→N arises as the limit of a chain
of such morphisms 9f, and there is a well-de-ned function 9R given by 9R(

⊔ 9fi) =
⊔

R
(fi). It is easy to see that if R is Me4 -equivariant then 9R is M-equivariant. Since
the e4ect of 9R on global elements is known to correspond to a sequentially real-
izable functional R92

V →R 90
V , it follows that the e4ect of R on global elements cor-

responds to the restriction to R92
V; e4 of some O∈R93

V . Indeed, it follows from this
that R= �f:�h:O(�g:f(g; h)) since R is uniquely determined by its e4ect on global
elements.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 57

We now show that [Mop
e4 ;Set] contains a morphism corresponding to H . First, let

H ′ ∈R93
V be the image of H under some standard retraction <93= <92= / <93= available in all

the categories of interest. Using Theorem 8.5, let S′ : Hom(N!×N!;N)→N

be the morphism of [Mop;Set] corresponding to H ′. Then S′ restricts to a function
S′] : Home4 (N!×N!;N)→R92

V; e4 , since for any e4ective f we have S′(f) = �h:H ′

(�g:f(g; h)) which is clearly an e4ective SR function. Moreover, S′] is Me4 -equivariant
since S′ is M-equivariant. Thus, we obtain a global element S′] of <93= in [Mop

e4 ;Set];
transporting this back along the retraction we obtain a morphism S] : <92=→ <93= in
[Mop

e4 ;Set].
We also have a morphism U] : <93=→ <92= corresponding to I : let V] : <91=→ <92= be the

morphism corresponding to b (see Section 7.2), and take U] =− ◦ V]. We will now
establish that U] and S] behaves exactly like I and H on global elements.

Since we already have a bijection P92
V; e4

∼=R92
V; e4 , it is clear from the construction of

S] and U] that U] ◦S] agrees on global elements with I ◦H modulo this bijection. To
see that S] ◦U] induces the identity on global elements, consider an arbitrary element
R : 1→ <93=. By the above, there is some SR functional O∈R93

V which corresponds to
R in terms of its action on global elements of <92=. But from the construction of U]

and S] it is clear that I(O) corresponds to U] ◦ R and hence that HI(O) corresponds
to S] ◦ U] ◦ R. But HI(O) =O, and so S] ◦ U] ◦ R=R since the action of either
side on global elements is as given by O. (Since U] ◦ R corresponds to an e4ective
SR functional, this also tells us that the relevant restriction of O is an e4ective SR
functional.) It follows that the bijection P92

V; e4
∼=R92

V; e4 induces a bijection P93
V; e4

∼=R93
V; e4 ,

and modulo these bijections U] and S] correspond exactly to I and H , respectively.
Having established this situation, it is now a simple matter to obtain the required

bijections at arbitrary types exactly as in the proof of Theorem 8.5.

Corollary 8.7. PN; e4
∼=RN; e4

∼= Le4 .

Proof. Immediate from the above theorem, the preceding remarks about retractions,
and Remark 6.6(v).

8.3. The category of retracts of type 92

We now draw attention to another consequence of the universality theorem: the
object <92= can be regarded as a combinatory algebra, and its category of retracts is an
attractive category of domains with much interesting structure. There is a close analogy
with the situation described in [56] for Scott’s P!, whose category of retracts is the
very beautiful category of countably based continuous lattices. Again we give just a
sketch of the main ideas, omitting tedious details. The results of this section hold for
both Bfull and Be4 .

First, recall that we already have operations on objects of Mod(B) corresponding to
products, sums, exponentials and lifting. We may also de-ne a separated sum operation
⊕ on objects by X ⊕Y = (X + Y)⊥.

58 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

Let us now write B2 for the object <92= in Mod(B). We will be interested in objects
which are retracts of B2 in Mod(B); we write K for the full subcategory consisting
of such objects. The crucial observations are the following:

Proposition 8.8. (i) The objects B2×B2; B
B2
2 ; B2⊥; B2⊕B2 are retracts of B2.

(ii) The category K has products; exponentials; lifting and separated sums; all
inherited from Mod(B).

(iii) Each object X of K comes with a lift algebra structure X⊥→X; and has a
canonical 7xed point operator X X →X .

Proof. (i) It is routine to exhibit all these objects as retracts of <93=. So by Theorem 7.9
they are retracts of B2.

(ii) Given X /B2 and Y /B2, we have induced retractions X ×Y /B2×B2, YX /
BB2

2 , X⊥ / B2⊥ and X ⊕Y /B2⊕B2. By (i) all these objects are retracts of B2, and the
result follows since K is full in Mod(B).

(iii) The evident lift algebra structure on B2 induces one on X via the retrac-
tion X⊥ / B2⊥. For -xed points, it is easy to see that there is a -xed point opera-
tor Y : BB2

2 →B2 tracked by y, since pre-irredundant realizers are closed under lubs
of chains. (Otherwise, the existence of Y may be deduced from the connection with
the hypercoherence model.) This transfers to a -xed point operator X X →X via the
retractions X X / BB2

2 and X /B2.

The retraction BB2
2 / B2, in particular, means that the elements of B2 form a combi-

natory algebra—indeed a �-model, since Mod(B) is well pointed (see [4]). We will
write B2 for this combinatory algebra. Note that the monoid M2 of realizable endo-
functions of B2 is precisely the monoid of endomorphisms of B2 in Mod(B), and since
all idempotents have splittings in Mod(B), the Karoubi envelope K(M2) is equiva-
lent to K. It follows that there is a full embedding E2 : K→Mod(B2), analogous to
the embedding E : SSeqFun→Mod(B) of Section 4.3. The embedding E2 preserves
products, exponentials, lifting and separated sums, and has one signi-cant advantage
over the inclusion K ,→Mod(B): every object in the image of E2 is projective (each
element has just one realizer).

To summarize, B gave rise to the category of retracts K(M), which included
SSeqFun, but B2 gives rise to the category of retracts K. Since K is much larger than
K(M) and has better closure properties (it is cartesian closed), we conclude that B2

is in some sense a better model than B. However, the construction of B2 is undoubt-
edly more complicated, and there does not seem to be any easily grasped operational
intuition behind B2.

The situation described above for B2 is very similar to that for P!: the category of
retracts of P! is a good category of domains with products, exponentials, lifting and
separated sums, and it embeds well in Mod(P!) (see [32, Section 7.3]). Furthermore,
it is shown in [56] that one can perform type operations on retracts of P! within P!
itself, and hence construct recursive domains simply by taking -xed points in P!. We

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 59

can now see that one can do exactly the same thing for B2. We give only a very brief
outline, since the details are formally identical to those in [56].

An object X in K can be represented (up to isomorphism) by any element x∈B2

that realizes an idempotent B2→B2 corresponding to some retraction X /B2. Note that
x satis-es xa= x(xa) for all a∈B2; we will call any such element x∈B2 an idempo-
tent. Clearly, every idempotent x represents some object X . If F is a k-ary operation
on objects of K, we say that F is realizable if there is an element f∈B2 such that
whenever x1; : : : ; xk are idempotents representing X1; : : : ; Xk , respectively, the element
fx1 : : : xk is an idempotent representing F(X1; : : : ; Xk). The following proposition lets
us construct many examples of realizable operations:

Proposition 8.9. (i) The product; exponential and separated sum operations are real-
izable binary operations on objects of K; and the lift operation is a realizable unary
operation.

(ii) The identity operation on objects is realizable. Constant operations are realiz-
able. Realizable operations are closed under composition.

Proof. We consider exponentials as an example. Suppose r ∈B2 represents the re-
traction BB2

2 , and x; y represent retractions X /B2, Y /B2, respectively. Then �∗a:�∗z:
y((ra)(xz)) (interpreted in B2) represents the induced retraction YX / B2. Thus, �∗xyaz:
y((ra)(xz)) realizes the exponential operation. The other cases are similar.

Condition (ii) is trivial.

It is now easy to obtain recursive types as -xed points of realizable operations:

Theorem 8.10. For any realizable unary operation F; there is an object X of K such
that X ∼=F(X). In particular; K contains solutions to all recursive type equations
X ∼=F(X) where F is a unary operation constructed using ×;⇒;−⊥;⊕ and 7xed
objects of K.

Proof. Suppose f realizes F . De-ne a sequence r0; r1; : : : in B2 by r0 =⊥, rn+1 =frn.
Clearly r0 is an idempotent, and hence every rn is an idempotent. Moreover, the ac-
tion of f gives a morphism B2→B2 and so is monotone with respect to the trace
ordering; thus r0� r1� · · · . By Proposition 8.2, take r =

⊔
rn in B2. Since each rn is

an idempotent, it is easy to see that r is an idempotent, and that fr = r. Take X an
object represented by r; then X ∼=F(X). The rest of the theorem follows immediately
by Proposition 8.9.

Remark 8.11. The category HC also contains an object <92= and has many of the closure
properties mentioned above for K. It would therefore appear that HC and K have a
large full subcategory in common, but at present we do not know the precise extent
of the overlap. Since not all idempotents on <92= split in HC, there are objects of K

with no counterpart in HC; we do not know whether the reverse is true.

60 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

9. PCF and universal functionals

We now consider interpretations of call-by-value PCF in Mod(B) and Mod(Be4).
We will show that the functional H of Section 7 is universal, in the sense that every
e4ective SR functional is de-nable relative to H in PCF. We then consider the extended
language PCF + H , which gives us yet another handle on the SR functionals. Next,
we brieSy touch on a notion of “degree” for SR functionals under the relation of
relative PCF-de-nability. Finally, we prove a technical result: there is no universal SR
functional with an essentially lower type than H .

9.1. Call-by-value PCF

We review the syntax and semantics of call-by-value PCF (henceforth called PCF).
Our presentation di4ers only in inessential respects from those found in, e.g. [58, 53].
The types of PCF are just the simple types as given by De-nition 3.5(i). For each
type � we have an in-nite supply of variables x�0 ; x

�
1 ; : : : . Exactly as in call-by-name

PCF, the well-typed terms are built up from variables and the constants 0; 1; 2; : : : : 90,
succ; pred : 91 and if : 90→ 90→ 90→ 90 by means of the following rules:

M : 9
(�x�i :M) : �→ 9

M : �→ 9 N : �
(MN) : 9

M : �
(Hx�i :M) : �

A closed term is a value if it is either a numeral 0; 1; 2; : : : or a �-abstraction; we
use V to range over values.

We give an operational semantics by de-ning a (big-step) evaluation relation ⇓
from closed terms to values, such that for each closed term M we have M ⇓V for at
most one V . The relation ⇓ is de-ned inductively by the following derivation rules.
Here ˆ denotes truncated subtraction: mˆn= max(m− n; 0).

V ⇓ V (V a value)
M [Hx:M=x] ⇓ V

Hx:M ⇓ V

M ⇓ n
succM ⇓ n + 1

M ⇓ n
predM ⇓ n ˆ 1

M ⇓ 0 N ⇓ V
if MNP ⇓ V

M ⇓ n + 1 P ⇓ V
if MNP ⇓ V

M ⇓N �x:M ′ M ′[N=x] ⇓N V
MN ⇓N V

We write M⇑ to mean that there is no V such that M ⇓V .
Next, we give the denotational semantics of this language in Mod(B) (where B is

either Bfull or Be4). The interpretation <−= of types is given essentially as in Section 7;
however, here it is convenient to interpret function types using the standard exponentials

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 61

and lifting rather than the special objects used there. We will also write [�] for <�=⊥,
and X for the inclusion <�=→ [�].

We now interpret a term M : 9 whose free variables are included in (= 〈x�1
1 ; : : : ; x�n

n 〉,
by a morphism [M](: [�1]× · · · × [�n]⇒ [9]: The de-nition of [M](is by induc-
tion on the structure of M . The clauses for variables, numerals, succ, pred and if
are evident. For the remaining clauses, some further notation is helpful. Let us write
fix� : [�][�]→ [�] for the -xed point morphism given by Proposition 8.8. We also
write �� for the evident lift algebra structure <�=⊥→ <�=, and strict : BA

⊥→BA⊥
⊥ for the

morphism that extends a map A→B⊥ to a strict map A⊥→B⊥. We then have

[�x�:M](= X ◦ [�]X ◦ curry ([M](; x�);

[MN](= eval ◦ 〈strict ◦ ��→9 ◦ [M](; [N](〉;
[Hx�:M](= 7x� ◦ curry ([M](; x�):

A closed term M : 9 is interpreted as a morphism 1→ [9], that is, an element of [9].
The following theorem establishes the agreement between the operational and denota-
tional semantics.

Theorem 9.1 (Adequacy). For any closed term M : 90; we have [M] = n if M ⇓ n; and
[M] =⊥ if M ⇑.

