1,874 research outputs found

    Towards Flight Trials for an Autonomous UAV Emergency Landing using Machine Vision

    Get PDF
    This paper presents the evolution and status of a number of research programs focussed on developing an automated fixed wing UAV landing system. Results obtained in each of the three main areas of research as vision-based site identification, path and trajectory planning and multi-criteria decision making are presented. The results obtained provide a baseline for further refinements and constitute the starting point for the implementation of a prototype system ready for flight testing

    Using learning from demonstration to enable automated flight control comparable with experienced human pilots

    Get PDF
    Modern autopilots fall under the domain of Control Theory which utilizes Proportional Integral Derivative (PID) controllers that can provide relatively simple autonomous control of an aircraft such as maintaining a certain trajectory. However, PID controllers cannot cope with uncertainties due to their non-adaptive nature. In addition, modern autopilots of airliners contributed to several air catastrophes due to their robustness issues. Therefore, the aviation industry is seeking solutions that would enhance safety. A potential solution to achieve this is to develop intelligent autopilots that can learn how to pilot aircraft in a manner comparable with experienced human pilots. This work proposes the Intelligent Autopilot System (IAS) which provides a comprehensive level of autonomy and intelligent control to the aviation industry. The IAS learns piloting skills by observing experienced teachers while they provide demonstrations in simulation. A robust Learning from Demonstration approach is proposed which uses human pilots to demonstrate the task to be learned in a flight simulator while training datasets are captured. The datasets are then used by Artificial Neural Networks (ANNs) to generate control models automatically. The control models imitate the skills of the experienced pilots when performing the different piloting tasks while handling flight uncertainties such as severe weather conditions and emergency situations. Experiments show that the IAS performs learned skills and tasks with high accuracy even after being presented with limited examples