Proof. The usual technique for proving adequacy works (see [49]). In fact, the result
follows immediately from results in [33, Chap. 6], as we shall see in Section 10.

We now investigate the expressive power of PCF for de-ning SR functionals. As be-
fore, we will write R for either Rfull or Re4 . We say an element x∈R� is PCF-de7nable
if there is a closed PCF term M : � such that [M] = X(x). A function f : R�→R9 is
PCF-de-nable if X ◦f is PCF-de-nable as an element of R�→9.

Proposition 9.2. (i) The map b : R91→R92 of Section 7:2 is PCF-de7nable.
(ii) The map I : R93→R92 is PCF-de7nable.

Proof. (i) Let isans : 91, strip : 91, empty : 90 and add : 90→90→90 be PCF terms such that
for our chosen e4ective codings [?; !] and 〈· · ·〉 we have

<empty= = 〈�〉; <add=(n)(〈�〉) = 〈�; n〉;
<isans=(!n) = 0; <isans=(?n) = 1;

<strip=(!n) = n; <strip=(?n) = n:

Now let /≡91→91→90→90, and let play be the PCF term

HP/:�f 91:�g 91:�a 90: if (isans(f a))(strip(f a))(Pfg(add a(g(strip(f a))))):

Finally, let b= �f 91:�g91:play fg empty. One now checks that b de-nes b.
(ii) Now let I= �O93:�g91:O(bar g). Then I de-nes I .

62 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

As a consequence of this we obtain an important property of the function H .

Theorem 9.3 (Universality of H). Every element f∈ [�]e4 is PCF-de7nable relative
to H : that is; there is a closed PCF term M : (92→93)→ � such that f = [M](X(X◦H)).

Proof. Clearly the term Hx�: x denotes ⊥∈ [�]e4 , so it suWces to show that every
f∈ <�=e4 is de-nable from H . Firstly, any element r ∈ <91=e4 is de-nable in pure PCF
as it is simply a partial recursive function. Secondly, given any element F ∈ <92=e4 , take
r ∈Be4 a realizer for F and M : 91 denoting r; then [bM] = X(F). Thus every element
of <92=e4 is PCF-de-nable. Next, using Proposition 9.2(ii), both halves of the retraction
(I; H) : <93=/ <92= are PCF-de-nable relative to H , and it follows easily that for any �,
both halves of the induced retraction (i; j) : <�=/ <92= are PCF-de-nable relative to H .
Now let N : 92→ (92→ �) be a PCF term such that [N](X(X ◦ H)) = j, and given any
f∈ <�=e4 , let P : 92 be a PCF term denoting i(f). Then clearly �h:(Nh)P de-nes f
relative to H .

Remark 9.4. (i) Clearly, one can obtain an analogous result for the call-by-name set-
ting by using a call-by-name analogue of H . As an easy corollary, one can derive
Ehrhard’s result that any 7nite SR functional is de-nable relative to some SR functional
of type level 2. Speci-cally, let H0�H1� · · · be the sequence of -nite approximations
to H induced by the standard sequence of -nite retractions /0� /1� · · · on type 92
(see Section 8.1). Any -nite SR functional of any type is PCF-de-nable from H and
hence from some Hi; but from the de-nition of /i it is clear that Hi is itself de-nable
from an element of type level 2. (See also Remark 9.21(ii) below.)

(ii) It follows from the proof of the above theorem that, in the presence of H , one
only needs the PCF -xed point operator Hx� up to and including type 92 in order to
de-ne all e4ective SR functionals. (It is easy to see that the -xpoint operator for the
type / in the proof of Proposition 9.2 may be de-ned from that for 92.) An analogous
result for PCF with parallel features was pointed out in [49].

9.2. The language PCF + H

Let us now extend the language PCF by adding a new constant H : 92→93. We can
give a denotational semantics for the language PCF +H in Mod(B) simply by adding
the clause [H](= X(X ◦H) to the de-nition of [−](. We can then rephrase Theorem 9.3
as follows: every e4ective SR functional is de-nable in PCF + H.

Does the language PCF+H have an operational semantics? At present we do not have
a palatable way to give a semantics using structural operational rules. (One particular
problem is to see how to deal correctly with terms involving recursive calls to H.)
An alternative approach is to specify a translation from PCF + H into a language for
which we already have an operational semantics. One possibility would be to translate
into a typed language such as PCF + catch [13] or HPCF [46]—essentially this would
amount to giving an implementation of H in the target language. Here, however, we

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 63

will pursue an approach more akin to practical implementation techniques: that of
compiling PCF + H down to an untyped “intermediate language” for which we can
give operational rules. Part of the interest of this approach is that it shows how our
denotational semantics might suggest implementation schemes for PCF and related
languages.

Our untyped language is inspired by B, and our translation closely follows the deno-
tational semantics of PCF +H already given. We exploit the fact that our denotational
semantics suggests way of mapping each term M to a particular choice of realizer
for [M].

Let K;S;Y be new constant-symbols. Given any closed term M of PCF +H, we -rst
translate M into a term 9M into a term of combinatory PCF+H, in which the terms are
built up from the constants 0; 1; 2; : : : ; succ; pred; if;K;S;Y;H using application (subject
to typing constraints). Speci-cally, let 9M be obtained from M as follows:
• First replace each subterm Hx�:N by Y(�x�:N).
• Then replace each subterm �x�:N by its standard Curry translation into combinatory

logic, working from innermost subterms outwards.
It is easy to give a denotational semantics [−] for (type-decorated) combinatory terms
so that [9M] = [M].

We may now change our perspective and regard 9M as an expression in an un-
typed language L of closed combinatory expressions. It is easy to give a denotational
interpretation (−) of L in Be4 . For constants C = 0; 1; 2; : : : ; Psucc; pred; if;H we
simply take (C) be some realizer for the corresponding element in Mod(Be4); we
also take (K)= k, (S)= s, (Y)= y. We then extend (−) to arbitrary terms
of L via (MN)=(M)•(N).

We may now give a direct operational semantics for L inspired by the de-nition
of application in B. First we de-ne two kinds of auxiliary expressions:
• If e is a term of L and i∈N then e(i) is an auxiliary expression.
• If e1; e2 are terms of L and �∈Seq(N) then e1 ·� e2 is an auxiliary expression.
We de-ne an evaluation relation E⇒ n from auxiliary expressions to natural numbers
by means of the following derivation rules (here C ranges over the constants of L):

C(i) ⇒(C)(i)
e1 ·[i] e2 ⇒ n
e1e2(i) ⇒ n

e1(〈�〉) ⇒!n
e1 ·� e2 ⇒ n

e1(〈�〉) ⇒?i e2(i) ⇒ m e1 ·�;m e2 ⇒ n
e1 ·� e2 ⇒ n

We now de-ne a big-step evaluation relation ⇓ for closed PCF +H terms of type 90
by

M ⇓ n i4 9M (0) ⇒ n:

We may also de-ne a unary termination predicate ⇓ for terms of any type � by

M ⇓ i4 9M (0) ⇒ n for some n:

64 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

The following facts are easily veri-ed:

Theorem 9.5 (Adequacy for PCF + H). In both the full and e;ective models;
(i) For any closed PCF + H term M : 90 we have M ⇓ n i; [M] = n.
(ii) For any closed term M : � we have M⇓ i; [M]∈ <�= (that is; [M] �=⊥).

Proof. It is clear that for any combinatory term M , (M) is a realizer for [M] in both
models. Hence for any PCF +H term M , (9M) is a realizer for [M] in both models.
For (i), recall that r ∈B realizes n∈ [90] i4 r(0) = n; hence [M] = n i4 (9M)(0) = n.
Moreover, it is easy to show by simultaneous induction that (e) (i) = n i4 e(i)⇒ n,
and (for � �= �) play ((e1);(e2); �) = n i4 e1 ·� e2⇒ n.

For (ii), just recall that [M]∈ <�=⊥, and from the standard description of lifting given
in Section 10 we have that for any x∈X⊥ and r ∈‖x‖X⊥ , x∈X i4 r(0) ↓.

From the evaluation relation for PCF + H we may de-ne a notion of observational
equivalence for closed terms of the same type as usual: M ≈N if for all contexts
C[−] : 90 we have C[M]⇓ n⇔C[N]⇓ n. The following results are now straightforward:

Theorem 9.6 (Full abstraction for PCF + H). For closed terms M;N : � the following
are equivalent:
(i) M ≈N ;
(ii) [M]e4 = [N]e4 ;
(iii) [M]full = [N]full.

Proof. (i)⇒ (ii): Suppose � = �1→ · · · → �r→90 (r¿0) and M ≈N . Given any x1 ∈
<�1=e4 ; : : : ; xr ∈ <�r =e4 , by universality we may take terms P1; : : : ; Pr such that [Pi]e4

= xi; then MP1 : : : Pr =NP1 : : : Pr and so [M]e4x1 : : : xr = [N]e4x1 : : : xr . Since Mod(Be4)
is well pointed, this implies [M]e4 = [N]e4 .

(ii)⇒ (iii): For � =92 the result is easy: if [M]e4 = [N]e4 then MP≈NP whenever
P denotes a -nite function; hence [M]full(f) = [N]full(f) for all -nite f, which clearly
implies [M]full = [N]full.

Now consider an arbitrary type �. Let I� : �→92 and J� : 92→ � be terms of PCF +H
that denote the two halves of the canonical retraction <�=/ <2= uniformly in both the full
and e4ective models. Suppose [M]e4 = [N]e4 ; then [I�M]e4 = [I�N]e4 , so [I�M]full =
[I�N]full by the above, and so [J�(I�M)]full = [J�(I�N)]full. There are now two cases. If
[M]e4 =⊥ then ¬M ⇓ and so [M]full =⊥, and similarly for N ; hence [M]full = [N]full.
Otherwise we have [M]full ∈ <�= and so [J�(I�M)]full = [M]full, and similarly for N , so
again [M]full = [N]full.

Condition (iii)⇒ (i) is easy by the adequacy of [−]full.

An immediate consequence of full abstraction is the equational context lemma for
PCF + H:

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 65

Proposition 9.7 (Context Lemma). For closed PCF + H terms M;N : � = �1 → · · · →
�r→ 90; we have M ≈N i; for all closed P1 : �1; : : : ; Pr : �r; MP1 : : : Pr =NP1 : : : Pr .

Note, however, that the inequational version of the Context Lemma fails, because
the observational ordering coincides with the stable order rather than the pointwise one.

Another corollary is that the type structure of e4ective SR functionals can be char-
acterized as the term model for PCF + H. Speci-cally, suppose we have de-ned the
syntax and operational semantics of PCF +H, and let ≈ be the notion of observational
equivalence de-ned as above. For each type �, let T� be the set of values (i.e. nu-
merals or �-abstractions) of PCF + H modulo ≈, and let · :T�→ 9 × T� * T9 be the
operation induced by juxtaposition. Then it is immediate from Theorems 9.3 and 9.6
that T ∼=RV; e4 . This characterization gives a genuinely new insight into the e4ective
SR functionals; in particular, we may now deduce the following pleasing recursion-
theoretic property, which is not obvious from any of the previous characterizations:

Theorem 9.8. The type structure RV; e4 is e4ective in the following strong sense: there
are total enumerations �� of the set R�

V; e4 (that is; surjective total functions N→R�
V; e4)

and partial recursive functions ’�9 : N × N *N such that for all �; 9; m; n we have

’�9(m; n) ↓⇒ ��→9(m) · ��(n) = �9(’�9(m; n));

’�9(m; n) ↑⇒ ��→9(m) · ��(n) ↑ :

Proof. For each type � let �� be induced by an e4ective surjective coding ,−-� of
the (decidable) set V� of PCF + H values of type �, via the quotient map V� � T�

and the bijection T� ∼= R�
v; e4 . We wish to construct ’�9 such that, for all values

M : �→ 9; N : �,
• if MN ⇓ then ’�9(,M-�→ 9; ,N-�) = ,P-9 for some value P : 9 such that MN ≈ P;
• if ¬MN ⇓ then ’�9(,M-�→ 9; ,N-�) ↑.
There are two cases. If 9= 90 then let ’�9 be the function which given ,M-�→ 9 and
,N-� returns ,n-90 if (MN)(0) = n, and diverges if (MN)(0)↑. Clearly, ’�9 is
partial recursive and has the required properties. If 9= 91→ 92, let ’�9 be the func-
tion which given ,M-�→ 9; ,N-� returns ,�x91 :MNx-9 if (MN)(0)↓, and diverges
otherwise. Again this clearly has the required properties.

Remark 9.9. (i) All the above results of course go through for the call-by-name SR
functionals, using the call-by-name analogue of H.

(ii) Our general impression is that the existence of a universal SR functional is
interesting, but the particular functional H is not. For both conceptual and practical
reasons (cf. Remark 7.15), it would be very interesting if one could -nd a simpler
functional with the same universality property. We show below that there can be no
universal functional of an essentially simpler type than H , but it is open whether there
is a universal functional of lower computational complexity than H . (See [54] for some
negative results in this direction.)

66 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

9.3. Degrees of expressivity

Next, we consider some e4ective SR functionals other than H . There is clearly a
sense in which some SR functionals are more expressive than others, and indeed there
is a structure of degrees of expressivity, analogous to the degrees of parallelism in the
Scott model [55]. These ideas are made precise as follows. We will write PCFN for
the standard call-by-name version of PCF (as in [49]), and PCFV for the call-by-value
version described above. For simplicity, we will restrict our attention to degrees of
e;ective SR functionals, and so for the rest of this section we will write RN , RV in
place of RN; e4 , RV; e4 .

De�nition 9.10. (i) Let |RX |=
⊔

R�
X , where X is either N or V . If f∈R�

X and g∈R9
X ,

we write f4 g if there is an element m∈R9→ �
X , de-nable in PCFX , such that m·g=f.

We write f∼ g if both f4 g and g4f.
(ii) A degree is an equivalence class for ∼; we write dX (f) for the degree contain-

ing f. The partial order on degrees induced by 4 is also written as 4 .

Our -rst observation is that degrees in RN can be correlated with those in RV , so
that we really have just one universe of degrees. For each type � we have types �̂; �̃
and standard retractions (Q�; ��) : <�=N / <�̂=V and (Y�; Z�) : <�=V / <�̃=N in Mod(Be4),
as in [32, Chap. 6]. Roughly speaking, these retractions have the property that both
halves of the composite retractions <�=N / <(�̂)∼=N are de-nable in PCFN , and similarly
for V (see [32] for details).

Given f∈R�
N and g∈R9

V , we say f4 g if Q�(f)4 g, or equivalently if f4 Y9(g).
Likewise, g4f if Y9(g)4f, or equivalently if f4 Q�(g). We say f∼ g if both f4 g
and g4f. With these de-nitions, 4 becomes a preorder on the whole of |R|= |RN | �
|RV |, with ∼ the induced equivalence relation. For f∈ |RX |, we write d(f) for the
∼-equivalence class of f in |R|. Clearly, the poset of degrees in |R| is isomorphic to
the poset of degrees on |RX |, where X is either N or V . Henceforth we will freely mix
call-by-name and call-by-value functionals in our discussion, using whichever seems
most convenient.

The smallest degree (with respect to 4) is the degree d(0) of all PCF-de-nable
functionals; the largest degree is d(H). The structure of the poset of degrees is probably
extremely complicated, and in this paper we will do no more than consider a few
examples.

An example of a degree strictly between these is the degree of the functional F ∈R92
N

de-ned in Remark 3.7(ii) (see also the Introduction). The fact that d(F) is strictly
above d(0) is immediate from the pointwise non-monotonicity of F ; the fact that d(F)
is strictly below d(H) (i.e. that H is not de-nable from F) will be shown below.

Another SR functional that seems particularly interesting from the point of view of
programming applications is the modulus functional M :R92 → 91 → 90

V speci-ed as follows:
• If G · f∈N then M · G · f = ,graph f0-, where f0 is the unique smallest -nite

subfunction of f such that G ·f0 = n, and ,graph f0- is the normalized graph of f0

(e.g. a sorted non-repetitive list of ordered pairs), coded as a natural number.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 67

• If G · f =⊥ then M · G · f =⊥.
It is easy to check that M is indeed an e4ective call-by-value SR functional of the
speci-ed type. The following observation is due to Alex Simpson:

Proposition 9.11. d(M) =d(F).

Proof. Let F ′ ∈R93
V be the functional

�G 92: if (MG(�x 90:0) = ,∅-) 0 1

(we mix syntax and semantics in a semi-formal way). Intuitively, F ′ is a call-by-value
analogue of F , and indeed it is easy to see that d(F ′) =d(F). Thus d(F)4d(M).

For the converse, we may recover M from F ′ as follows. Intuitively, given G : 92
and f : 91, we build up the graph of f0 by successively considering the arguments
n= 0; 1; 2; : : : : For each argument n, we -rst use F ′ to determine whether dom f0⊆
{0; : : : ; n− 1}. If so, we have already built up the whole graph of f0 and we are done.
Otherwise, we use F ′ to determine whether n∈ dom f0; if so we add the pair (n; fn)
to the graph being constructed. We then proceed to the next value of n.

Formally, let conv : 91→ 90→ 90 be the function �p91: �x 90: if (p 0) x x. Let insert : 90→ 90
→ 90→ 90 be a function such that

insert x y ,&- = ,& ∪ (x �→ y)-

for all natural numbers x; y and graphs &. Next, let M ′ : 92→ 91→ 90→ 90→ 90 be the
function

�G 92:�f 91:Hm 90→ 90→ 90:�n 90:�g 90:
if F(�p 91: G(�x 90: if (x ¡ n) (fx)(conv (p 0)(fx))))

g
if F(�p 91: G(�x 90: if (x �= n) (fx)(conv (p 0)(fx))))

(m (succ n) g)
(m (succ n) (insert n (fn) g)):

Finally, take M = �Gf:M ′ Gf 0 ,∅-. We leave it to the reader to check that M is
indeed the modulus functional.

More examples of degrees will appear in the next paragraph. A few further exam-
ples, and some discussion of their potential programming applications, are given in an
electronically available Standard ML source -le [34].

9.4. Types and universal functionals

We now ask what types a universal SR functional may have. Recall that H has call-
by-value type 92→ 93. Since it is easy to construct a retraction 92→ 93 / 93, we certainly
have a universal functional of call-by-value type 93. It is natural to ask whether there

68 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

is a universal functional of any “lower” type, in either call-by-name or call-by-value
PCF. We only need consider call-by-name types of the form

(90
r1 → 90) → · · · → (90

rn → 90) → 90;

since all other types below 93 are even lower than these. But any such type is a PCF-
de-nable retract of some call-by-name type /r ≡ (90r→ 90)→ 90, so it suWces to consider
types /r .

We will show, however, that there can be no such universal functional, and indeed
the expressive power of the set of functionals of type /r increases strictly with r. To
this end we will exhibit, for each r, a denotational model of PCF that contains all the
SR functionals of type /r and below, but lacks certain functionals of type /r+1.

Recall from [16] that HC is a full sub-CCC of the category of dI-domains with
coherence, de-ned as follows.

De�nition 9.12. (i) A dI-domain is an !-algebraic bounded-complete dcpo X such
that
• for all x; y; z ∈X where y; z are bounded, x ∧ (y∨ z) = (x∧y) ∨ (x∧ z);
• every compact element has only -nitely many lower bounds.
We write dI for the category of dI-domains and stable continuous functions.

(ii) A coherence on a dI-domain X is a family C of -nite non-empty subsets of X ,
such that
• for all x∈X , {x}∈C;
• if A∈C and B⊆-n X is below A in the Egli–Milner order (that is, ∀x∈A:∃y ∈

B: x6y and ∀y∈B:∃x∈A: x6y), then B∈C.
• if D1; : : : ; Dn⊆X are directed and for all x1 ∈D1; : : : ; xn ∈Dn we have {x1; : : : ; xn}
∈C, then {⊔D1; : : : ;

⊔
Dn}∈C.

A dI-domain with coherence is a dI-domain X equipped with a coherence C(X);
elements of C(X) are called coherent sets. A strongly stable function between dI-
domains with coherence is a continuous function that respects coherent sets and their
meets. We write dIC for the category of dI-domains with coherence and strongly stable
functions.

(iii) If C is a coherence on X , a subset B⊆C is a basis for C if C is the coherence
generated by B (that is, the smallest coherence on X containing B).

In a dI-domain with coherence, any bounded -nite non-empty set is coherent. It
follows that all strongly stable functions are stable; thus dIC is a (non-full) subcategory
of dI.

The embedding of HC in dIC can be immediately read o4 from De-nitions 5.5 and
5.6. We will write N⊥ for the object of dIC corresponding to N in HC, and <−= for the
interpretation of PCF types in dIC. Explicit de-nitions of products and exponentials in
dIC can be found, e.g. in [11].

We now de-ne the models we want as full subcategories of dIC. We suppose r is
any positive integer.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 69

De�nition 9.13. (i) Let X be a dI-domain with coherence. A set A∈C(X) is basic
r-coherent if there exist a coherent set B∈C(Nr

⊥) and a strongly stable function f :
Nr
⊥→X such that A=f(B). We say X is a dI-domain with r-coherence if the basic

r-coherent sets form a basis for C(X). We write dICr for the category of dI-domains
with r-coherence and strongly stable functions.

It turns out that both dIC1 and dIC2 are equivalent to dI, though we shall not need
this below. We will show that dICr is a CCC, but (crucially) the inclusion dICr ,→
dIC does not preserve the CC structure. The following simple observations will be
useful:

Lemma 9.14. Suppose X; Y are dI-domains; B a basis for C(X); and f :X →Y a sta-
ble continuous map. If f(A)∈C(Y) for all A∈B; then f(A)∈C(Y) for all A∈C(X).

Proof. Let D= {A∈C(X) |f(A)∈C(Y)}. Then B⊆D, so to show that D=C(X)
it suWces to check that D is a coherence. That D contains all singletons is trivial.
If A∈D; B∈C(X) and B � A in the Egli–Milner order, then f(B) � f(A)∈C(Y)
and so f(B)∈C(Y). The closure of D under directed lubs follows easily from the
continuity of f.

Proposition 9.15. The category dICr has 7nite products.

Proof. The terminal object presents no problem. Given objects X; Y of dICr , let X ×Y
be the usual cartesian product of dI-domains, and let C(X × Y) be the coherence
generated by the basis

B = {〈f; g〉(A) |f : Nr
⊥ → X; g : Nr

⊥ → Y strongly stable; A ∈ C(Nr
⊥)}:

Clearly all the sets in B are then basic r-coherent, so X × Y is a dI-domain with
r-coherence. The projection maps obviously respect all the coherent sets in B, so by
Lemma 9.14 they respect arbitrary coherent sets. Since they also preserve all existing
meets, they are strongly stable.

Now suppose we are given an object Z of dICr and strongly stable maps f :Z→X ,
g :Z→Y . We wish to check that the stable and continuous function 〈f; g〉 :Z→X ×Y
is strongly stable. But if A∈C(Z) is a basic r-coherent set induced by h :Nr

⊥→Z then
〈f; g〉(A) is a basic r-coherent set induced by 〈fh; gh〉. Thus 〈f; g〉 respects arbitrary
coherent sets by Lemma 9.14. Moreover, it is easy to check that for any A∈C(Z) we
have 〈f; g〉(∧A) =

∧〈f; g〉(A).

Proposition 9.16. The category dICr has exponentials.

Proof. Given objects X; Y of dICr , let YX be the set of strongly stable functions
X →Y , endowed with the stable ordering; then YX is a dI-domain by Bucciarelli and

70 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

Ehrhard [11, Proposition 14]. Now let C(YX) be the coherence generated by the basis

B = {(curry f)(A) |f : Nr
⊥ × X → Y strongly stable; A ∈ C(Nr

⊥)};
where Nr

⊥ × X is as given by the previous proposition. Again, all the sets in B are
then basic r-coherent, so YX is a dI-domain with r-coherence.

To see that the evaluation map � :YX × X →Y is strongly stable, we compare our
object YX with the exponential W =YX calculated in dIC (see [11]). We see that YX

and W have the same underlying dI-domain, and B⊆C(W) so C(YX)⊆C(W). Since
the evaluation map W × X →Y is known to be strongly stable, it follows that � is
strongly stable.

Now suppose we are given an object Z of dICr and a strongly stable map f :Z×X
→Y . We wish to check that the stable and continuous function curry f :Z→YX is
strongly stable. But if A∈C(Z) is a basic r-coherent set induced by h :Nr

⊥→Z , then
(curry f)(A) is a basic r-coherent set induced by curry (f ◦ (h × id)). Thus curry f
respects arbitrary coherent sets by Lemma 9.14. Moreover, for any A ∈ C(Z) we have
(curry f)(

∧
A) =

∧
(curry f)(A) in W , hence also in YX .

Thus dICr is a cartesian closed category. Moreover, it is easy to see that dICr

contains the dI-domain N⊥ with the usual coherence, and that any morphism f :X →X
in dICr has least -xed point

⊔
fi(⊥). It follows in the usual way that dICr is a model

of PCF—that is, there is an adequate interpretation <− = r of call-by-name PCF in dICr ,
where <90= r =N⊥ and <�→ 9= r = <9= <�= rr (calculated in dICr).

Let us write [Nk
⊥] for the product of k copies of N⊥ computed in dIC, and [Nk

⊥]r
for the product computed in dICr . The following proposition gives a measure of the
similarity between the interpretations < − = r and < − =.

Proposition 9.17. For any 16k6r;
(i) the objects [Nk

⊥]r and [Nk
⊥] coincide;

(ii) the objects <90k→ 90= r and <90k→ 90= have the same underlying dI-domain; and
C(<90k→ 90= r)⊆C(<90k→ 90=);

(iii) every element of </k = is also an element of </k = r .

Proof. Part (i) follows from the easy observation that in [Nk
⊥] every coherent set is

basic r-coherent. Part (ii) follows from this by comparing exponentials in dICr and
dIC (as in the proof of Proposition 9.16). It is immediate from this that every strongly
stable function <90k→ 90=→N⊥ is also a strongly stable function <90k→ 90= r→N⊥, which
gives (iii).

We now come to the main point of the exercise: we exhibit an element Fr of </r+1=
that is not an element of </r+1= r . For r¿1 and 16i6r, let �ri ∈Nr

⊥ be the tuple
(n − i + 1; : : : ; n − 1;⊥; 1; : : : ; n − i). Let Er = {�r1; : : : ; �rr}; we call Er the rth Berry
set. Recall from [17] that Er is coherent in [Nr

⊥], but no proper subsets of Er of size
greater than 1 are coherent.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 71

Lemma 9.18. Suppose k¿2; and A⊆Nk
⊥ is such that Ek ⊆A and Ek �A in the Egli–

Milner order. Then A is not basic r-coherent for any r ¡ k.

Proof. Suppose for a contradiction this is false for some k and A. Take r minimal
such that Ek is basic r-coherent; then clearly r ¿ 1. Take B∈C(Nr

⊥) and f :Nr
⊥→Nk

⊥
strongly stable such that f(B) =A. Let fi = Li◦f :Nr

⊥→N⊥ for 16i6k. Since none of
the fi are constant functions, each has some sequentiality index 16ji6r. So there must
be two of the fi, say fi1 and fi2 , with the same sequentiality index j. Now consider
an arbitrary element x = (x1; : : : ; xr)∈Nr

⊥. Then fi1 (x) ∈ N if f(x) �= �ki1 , and similarly
for i2; so in any case, we have xj ∈N . So ⊥ =∈ Lj(B), and since Lj(B)∈C(N⊥), this
means Lj(B) is a singleton. So by deleting the jth factor in Nr

⊥ we can exhibit A as
basic (r − 1)-coherent, contradicting the minimality of r.

Let us write Vri :Nr
⊥→N⊥ for the pointwise least monotone function such that

Vri(�ri) = 0. Now take Rr = Vr1 and r the pointwise least upper bound of Vr2; : : : ; Vrr .
It is easy to see that both Rr and r are PCF-de-nable, and so are morphisms in dIC
and in any dICr′ .

Proposition 9.19. Suppose r¿2.
(i) The set Er+1 is coherent in [Nr+1

⊥]r+1 but not in [Nr+1
⊥]r .

(ii) The elements V(r+1)1; : : : ; V(r+1)(r+1) have an upper bound in <90r+1→ 90= r but not

in <90r+1→ 90= r+1.
(iii) In </r+1= and </r+1= r+1; but not in </r+1= r ; there is a function Tr+1 such that

Tr+1(Rr+1) = 0 and Tr+1(r+1) = 1.

Proof. (i) The -rst claim is immediate since Er+1 is coherent in [Nr+1
⊥], which co-

incides with [Nr+1
⊥]r+1. To prove that Er+1 is not coherent in [Nr+1

⊥]r , -rst note that
every directed set in Nr+1

⊥ already contains its lub; thus the -rst two closure condi-
tions in De-nition 9.12(ii) suWce to generate the coherence C([Nr+1

⊥]r) from the basic
r-coherent sets. So if Er+1 is coherent in [Nr+1

⊥]r then we have Er+1 � A in the Egli–
Milner order, where A is either a singleton or basic r-coherent. Since r¿2, clearly A
cannot be a singleton. But if A is basic r-coherent, by the above lemma we cannot
have Er+1⊆A. So take i such that �(r+1)i =∈A; then clearly ⊥ =∈ Li(A). But since Li(A)
is coherent and is not a singleton, we have a contradiction.

(ii) Let V be any upper bound for the V(r+1)i in the stable order; then V(Er+1) = {1; : : : ;
r + 1} is not coherent, so V is not an element of <90r+1→ 90= r+1. Now let Vr+1 be
the (pointwise) least upper bound of the V(r+1)i; we claim that Vr+1 : [Nr+1

⊥]r→N⊥ is
strongly stable. Suppose A∈C([Nr+1

⊥]r). If ⊥∈ Vr+1(A) then Vr+1(A) is automatically
coherent and Vr+1(

∧
A) =

∧
Vr+1(A). Otherwise, we must have ∀x∈A:∃y∈Er+1: y6x.

Let E′ = {y ∈ Er+1 | ∃x∈A: y6x}; then E′ � A and so E′ ∈C([Nr+1
⊥]r). But Er+1 =∈

C([Nr+1
⊥]r) and no non-singleton proper subset of Er+1 is even in C([Nr+1

⊥]), so E′ is
a singleton. It follows that Vr+1(A) is a singleton (and hence coherent), and trivially
Vr+1(

∧
A) =

∧
Vr+1(A).

72 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

(iii) In </r+1= one may de-ne Tr+1 as follows:

Tr+1(f) =




0 if Rr+1 6s f;
1 if r+1 6s f;
⊥ otherwise:

This function is well de-ned by (ii). To see that it is strongly stable, suppose A ∈
C(< 90r+1→ 90=). If Tr+1(A) is not coherent then we must have Tr+1(A) = {0; 1}, so
{V(r+1)1; V(r+1)2}�{R; }�A, so {V(r+1)1; V(r+1)2} is coherent, a contradiction. Hence
Tr+1(A) is coherent, and a simple inspection of cases shows that Tr+1(

∧
A) =∧

Tr+1(A). Thus Tr+1 ∈ </r+1=, and it follows from Proposition 9.17(iii) that Tr+1

∈ </r+1=r+1.
However, no such function Tr+1 can exist in </r+1=r , since Rr+1; r+16sVr+1 but 0; 1

have no upper bound in N⊥.

Note that V3 is the Gustave function, the standard example (due to Berry) of a stable
but not sequential function.

We may now read o4 the following result:

Theorem 9.20. There is no SR functional G of any type /r such that all 7nite SR
functionals are PCF-de7nable relative to G.

Proof. We show that the SR functional Tr+1 (which is -nite and hence e4ective)
is not PCF-de-nable from G. Suppose M : /r→ /r+1 were a PCF term such that
<M =(G) =Tr+1 in dIC. For each i let Ni be a PCF term denoting V(r+1)i; then
<M =(G)(<Ni=) = i for each i. But the evident logical relation between the PCF types
in dIC and dICr relates G to G, <M = to <M =r , and <Ni= to <Ni=r (using the logical
relations lemma). It follows that <M =r(G)∈ </r+1=r ful-ls the criteria for Tr+1, a con-
tradiction.

Remark 9.21. (i) In fact, the model dICr shows that Tr+1 is not PCF-de-nable even
from the set of all SR functionals of type /r or below. This answers negatively a
question implicitly posed at the very end of [18].

(ii) A simple corollary of the above theorem is that there is no 7nite SR functional
G of any type whatever such that all the -nite SR functionals are PCF-de-nable from
G. For if such a G existed, it would be de-nable from some -nite approximation Hi

to H arising from the standard sequence of -nite retractions; but each such Hi has the
same degree as some functional of type /r .

(iii) It is an easy exercise to show that each Tr+1 is PCF-de-nable from Tr+2. We
therefore have a strictly ascending chain of degrees d(T2) ≺ d(T3) ≺ : : : . Note that T2

is easily de-nable from the modulus functional, so d(T2) =d(F) by Proposition 9.11.
This shows that d(F) is strictly below d(H).

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 73

10. Synthetic domain theory

In this section we revisit our models Mod(Bfull) and Mod(Be4) from the standpoint
of synthetic domain theory (see e.g. [21, 38, 52, 59]). We will see that at least two
existing versions of synthetic domain theory work out very well in these models; we
also point out some ways in which our models are rather di4erent in Savour from most
of those previously considered.

10.1. Well-complete and replete objects

Consider again the lift functor L=−⊥ on Mod(B) (where B is Bfull or Be4).
As observed in Section 3.1, it is easy to make this into a monad, i.e. to give nat-
ural transformations X : id→L and H : L2→L satisfying the monad laws. Let � be
the object 1⊥, and let � be the morphism X1: 1→�. Pullbacks of � along mor-
phisms X →� are called �-monos. It is easy to see that (�;�) is a dominance on
Mod(B)—that is, any �-mono Y �X is the pullback of � along a unique classifying
map X →�, and �-monos are closed under composition. (For the latter claim, we use
the fact that the “generic” composite of �-monos �⊥ ◦ � is classi-ed by H1.) Indeed,
in the terminology of [38], (�;�) arises from a divergence on B, namely the singleton
set {⊥}.

For general reasons, the functor L has both an initial algebra ! and a -nal coalgebra
9! (see e.g. [38]). In the case of Mod(B), the following concrete presentations of
! and 9! are especially convenient. For each n∈N de-ne qn ∈B by qn(m) = 0 if
m ¡ n; qn(m) =⊥ if m¿n; and take q∞ = �m:0. The objects !; 9! may then be
de-ned by

|!| = N; ‖n‖! = {qn};
| 9!| = N ∪ {∞}; ‖n‖ 9! = {qn}; ‖∞‖ = {q∞}:

The structure map !⊥→! for the initial lift algebra is the isomorphism sending ⊥ to
0 and n to n + 1 (it is easy to exhibit a realizer for this), and likewise for the -nal
coalgebra. Moreover, the unique algebra map B : !→ 9! is the evident inclusion. In all
versions of synthetic domain theory, the morphism B (or something very similar) plays
a fundamental role in formulating an appropriate notion of “chain-completeness” for
predomains.

We will brieSy consider two possible categories of predomains in Mod(B): the
well-complete objects introduced by Longley and Simpson [38], and the replete ob-
jects considered by Hyland [21] and Taylor [62]. We will show that both these
notions yield good categories of predomains. First recall the following de-nition
from [38]:

De�nition 10.1 (Well completeness). An object X is complete if X B: X 9!→X! is an
isomorphism. An object X is well complete if X⊥ is complete.

74 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

Actually, the complete and well complete objects coincide in Mod(B) (as they do in
many other natural models), though we will not use this fact. The following proposition
shows that strong completeness axiom of [38] holds in Mod(B):

Proposition 10.2. The object N in Mod(B) is well complete.

Proof. Suppose c is any morphism !→N⊥, realized by r. Then each r • qn realizes
some element of N , and r • q∞ =

⊔
r • qn. But the set of realizers for elements of N⊥

is (trivially) closed under lubs, and so r • q∞ also realizes some element of N . Thus
r realizes a (necessarily unique) morphism 9!→N⊥ extending c. So NB

⊥: N 9!
⊥ →N!

⊥ is
an isomorphism whose inverse is realized by �∗r:r.

This shows that we are in the situation described for general realizability models
in [32, 38], and indeed that all the axioms appearing in [52] or in [59] are true in
Mod(B). This means that all the machinery of well-complete objects is available to
us. In particular:

Theorem 10.3. (i) The well-complete objects in Mod(B) are closed under 7nite limits;
dependent products (including exponentials); 7nite sums; lifting and retracts; and con-
tain the natural number object.

(ii) For any well-complete object X equipped with a (necessarily unique) lift monad
algebra structure � : X⊥→X; every morphism X →X has a 7xed point; and indeed
there is a morphism yX : X X →X that computes it. Furthermore; for any f : X →X
and any t : X →�; we have t(yXf) =� i; t(fn(�⊥)) =� for some n.

By the results of [32, Chap. 6], we also have adequate interpretations of call-by-name
and call-by-value PCF. Moreover, the well-complete objects form a small complete
category (i.e. an impredicative universe), so we can also interpret much more powerful
type theories (see e.g. [20]).

Next, we turn our attention to the replete objects in Mod(B). There are many
equivalent de-nitions of repleteness (see e.g. [51]); here we recall a characterization
due to Taylor [21].

De�nition 10.4 (Repleteness). A morphism e : X →Z is called �-epi if �e : �Z →�X

is mono. A morphism f : X �Y is called an extremal mono if, for any mono m and
�-epi e with f =m ◦ e, e is an isomorphism. An object X is replete if the canonical
map �X : X →��X

is an extremal mono.

In the situation of [38] it is always the case that every replete object is well complete;
in fact, one can regard the well complete objects as the largest good category of
predomains, and the replete objects as the smallest.

Proposition 10.5. The object N in Mod(B) is replete.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 75

Proof. Consider the canonical map � : N→��N
. We -rst show that this is a regular

mono—that is, there is a realizer p such that a∈‖�(n)‖ implies p•a∈‖n‖. For conve-
nience we work with the following presentations of N; � and �N : ‖n‖N = {rn} where
rn(0) = n, rn(m + 1) =⊥; ‖�‖� = {r0} and ‖⊥‖� = {�m:⊥}; and for t : |N |→ |�| we
have ‖t‖�N = {rt}, where rt(n) = 0 if t(n) =�, and rt(n) =⊥ if t(n) =⊥. In addition,
we consider as realizers for f∈ |��N | all •-irredundant realizers for f considered as
a morphism �N →� (with respect to the above presentations).

Relative to these presentations, any realizer a for any �(n) : �N →� clearly satis-es
a〈0〉= ?n; From this, it is easy to construct the required realizer p that extracts n from
a. So � is a regular mono; in particular, it is maximal among subobjects of ��N

whose
points are exactly the elements �(n).

To see that � is an extremal mono, note -rst that if a is a •-irredundant realizer for
any f : �N →�, then f = �(n) i4 a〈0〉= ?n and a〈0; 0〉= !0. Using this, it is easy to
construct a morphism C : ��N →� such that C(f) is � if f = �(n) for some n, and
C(f) =⊥ otherwise. Now suppose � factors as N e→Z m→��N

where m is mono and
e is �-epi. Clearly, the maps C ◦ m and �z:� : Z→� both induce the constant map
�n:� : N→�, and so C ◦ m= �z:� since e is �-epi. Thus the image of m contains
only the points �(n), and so e is an isomorphism by the above.

For general reasons (see [52]) we can now deduce the analogue of Theorem 10.3 for
the replete objects. So the replete objects also suWce for interpreting PCF and indeed
much richer languages. We do not know whether there are objects of Mod(B) that
are well complete but not replete.

Remark 10.6. Clearly, the category K of Section 8.3 lies within the category of replete
objects; hence so does the image of E : SSeqFun→Mod(B). Likewise, we expect that
some good subcategory of HC embeds well into the replete objects.

10.2. The �-order

We now consider another basic notion from synthetic domain theory: the �-order (or
intrinsic order) on objects. We shall see that in Mod(B) this coincides exactly with
the stable order (at least for -nite types). This comes as no surprise after the results
of Section 5, but it means that the model Mod(B) has a completely di4erent Savour
from any of the models considered, e.g. in [38], in which the �-order (seemingly)
coincides with the pointwise order.

For any modest set X , the (external) �-preorder 4X on |X | is de-ned by

x 4X y ⇔ ∀t : X → �: (tx = � ⇒ ty = �):

Clearly, all morphisms between modest sets preserve the �-preorder. It is easy to see
that in Mod(B) the �-preorder on N⊥ coincides with the usual partial order; and hence
that for all -nite types over N⊥ the �-preorder is a partial order. Since � is a retract of

76 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

N⊥, the de-nition of the �-order on the -nite types R� can be formulated as follows:

x 4� y ⇔ ∀t ∈ R�→ 90: (t · x = 0 ⇒ t · y = 0):

This emphasizes that the �-order is intrinsic to the type structure R and not dependent
on any particular model for R such as the category Mod(B).

Proposition 10.7. For x; y∈R�
full; the following are equivalent:

(i) x4�y.
(ii) x�� y in the sense of Proposition 5:13.

(iii) x; y are path-related; i.e. there exists p∈R 90 → � with p · ⊥= x and p · 0 =y.

Proof. For (i) ⇒ (ii), it seems easiest to work with the characterization of �� given by
the hypercoherence model (see Proposition 5.13). For each atom a in the underlying
set of the hypercoherence X = <�=HC , let ta : X →N be the strongly stable function
whose trace is {({a}; 0)}; then for z ∈D(X) we have ta(z) = 0 if a∈ z and ta(z) =⊥
otherwise. So if x4�y then (regarding x; y as states of X), for each a we have

a ∈ x ⇒ ta(x) = 0 ⇒ ta(y) = 0 ⇒ a ∈ y:

Thus x⊆y, and so x�� y by Proposition 5.13.
(ii) ⇒ (iii): Suppose x�� y, i.e. there exist realizers a∈‖x‖; b∈‖y‖ with a� b.

It is trivial to construct a realizer r such that r • (�n:⊥) = a and r • rn = b for any n
(where rn(0) = n and rn(m + 1) =⊥ as above). Clearly, r realizes a morphism p with
the required properties.

(iii) ⇒ (i): Given p∈R 90→� as above and t ∈R�→ 90, if t · x = t · (p · ⊥) = 0 then
t · y = t · (p · 0) = 0 since the map N⊥→N⊥ given by t ◦ p is monotone.

Note that implication (ii) ⇒ (iii) fails in the e4ective case: if x; y∈R91 correspond
to two partial recursive functions such that x⊆y but dom y − dom x is not r.e., there
is no e4ective realizer for an element p with the required properties.

It follows from the above that the �-order on �� is given by �x :⊥4�x :x,
�x :⊥4�x :�. Indeed, it is amusing to note that the functional F described in the
Introduction is actually an isomorphism �� ∼= 2⊥ in Mod(B). Likewise, one can
easily show that �! ∼= � 9! ∼= N⊥ in Mod(B).

Remark 10.8. The model Mod(B2) also -ts in well with the theory of well-complete
objects: the divergence {⊥} gives rise to a dominance in Mod(B2) satisfying the
Strong Completeness Axiom. As mentioned in Section 8.3, Mod(B2) also has the
potential advantage that most of the objects of interest are projective. It would be
interesting to know whether the modi-ed realizability model mRT(B) of Section 3.3

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 77

and the presheaf model [Mop;Set] of Section 6 also -t smoothly into some version of
synthetic domain theory.

11. Notions of higher-type computability

We end the main body of the paper by comparing the SR functionals with other
known extensional type structures. The line of thought we describe here is part of
a general investigation of notions of computability at higher types, which will be
developed more fully in a forthcoming survey paper [36].

Our motivating philosophy is as follows: since it is not clear a priori what should
be meant by the “computable” functionals of higher types, we take a step back and
consider the space of all possible notions of higher-type computability. More pre-
cisely, we de-ne a general concept of “class of computable functionals”, in such a
way that any reasonable notion of extensional higher-type computability can be ex-
pected to provide an example of such a class. Within this abstract framework, we
can then collect particular notions of higher-type computability, and ask how they are
related.

11.1. General de7nitions

Here we shall restrict attention to notions of (hereditarily) partial computable func-
tional. In general, a class of partial higher-type functionals is embodied by a par-
tial type structure, as in De-nition 3.6(i) (see also Section 7.1). For de-niteness,
we will concentrate here on the call-by-name notion of type structure, though (as
usual) this choice does not matter much. We repeat the de-nition here for
convenience.

De�nition 11.1. A partial type structure (PTS) T consists of
• a set T� for each type �, where T 90 = N⊥,
• for each �; 9 a total “application” function ·�9 : T�→9 × T�→T9.
We say T is extensional (or is an EPTS) if, for all types �; 9 and all f; g∈T�→9,

(∀x ∈ T�:f · x = g · x) ⇒ f = g:

It seems clear that any reasonable notion of computable partial functional will give
rise to a PTS T in this sense, since we expect computable functionals to be closed
under application. We would also expect T to be extensional, since the elements of
T�→9 are just functions. 6 Moreover, if T consists of computable partial functions, we

6 This is a slight oversimpli-cation: if the domain of de-nition of the functions in T�→9 were larger than
T� , one could imagine distinct elements f; g∈ T�→9 that had the same restriction to T� . We will discuss
the issue of extensionality in more detail in [32].

78 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

expect it to be e;ective in some way. We can build a notion of e4ectivity onto the
above de-nition as follows.

De�nition 11.2. An e;ective structure on a PTS T assigns to each element f of each
T� a non-empty set ‖f‖�⊆N of realizers for f, such that:
• for each �; 9 there is a partial recursive function ’�9: N×N *N such that, for all

f∈T�→9; x∈T�; m; n∈N we have

m ∈ ‖f‖�→9 ∧ n ∈ ‖x‖� ⇒ ’(m; n) ∈ ‖f · x‖9;
• there is a partial recursive function : N *N such that for all n∈N we have

 (n)↓ ⇒ n ∈ ‖ (n)‖ 90; (n)↑ ⇒ n ∈ ‖⊥‖ 90:

An e;ective PTS is a PTS that admits at least one e4ective structure.

The reader may recognize that a PTS with e4ective structure is nothing other than a
certain kind of PTS within the realizability model on the partial combinatory algebra K1

(the natural numbers equipped with Kleene’s partial recursive function application). The
above de-nition is designed to be as liberal as possible so as to admit any conceivable
notion of computable functional—for instance, there is no requirement that the set⋃

x∈T� ‖x‖� of realizers for objects of type � be recursively enumerable. Indeed, it
seems reasonable to propose the following informal hypothesis:

Thesis 11.3. Any reasonable notion of computable hereditarily partial functional at
higher types (henceforth “notion of computability”) is embodied in an e;ective
extensional PTS.

(Of course, there are also many e4ective EPTSs that do not embody a reason-
able notion of computability.) The above claim rests on Church’s Thesis and on the
intuitive idea that “e4ective” objects of any kind are ultimately representable by nat-
ural numbers. It also depends on the supposition, true in all known cases of interest,
that any reasonable class of functionals (for example, a class given as a call-by-value
type structure) can be embodied in an “equivalent” call-by-name type structure. In
the absence of any evidence to the contrary, we adopt Thesis 11:3 as a working
hypothesis.

Given two EPTSs, it is natural to ask when one of them in some sense “con-
tains” the other. Again, we seek the most liberal notion of containment that seems
reasonable—for instance, the obvious de-nition of homomorphic inclusion, and even
that of logical relation, seem too strong for our purposes. We propose the following
notion:

De�nition 11.4. Let T; U be EPTSs. A simulation s : T→U consists of a total relation
s�: T� |→U� for each type �, such that
• s 90 is the identity relation on N⊥;

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 79

• for any f∈T�→9; g∈U�→9; x∈T�; y∈U� we have

s�→9(f; g) ∧ s�(x; y) ⇒ s9(f · x; g · y):

We write T6U if there exists a simulation s : T→U .

A very similar notion of morphism between type structures has been independently
studied (under the name of pre-logical relation) by Honsell and Sannella [19], who
give a good collection of arguments for the naturalness of this notion.

Thesis 11.5. If U embodies a notion of computability that includes or subsumes the
notion embodied by T in any reasonable sense; then T6U .

The intuition is that for any element x of T , there is at least one element y of
U that represents or “simulates” x. Note that T6U i4 T arises as a homomorphic
subquotient of U (where homomorphisms are required to be the identity on type 90).

It is clear that EPTSs and simulations between them form a category. It is also easy
to see that the only simulation T→T is the identity; it follows that the relation 6
is a partial order on EPTSs. We will write P for the poset of EPTSs ordered by 6,
and Pe4 for the full sub-poset of e4ective EPTSs. (Note that we do not impose any
e4ectivity conditions on simulations between e4ective EPTSs.)

11.2. Three notions of computability

We now consider three important examples of e4ective EPTSs. These correspond
to the three good candidates for a natural notion of computable partial functional at
higher types that we are currently aware of, and each of them admits several di4erent
characterizations.

Example 11.6. (i) The e;ective continuous functionals—that is, those present as ef-
fective elements of -nite types in the standard Scott model—constitute an e4ective
EPTS. By a universality result due to Plotkin [49] and Sazonov [55], all such func-
tionals are de-nable in the programming language PCF + parallel-or+ exists (we call
this language PCF++). It follows that this EPTS can be characterized syntactically as
the term model for PCF++ (that is, the type structure of closed PCF++ terms mod-
ulo observational equivalence). It is also the EPTS arising from the familiar category
of modest sets over K1 (see e.g. [32, Chap. 7]). There are many other mathematical
characterizations of this type structure—these will be surveyed in [36].

(ii) The e;ective PCF-sequential functionals constitute an e4ective EPTS. Syntacti-
cally, this can be characterized as the term model for pure PCF. Semantic characteri-
zations of this type structure are provided by the e4ective versions of the various game
models for PCF [2, 23, 44]. There are also characterizations via realizability models
(see [33] for a survey).

80 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

(iii) The e;ective SR functionals, as described in this paper, clearly constitute an ef-
fective EPTS. Of the characterizations we have discussed, the syntactic characterization
as the term model for PCF + H is most relevant to our present concerns.

Thesis 11.7. The above three type structures all represent reasonable notions of com-
putability.

For convenience we name each of these type structures after the corresponding pro-
gramming language, referring to them as T (PCF++); T (PCF) and T (PCF+H); re-
spectively. In each case, an e4ective structure on the PTS can be obtained from the
corresponding language via a GXodel-numbering of closed terms (note that evaluation of
terms of type 90 is e4ective, and the application operation can be simply juxtaposition
of terms.) In fact, for the arguments below we only need to posit that T (PCF++) and
T (PCF + H) represent reasonable notions of computability.

It is easy to see that the syntactic inclusions PCF ,→PCF++ and PCF ,→PCF + H
induce simulations between the corresponding term models, so that we have T (PCF)6
T (PCF++) and T (PCF)6T (PCF + H). (Note that the total relations in question will
not all be functions, since PCF terms that are observationally equivalent in PCF need
not be so in PCF++ or PCF + H.)

Of course, many other interesting EPTSs are known. Some of these, such as the
e4ective part of Berry’s stable model [5], appear to be mathematically natural, but
no reasonable computational interpretation for the corresponding functionals is known.
Others arise from degrees of parallelism (resp. the degrees de-ned in Section 9.3),
and consequently lie between T (PCF) and T (PCF++) (resp. T (PCF + H)). Whilst
these EPTSs do have a computational interpretation, none of them has yet emerged as
particularly canonical in the sense that it admits other mathematical characterizations.
It is for these reasons that we claim that our three EPTSs represent the only natural
notions of partial higher-type computability known to date.

The following facts are easily established:

Proposition 11.8. (i) T (PCF++) �6T (PCF + H).
(ii) T (PCF + H) �6T (PCF++).

Proof. (i) Suppose we had a simulation s : T (PCF++)→T (PCF + H). Let p∈
T (PCF++)90→90→90 be some parallel operation—for instance, suppose that pxy =⊥ i4
x =y =⊥. Take q∈T (PCF + H)90→90→90 such that s(p; q). Since s90 = id, it is clear that
q=p as a function N⊥×N⊥→N⊥. But this is a contradiction, since p is not Milner–
Vuillemin sequential and hence not SR.

(ii) Conversely, suppose we had a simulation t :T (PCF + H)→T (PCF++). Let F ∈
T (PCF+H)92 be the functional de-ned in Remark 3.7(ii), and take G ∈T (PCF++)92 such
that t(F;G). Then clearly G also satis-es the speci-cation given in Remark 3.7(ii).
But this is impossible, since every G ∈T (PCF++)92 is monotone with respect to the
pointwise order.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 81

The relationships between our three type structures in Pe4 may therefore be depicted
as follows:

It is already interesting to note that there are two seemingly natural but incomparable
notions of computability. One might now ask whether there is some more generous
notion of computability that subsumes both of them. We shall see that the answer is
no: the notions of computability corresponding to PCF++ and PCF + H are essentially
incompatible.

We will write T for the type structure T (PCF++). We assume some familiarity with
the characterization of T as the EPTS arising from Mod(K1) (see [32]), and we write
‖ − ‖T for the e4ective structure on T given by Mod(K1).

Proposition 11.9. For each type � there is a total recursive function �� : N→N such
that
• for any n∈N; ��(n)∈‖x‖T� for some x∈T�;
• if n∈‖x‖T� then also ��(n)∈‖x‖T� .

Proof. It is straightforward to construct such a function for the type 91. The result for
arbitrary types then follows from the fact that every type T� is a PCF++-de-nable
retract of T 91 (see [37, Lemma 5:2]).

Lemma 11.10. The type structure T is a maximal element of Pe4 .

Proof. Suppose we have an EPTS U with e4ective structure ‖− ‖U , and a simulation
s :T→U . We can regard each structure (U�; ‖− ‖U�), as well as each (T�; ‖− ‖T�), as
an object in Mod(K1) (see De-nition 3.1). We will show that there are isomorphisms
T �∼=U � in Mod(K1) that respect application.

For 90 the bijection T 90∼=U 90 is immediate, and the fact that this is an isomorphism
in Mod(K1) follows from the existence of the functions of De-nition 11.4. For type
�→ 9, given any f∈U �→9 and any n∈‖f‖U we may recursively obtain a Kleene
index tracking f · − :U �→U 9. By the recursive equivalence of T; U at � and 9
we may thence recursively obtain a Kleene index tracking f· − :T �→T 9, that is,
an element of ‖f‖T�→9. We thus have a morphism U �→9→T �→9 in Mod(K1) that
respects application. Conversely, for every f∈T �→9 there exists f′ ∈U �→9 such that
s(f;f′), and so we certainly have a function f �→f′ respecting application. To see that
this is a morphism T �→9→U �→9, we use the function ��→9 of the above proposition.

82 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

By extending ��→9 to a strict function we can clearly regard ��→9 as an element of
T 90→(�→9). So take e∈U 90→(�→9) such that s(��→9; e); then from an element of ‖e‖U
one may construct a Kleene index for the morphism N→U �→9 corresponding to e,
and this index tracks the required morphism T �→9→U �→9.

Theorem 11.11. The type structures T (PCF++) and T (PCF+H) have no upper bound
in Pe4 . Hence Pe4 contains no top element.

Proof. Immediate from the above lemma and Proposition 11.8(ii).

From this and the above theses, it follows that there can be no reasonable notion of
computability that subsumes all other reasonable notions—that is, there is no ultimate
class of computable functionals containing “all” computable functionals of higher type.
This observation seems to hold some philosophical interest in its own right, and is
closely related to a problem posed by Kleene [26, Section 1.2] (also quoted in [23]):

I aim to generate a class of functions . . . which shall coincide with all the partial
functions which are “computable” or “e4ectively decidable”, so that Church’s 1936
will apply with the higher types included.

The above results suggest that Kleene’s problem, understood in a certain way, has
no solution. If one is seeking a notion of computability that is as inclusive as possi-
ble, one inevitably has to choose to exclude certain kinds of functionals in order to
include others. This fact may appear paradoxical at -rst sight—for instance, one might
wonder whether there was not some class of functionals computable in the language
PCF++ +H. The answer is that any attempt to design an operational semantics for
such a language results in a system that is either non-e4ective or non-deterministic
(depending on exactly how it is attempted): the question of whether a function needs
to look at its argument in order to return a result cannot be answered e4ectively when
we are dealing with in-nitely many parallel threads of computation. Another way to
say this is that the question of whether f looks at its argument is only sensible for
intensional representations of f of a certain restricted kind.

Whilst our argument depends on the thesis that T (PCF++) and T (PCF +H) both
represent reasonable notions of computability, we have not needed to assume that
the type structures we have considered represent the only reasonable such notions.
Indeed, there appears to be no evidence for this at present, beyond the fact that no
other compelling notions of computability are currently known. Thus, there remains the
intriguing possibility that there are other natural notions awaiting discovery, represented
by elements of Pe4 but embodying some computational principle quite di4erent from
those above.

We conclude with some further observations about the poset Pe4 . First, it is natural
to ask whether T (PCF + H) is also a maximal element. In fact, it is not: the e4ective
elements of the hypercoherence model clearly constitute an e4ective EPTS, and it
follows from the results of Section 5.3 that this is strictly larger than T (PCF +H).

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 83

It would appear, though, that this larger type structure is a distraction since it does
not seem to embody an interesting computational notion. More signi-cantly, one can
formulate a sense in which T (PCF +H) is indeed maximal among sequential notions
of computability, by appealing to the idea that there is only one reasonable concept of
sequentiality for functions NN

⊥→N⊥. To this end we introduce the following de-nition:

De�nition 11.12. (i) An EPTS T is full sequential if
• T is a combinatory type structure, i.e. for all types /; �; 9 there exist elements
k�9 ∈T �→9→�; s/�9 ∈T (/→�→9)→(/→�)→(/→9) satisfying the laws

k · x · y = x; s · x · y · z = (x · z) · (y · z)
• T 91 consists of all monotone functions N⊥→N⊥;
• the functions NN

⊥→NN
⊥ represented by elements of T 91→91 (via the evident inclusion

NN
⊥ ,→T 91) are exactly the Milner–Vuillemin sequential ones.

(ii) An e4ective EPTS T is e;ectively sequential if
• T is a combinatory type structure;
• T 91 consists of all computable functions;
• the functions NN

⊥→NN
⊥ represented by elements of T 91 → 91 are precisely the e4ectively

sequential ones.

Theorem 11.13. (i) R is a maximal full sequential EPTS in P.
(ii) Re4

∼= T (PCF +H) is a maximal e;ectively sequential EPTS in Pe4 .

Proof. (i) We use the Colson–Ehrhard presentation L of the SR functionals
(Theorem 6.1). Suppose U is a full sequential PTS strictly above L in Pe4 . For each
type � let U�

! be the set of functions NN
⊥→U� represented by elements of U 91→�.

Now suppose �→ 9 is a minimal type such that U�→9
! is strictly bigger than L�→9

!

(it is clear that there must be such a type). By the de-nition of L�→9
! , there must

be some f : NN
⊥→U�→9 and some g∈U�

! such that �r: f(fst r)(g(snd r)) =∈L9
!. But

since U is a combinatory type structure and contains fst and snd, it is easy to see that
�r: f(fst r)(g(snd r))∈U9

! , contradicting the minimality of �→ 9.
(ii) By Corollary 8.7 we have Re4

∼= Le4 , and so a precisely similar argument
works.

It is an open question whether T (PCF + H) is the unique maximal e4ectively se-
quential EPTS in this sense.

Finally, one might ask whether T (PCF) is a greatest lower bound in Pe4 for
T (PCF++) and T (PCF + H). In general, one can construct a greatest lower bound
of two EPTSs T; U (not necessarily the unique one) by forming the product T ×U
and then taking the subquotient by the unary logical relation induced by the diago-
nal relation at ground type. Clearly if T; U are e4ective then so is the resulting type
structure. However, if this construction is applied to T (PCF++) and T (PCF + H),
the resulting type structure V is strictly greater than T (PCF). This can be seen from

84 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

the fact that both T (PCF++) and T (PCF + H), and hence also V , contain a function
C : (902→ 90)→ 90 corresponding to Curien’s Third Counterexample (see [15, p. 269]),
which is not PCF-de-nable:

C(f) =
{

0 if f 0⊥ = 0 or f⊥ 0 = 0 or f⊥ 1 = f 1 0 = 0;
⊥ otherwise:

The idea that this counterexample survives even when the Scott model and the
strongly stable model are combined is already implicit in [11]. Operationally, the func-
tion C can be implemented using either parallel operations such as parallel-or or SR
functions such as H , though it cannot be implemented in pure PCF.

12. Conclusions and further directions

12.1. Review of results

We have presented a number of contrasting but equivalent characterizations of the
type structures R; Re4 . For convenience we summarize them here (glossing over the
di4erence between the call-by-name and call-by-value variants):
1. The type structure given by standard realizability over the combinatory algebra B

or Be4 (De-nition 3.6).
2. The type structure given by modi-ed realizability over B or Be4 (Proposition 3.9).
3. The extensional collapse of the [e4ective] sequential algorithms model

(Corollary 5.3).
4. (Re4 only) The extensional collapse of the programming languages HPCF and PCF +
catch (Remark 5.4).

5. (R only) The type structure in the strongly stable model HC (Corollary 5.8; Sec-
tion 8.1).

6. The Colson–Ehrhard type structure canonically induced by the notion of Milner–
Vuillemin sequentiality (Theorem 6.1; Corollary 8.7).

7. The type structure in the presheaf category [M op;Set] or [M op
e4 ;Set] (Theorems 6:5,

8:6).
8. (Re4 only) The closed term model of the language PCF + H (Section 9.2).

A few of these characterizations (e.g. Characterizations 1 and 7) seem suWciently
simple and appealing that even by themselves they suggest that the SR functionals are
a mathematically natural object of study. More importantly, however, the fact that such
a variety of constructions all give rise to the SR functionals strongly suggests that this
type structure is a highly canonical mathematical object.

The above list provides a good example of how di4erent mathematical characteriza-
tions can illuminate di4erent facets of the same object. For instance, characterizations
1–4 all have an intensional or operational Savour, and they show how the SR function-
als arise from a natural and very general notion of sequential process. These construc-
tions are all basically “extensional collapses” of some kind—that is, at each type level

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 85

they pick out the set of elements that “just happen” to behave extensionally—thus, they
do not immediately give much of a grasp on what these elements are. (Note, however,
that characterization 1 leads to a proof of the universality of type 92, and we do not
know whether this result can be obtained easily by any other means.) By contrast, the
strongly stable model, while it does not directly reveal the computational aspect of the
SR functionals, gives a “-nitary” characterization of them in terms of a preservation
property, and hence yields e4ective information (such as the decidability of equality
for -nite elements) that is not evident from any of the other characterizations. Be-
sides, hypercoherences are a model of linear logic, suggesting symmetries that are not
apparent from the other characterizations (see [16]). Meanwhile, the Colson–Ehrhard
characterization reveals the maximal nature of R and Re4 among sequential type struc-
tures (Theorem 11.13). Finally, the language PCF + H, while somewhat arti-cial in
itself, provides a pleasing “constructive” handle on Re4 which is not given by any of
the other descriptions—we can recursively enumerate all the e4ective SR functionals
and only them. The functional H can also be used to establish the relationship between
the full and e4ective type structures (Theorem 7.13).

We have also shown that the SR functionals enjoy some pleasing properties not
shared by the PCF-sequential functionals: for instance, the decidable presentation of the
-nite elements (Proposition 5.10) and the existence of a universal type (Theorem 7.11).
These results indicate that the class of SR functionals is in some sense of a lower
“logical complexity” than the class of PCF-sequential functionals.

Though our main focus has been on the type structures R and Re4 , we believe our
results also indicate that van Oosten’s combinatory algebra B is an attractive object
worthy of study in its own right. It provides a simple mathematical setting in which
sequential algorithms have a natural home, and it has directly inspired our construction
of a retraction 93/ 92. Moreover, the corresponding notion of realizability coincides with
that embodied by Abramsky’s combinatory algebra A (see Remark 2.8). In addition,
we suspect that the combinatory algebra B2, discussed in Section 8.3, will also turn
out to be a natural and important object.

12.2. The meaning of “sequentiality”

Having discussed the mathematical status of the SR functionals, it is worth con-
sidering their computational aspects, and in particular, examining more closely the
claim that the SR functionals are “sequential” in some reasonable sense. As is pointed
out in the Introduction to [2], there is a tension inherent in the phrase “sequential
functional”, since sequentiality refers primarily to a computational process rather than
a mere function. Clearly, by specifying an abstract type structure such as Re4 , or even a
functional such as H , we do not commit ourselves to any particular kind of operational
implementation. Indeed, many di4erent operational realizations of Re4 are possible (see
e.g. Section 12.3 below). The claim that the SR functionals are sequential, therefore,
can only mean (in our view) that at least some reasonable realizations of them have a
“sequential” character.

86 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

The question, then, is what sequentiality should mean for computational processes.
The problem here is that there is no agreed general de-nition of “sequentiality” for
processes of higher type. We can therefore argue in two ways: we can demonstrate the
relationship with other things that have been called “sequential”, or we can appeal to
an informal understanding of what the word means. Regarding the -rst of these, we
have shown that the SR functionals can all be computed by sequential algorithms, and
that they can be implemented in languages such as PCF + catch and HPCF which are
widely referred to as sequential.

Regarding the informal concept of sequentiality, it is instructive to compare a lan-
guage such as PCF + catch with pure PCF. Intuitively, in both languages we can only
“do one thing at a time”: slightly more precisely, we cannot have two subcompu-
tations that are directly triggered by the same function call in progress at the same
time. This contrasts with PCF + parallel-or, even when the latter is implemented using
deterministic reduction rules, for example:

if M → M ′ then parallel-or MN → parallel-or NM ′:

The point here is that the computations for the two arguments of the parallel-or operator
can be in progress simultaneously.

In PCF, however, there is an additional requirement: each subcomputation must
be “completed” before another subcomputation, directly triggered by the same func-
tion call, can be begun. (In game-theoretic terms, this can be enforced by a well-
bracketing condition.) This requirement is not satis-ed by PCF + catch, since the
catch operator allows subcomputations to be aborted before they are completed. Our
view is that sequentiality informally means “doing only one thing at a time”, which
is not the same thing as “completing one thing before starting another”. On this in-
formal understanding, the languages PCF and PCF + catch are both sequential, while
PCF + parallel-or is not. Insofar as PCF + catch embodies one reasonable realization
of the SR functionals, we therefore feel justi-ed in referring to the SR functionals as
sequential.

The above discussion suggests that, from at least one point of view, the di4er-
ence between PCF-sequentiality and sequential realizability lies in whether or not
computations are required to be well bracketed. The same message is reinforced by
Abramsky’s combinatory algebra A and its well bracketed subalgebra Awb (see Re-
mark 2.8), which give realizability models of the SR and PCF-sequential functionals,
respectively.

We are anxious to point out, however, that we do not see the notions of sequential
realizability and PCF-sequentiality as being in competition in any way. In our view,
they both represent natural and compelling notions of sequentiality at higher types, and
we are not inclined to argue over which is “the more canonical”. It is true, as we have
seen, that in some ways the SR functionals have better mathematical properties than
the PCF ones, but we think these should be distinguished from questions about the
conceptual status of the two notions.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 87

12.3. Game-theoretic models

Perhaps the biggest omission from our theoretical investigation of the SR functionals
concerns their relationship to game models for sequential computation (see e.g. [2, 23]).
Here we will brieSy describe the situation as we see it, and suggest some questions
for further investigation.

Abramsky has proposed an “intensional hierarchy” of computational phenomena,
such as state and control features, which can be captured semantically via various re-
laxations of the constraints on strategies in the basic game model for PCF. Roughly
speaking, for deterministic sequential languages there appear to be two main axes of
interest along which such relaxations can be made: we may weaken either the well-
bracketing condition on strategies (leading to models for languages with control fea-
tures—see [29]), or the innocence condition (leading to models for languages with
state—see e.g. [1]). These conditions can be relaxed to various degrees, and also in
combination (this seems to be necessary to provide good models for ML-style excep-
tions, for example). In general, one tries to correlate particular programming language
features with particular (combinations of) conditions on strategies, by means of full
abstraction or universality results.

The recent Ph.D. thesis of Laird [30] makes explicit some of the connections between
this work in game semantics and the results of the present paper. He considers a class
of innocent unbracketed strategies, and shows that its observational quotient coincides
exactly with the sequential algorithms model. It follows immediately from the results of
our Section 5.1 that the extensional collapse of the innocent unbracketed games model
yields the SR functionals, and similarly for the e4ective analogue. Laird also shows
that every e4ective innocent unbracketed strategy is de-nable in HPCF. It follows from
this that Re4 is the extensional collapse of HPCF (see our Remark 5.4), or indeed of
any other language that de-nes the same class of strategies.

We believe that similar results will hold for many other interesting conditions on
strategies (and for the corresponding programming languages). For instance, we have
recently shown that our functional H (and hence all SR functionals) can be imple-
mented using ML-style references of ground type. Consequently, it would appear that
the SR functionals arise as the extensional collapse of a certain class of non-innocent
strategies (or of a corresponding programming language with state). Likewise, H can
be implemented using ML-style exceptions; we would expect this to lead to another
result of the same kind.

Indeed, we would conjecture that more than this is true. It seems likely that, in
some sense, any reasonable class of strategies that is “suWciently unconstrained” along
either axis (i.e. suWciently larger than the basic class of PCF strategies) will yield the
type structure R as its extensional collapse. This would suggest that a large class of
sequential programming languages, including languages with continuations, exceptions
and references of various kinds and in various combinations, would have as their ex-
tensional collapse the type structure Re4 . A precise result to this e4ect would constitute
further evidence for the ubiquity of the SR functionals.

88 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

However, we are aware of at least one example of a sequential programming lan-
guage of the above kind for which such a result does not hold. Our implementations
of SR functionals using ML-style exceptions can fail to work if their arguments are
allowed to contain wildcard handlers—that is, exception handlers that will trap any
exception whatsoever. 7 For example, the functional F of the Introduction may be
implemented in Standard ML [42] using exceptions as follows:

fun F g =

let exception e in

(g (fn _ => raise e) ; true)

handle e => (g top ; false)

end

But this implementation gives the wrong behaviour when applied to the following
argument, de-ned using a wildcard handler:

fun g a = a ()

handle _ => ()

Using this example, one can show that the extensional collapse of a certain ex-
tension of PCF with exceptions and wildcard handlers does not yield the e4ective
SR functionals. This means that there would necessarily be limits to the scope of a
“ubiquity result” of the kind suggested above. (There is already some consensus that
features such as wildcard handlers—a kind of control delimiter—are troublesome from
a semantic point of view; see e.g. [12].)

Perhaps the most important open question in this area is whether there is (a sensible
description of) a class of strategies whose observational quotient is exactly the type
structure R. For all the extensional collapse constructions mentioned above, we have to
throw away non-extensional junk in order to obtain just the SR functionals. It would
be very interesting if one could -nd a constraint on strategies (preferably of a “local”
nature) that gave rise to the SR functionals without any such junk, in the same way
that the fully constrained games model gives rise to the PCF type structure. Such a
constraint on strategies would be likely to suggest a programming language for the SR
functionals using some novel kind of language feature. We are inclined to suspect that
no really useful constraint of this kind is possible, but the question deserves further
attention.

12.4. A programming language for SR functionals

We end by brieSy discussing the possibility of a practical programming language
based on the SR functionals. This possibility is further discussed in [35], where some
particular programming applications are considered.

7 I am indebted to Nick Benton and Andrew Kennedy for this observation.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 89

The existence of universal SR functionals means that, at least in principle, one could
design a programming language that incorporates the full power of the e4ective SR
functionals into its purely “functional” fragment. For example, a functional such as
H could be built into the language, and programmers could use it and believe that
they were doing pure functional programming. If this proved impractical, one could at
least build in a selection of weaker functionals, such as the modulus functional M of
Section 9.3, giving at least some of the power of the SR functionals.

One can imagine, in principle, several reasons why these possibilities might be in-
teresting. Firstly, they would increase the power of the purely functional fragment of
the programming language. In existing functional languages such as Standard ML, the
pure functional fragment is based essentially on pure PCF. However, there are natural
examples of “functional” programs in the SR sense which would be (variously) impos-
sible, ineWcient or just inelegant in pure PCF. For such programs, one would gain the
transparency and ease of reasoning o4ered by pure functional programming, as well as
increased scope for compiler optimization and perhaps garbage collection.

Secondly, an SR-based functional programming language would allow us to design
better and simpler program logics than can be easily done for PCF-based languages.
We have already pointed out that the class of SR functionals is in many ways mathe-
matically simpler than the class of PCF-sequential functionals; this means that opera-
tional notions such as observational equivalence and de-nability are theoretically more
tractable in the SR case. If one adopts the philosophy (advocated e.g. in [37]) that a
good program logic should have a clear operational content of a kind easily grasped
by programmers, it follows that it should be easier to design and axiomatize a good
program logic (with reasonable completeness properties) for an SR-based programming
language.

Thirdly, besides the hope that one could design a better program logic, it seems likely
that one could also perform proofs about particular programs more easily within such
a logic. In view of the lower “complexity” of the SR functionals, we would expect
larger fragments of the logic to be decidable (e.g. equality for -nite elements), and
this would give greater scope for automation in machine-assisted proofs.

It is worth noting that all of the above points would, in principle, apply to the par-
allel language PCF++, and that despite the overwhelming mathematical naturalness of
the type structure T (PCF++), no one has so far been seriously tempted to use PCF++

as the basis of a practical programming language. However, we feel there are some
grounds for being more optimistic in the case of the SR functionals. Firstly, there is
a consensus that parallel operators are “painful to implement and encourage hideously
ineWcient programming” [13], whereas the implementation of SR functionals is rela-
tively straightforward owing to their sequential nature. (This is attested by the fact that
many SR functionals can be implemented very easily in Standard ML.) Secondly, there
is the question of the interaction with side-e4ects (such as exceptions or references)
in an impure functional language. In a parallel language with side-e4ects, we would
be obliged to sacri-ce the deterministic character of the language (or else to specify
a particular interleaving protocol in gruesome detail). In an SR-based language with

90 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

side-e4ects, the deterministic character would be easily retained (again, this can be
seen by reSecting on the fact that SR functionals can be implemented in ML).

The main weakness in our proposal, at present, is that the universal functional H
has an unacceptably high computational complexity (as pointed out in Remark 7.15, it
involves a factorial-size search), and we do not currently know of a universal functional
that is essentially any better. We might respond to this in two ways: we could hope to
discover a better universal functional than H (or perhaps some other way of designing
a language for the SR functionals, as suggested at the end of Section 12.3); or else
we could sacri-ce some expressive power and content ourselves with a selection of
simpler functionals (such as M) that were computationally feasible. Regarding the -rst
possibility, we suspect that any universal functional will have at least an exponential
complexity in the worst case, but we are hopeful that there may be universal functionals
that are feasible in practice, since the o4ending “worst cases” would not arise in natural
examples of programs. The second possibility—that of restricting ourselves to a proper
subset of the SR functionals—would be aesthetically less satisfying, and we might lose
some of the advantages of a clean and simple program logic that still had a clear
operational meaning, but it may ultimately be the more practical way forward.

Setting aside the issue of designing completely new programming languages, some
of the advantages of an SR-based programming style can already be enjoyed simply by
implementing a few useful SR functionals in a language such as Standard ML. This al-
lows one to experiment easily with these functionals, and to discover the kinds of task
to which such a programming style is particularly well suited. We have recently be-
gun an investigation these practical issues. It would appear so far that general-purpose
search algorithms and exact real-number computation both provide promising appli-
cation areas for SR-based programming. In addition, Bruce McAdam [40] has recently
found an interesting example of an SR functional with possible applications to de-
bugging and error message generation. Another plausible application area is the static
analysis of programs. It would be fair to admit that our examples to date do not pro-
vide clinching proof of the usefulness of SR-based programming, but they are certainly
intriguing enough to encourage further investigation.

Some examples of SR functionals implemented in ML, and some tentative program-
ming applications, may be found in [35] and in the accompanying Standard ML source
-le [34], available electronically from the author’s web page.

Acknowledgements

I have bene-ted from discussions and correspondence with very many people, includ-
ing Samson Abramsky, Thomas Ehrhard, Mart[\n Escard[o, Martin Hyland, Jim Laird,
Hanno Nickau, Luke Ong, Jaap van Oosten, Gordon Plotkin, Alex Simpson and Thomas
Streicher. I also thank Gail Kemp for moral support. This research was funded by the
EPSRC Research Grants GR=L89532 “Notions of computability for general datatypes”
and GR=J84205 “Frameworks for programming language semantics and logic”.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 91

References

[1] S. Abramsky, K. Honda, G. McCusker, A fully abstract game semantics for general references, in: Proc.
13th Ann. Symp. on Logic in Computer Science, IEEE, New York, 1998.

[2] S. Abramsky, R. Jagadeesan, P. Malacaria, Full abstraction for PCF, Inform. and Comput. 163 (2000)
409–470.

[3] R.M. Amadio, P.-L. Curien, in: Domains and Lambda Calculi, Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, Cambridge, 1998.

[4] H.P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, revised ed., North-Holland,
Ansterdam, 1984.

[5] G. Berry, Stable models of typed lambda-calculi, in: Proc. 5th Internat. Coll. on Automata, Languages
and Programming, Lecture Notes in Computer Science, Vol. 62, Springer, Berlin, 1978, pp. 72–89.

[6] G. Berry, P.-L. Curien, Sequential algorithms on concrete data structures, Theoret. Comput. Sci. 20 (3)
(1982) 265–321.

[7] G. Berry, P.-L. Curien, J.-J. L[evy, Full abstraction for sequential languages: the state of the art, in:
M. Nivat, J. Reynolds (Eds.), Algebraic Semantics, Cambridge University Press, Cambridge, 1986, pp.
89–132.

[8] L. Birkedal, A. Carboni, G. Rosolini, D.S. Scott, Type theory via exact categories, in: Proc. 13th Ann.
Symp. on Logic in Computer Science, IEEE, New York, 1998.

[9] A. Bucciarelli, Sequential models of PCF: some contributions to the domain-theoretic approach to full
abstraction, Ph.D. Thesis, Dipartimento di Informatica, UniversitRa di Pisa, 1993.

[10] A. Bucciarelli, T. Ehrhard, Sequentiality and strong stability, in: Proc. 6th Ann. Symp. on Logic in
Computer Science, IEEE, New York, 1991, pp. 138–145.

[11] A. Bucciarelli, T. Ehrhard, Sequentiality in an extensional framework, Inform. and Comput. 110 (1994)
265–296.

[12] R. Cartwright, P.-L. Curien, M. Felleisen, Fully abstract semantics for observably sequential languages,
Inform. and Comput. 111 (2) (1994) 297–401.

[13] R. Cartwright, M. Felleisen, Observable sequentiality and full abstraction, Proc. 19th POPL, ACM Press,
1992, pp. 328–342.

[14] L. Colson, T. Ehrhard, On strong stability and higher-order sequentiality, Proc. 9th Ann. Symp. on
Logic in Computer Science, IEEE, New York, 1994, pp. 103–108.

[15] P.-L. Curien, Categorical Combinators, Sequential Algorithms and Functional Programming, 2nd ed.,
BirkhXauser, Basel, 1993.

[16] T. Ehrhard, Hypercoherences: a strongly stable model of linear logic, Math. Struct. Comput. Sci. 3
(1993) 365–385.

[17] T. Ehrhard, Projecting sequential algorithms on strongly stable functions, Ann. Pure Appl. Logic 77
(1996) 201–244.

[18] T. Ehrhard, A relative PCF-de-nability result for strongly stable functions and some corollaries, Inform.
and Comput. 152 (1) (1999) 111–137.

[19] F. Honsell, D. Sannella, Pre-logical relations, in: Proc. Computer Science Logic, CSL’99, Lecture Notes
in Computer Science, Vol. 1683, Springer, Berlin, 1999, pp. 546–561.

[20] J.M.E. Hyland, A small complete category, Ann. Pure Appl. Logic 40 (1988) 135–165.
[21] J.M.E. Hyland, First steps in synthetic domain theory, in: Category Theory, Proceedings, Como, Lecture

Notes in Mathematics, vol. 1488, eds. A. Carboni, M.C. Pedicchio, G. Rosolini, Springer, Berlin, 1990,
pp. 131–156.

[22] J.M.E. Hyland, C.-H.L. Ong, Modi-ed realizability toposes and strong normalization proofs, in: J.F.
Groote, M. Bezem (Eds.), Typed Lambda Calculi and Applications, Lecture Notes in Computer Science,
vol. 664, Springer, Berlin, 1993, pp. 179–194.

[23] J.M.E. Hyland, C.-H.L. Ong, On full abstraction for PCF: I, II and III, Inform. and Comput. 163 (2000)
285–408.

[24] G. Kahn, G.D. Plotkin, Concrete domains, Theoret. Comput. Sci. 121 (1993) 187–277 (-rst appeared
in French as INRIA-LABORIA technical report, 1978).

[25] R. Kanneganti, R. Cartwright, M. Felleisen, SPCF: its model, calculus, and computational power, in:
Proc. REX Workshop on Semantics and Concurrency, Lecture Notes in Computer Science, vol. 666,
Springer, Berlin, 1993, pp. 318–347.

92 J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93

[26] S.C. Kleene, Recursive functionals and quanti-ers of -nite types revisited I, in: J.E. Fenstad,
R.O. Gandy, G.E. Sacks (Eds.), Generalized Recursion Theory II, North-Holland, Amsterdam, 1978,
pp. 185–222.

[27] S.C. Kleene, R.E. Vesley, The Foundations of Intuitionistic Mathematics, North-Holland, Amsterdam,
1965.

[28] G. Kreisel, Interpretation of analysis by means of functionals of -nite type, in: A. Heyting (Ed.),
Constructivity in Mathematics, North-Holland, Amsterdam, 1959, pp. 101–128.

[29] J. Laird, Full abstraction for functional languages with control, in: Proc. 12th Ann. Symp. on Logic in
Computer Science, IEEE, New York, 1997, pp. 58–67.

[30] J. Laird, A Semantic Analysis of Control, Ph.D. Thesis, University of Edinburgh, 1999, Available as
ECS-LFCS-99-409.

[31] R. Loader, Finitary PCF is undecidable, Theor. Comput. Sci. (2001), accepted.
[32] J.R. Longley, Realizability toposes and language semantics, Ph.D. Thesis, University of Edinburgh,

1995, Available as ECS-LFCS-95-332.
[33] J.R. Longley, Realizability models for sequential computation, in preparation; an incomplete draft is

available from the author’s home page, 1998.
[34] J.R. Longley, When is a functional program not a functional program?: a walkthrough

introduction to the sequentially realizable functionals, Standard ML source -le, available from
http:==www.dcs.ed.ac.uk=home=jrl, 1998.

[35] J.R. Longley, When is a functional program not a functional program?, in: Proc. 4th Internat. Conf. on
Functional Programming, Paris, ACM Press, New York, 1999, pp. 1–7.

[36] J.R. Longley, Notions of computability at higher types I, Proc. ASL Logic Coll., Paris, 2000, submitted.
[37] J.R. Longley, G.D. Plotkin, Logical full abstraction and PCF, in: J. Ginzburg et al. (Eds.), Tbilisi

Symposium on Language, Logic and Computation, SiLLI=CSLI, 1997, pp. 333–352.
[38] J.R. Longley, A.K. Simpson, A uniform approach to domain theory in realizability models, Math. Struct.

Comput. Sci. 7 (1997) 469–505.
[39] S. Mac Lane, I. Moerdijk, Sheaves in Geometry and Logic, Springer, Berlin, 1992.
[40] B.J. McAdam, Y to wrap it up (functional pearl), unpublished note, 2000.
[41] R. Milner, Fully abstract models of typed �-calculi, Theoret. Comput. Sci. 4 (1977) 1–22.
[42] R. Milner, M. Tofte, R. Harper, D. Macqueen, The De-nition of Standard ML: Revised 1997, MIT

Press, Cambridge, MA, 1997.
[43] P.S. Mulry, Generalized Banach-Mazur functionals in the topos of recursive sets, J. Pure Appl. Algebra

26 (1982) 71–83.
[44] H. Nickau, Hereditarily sequential functionals, in: Proc. 3rd Symp. on Logical Foundations of Computer

Science, Lecture Notes in Computer Science, vol. 813, Springer, Berlin, 1994, pp. 253–264.
[45] P.W. O’Hearn, J.G. Riecke, Kripke logical relations and PCF, Inform. and Comput. 120 (1) (1995)

107–116.
[46] C.-H.L. Ong, C.A. Stewart, A Curry–Howard foundation for functional computation with control, in:

Proc. Symp. on Principles of Programming Languages, ACM Press, New York, 1997, pp. 215–227.
[47] J. van Oosten, A combinatory algebra for sequential functionals of -nite type, in: Models and

Computability, eds. S.B. Cooper and J.K. Truss, Cambridge Univ. Press, 1999, pp. 389–406.
[48] J. van Oosten, The modi-ed realizability topos, J Pure Appl. Algebra 116 (1997) 273–289.
[49] G.D. Plotkin, LCF considered as a programming language, Theoret. Comput. Sci. 5 (1977) 223–255.
[50] G.D. Plotkin, Full abstraction, totality and PCF, Math. Struct. Comput. Sci. 9 (1) (1999) 1–20.
[51] B. Reus, Program veri-cation in synthetic domain theory, Ph.D. Thesis, University of Munich, 1995.
[52] B. Reus, T. Streicher, General synthetic domain theory—a logical approach, in: Category Theory in

Computer Science, Lecture Notes in Computer Science, vol. 1290, Springer, Berlin, 1997, pp. 293–313.
[53] J.G. Riecke, Fully abstract translations between functional languages, Math. Struct. Comput. Sci.

3 (1993) 387–415.
[54] J.S. Royer, On the computational complexity of Longley’s H functional, Presented at Second Internat.

Workshop on Implicit Computational Complexity, UC=Santa Barbara, 2000.
[55] V.Yu. Sazonov, Degrees of parallelism in computations, in: Mathematical Foundations of Computer

Science, Lecture Notes in Computer Science, vol. 45, Springer, Berlin, 1976, pp. 517–523.
[56] D.S. Scott, Data types as lattices, SIAM J. Comput. 5 (3) (1976) 522–587.
[57] D.S. Scott, A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoret. Comput. Sci., 121 (1993)

411–440. First written in 1969 and widely circulated in unpublished form since then.

J. Longley / Annals of Pure and Applied Logic 117 (2002) 1–93 93

[58] K. Sieber, Relating full abstraction results for di4erent programming languages, in: Proc. 10th Conf. on
Foundations of Software Technology and Theoretical Computer Science, Bangalore, Springer Lecture
Notes in Computer Science, vol. 472, Springer, Berlin, 1990.

[59] A.K. Simpson, Computational adequacy in an elementary topos, in: Computer Science Logic ’98, Proc.
Springer Lecture Notes in Computer Science, vol. 1584, Springer, Berlin, 1999, pp. 323–342.

[60] G.L. Steele, G.J. Sussman, The revised report on Scheme, a dialect of Lisp, Technical Report Memo
452, MIT AI Lab, 1978.

[61] T. Streicher, Investigations into Intensional Type Theory, Habilitationsschrift, MXunchen, 1993.
[62] P. Taylor, The -xed point property in synthetic domain theory, in: Proc. 6th Ann. Symp. on Logic in

Computer Science, IEEE, New York, 1991, 152–160.
[63] M.B. Trakhtenbrot, On representation of sequential and parallel functions, in: Proc. 4th Symp. on

Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 32, Springer,
Berlin, 1975, 411–417.

[64] J. Vuillemin, Syntaxe, S[emantique et Axiomatique d’un Langage de Programmation Simple, Ph.D.
Thesis, Universit[e Paris VII, 1974.

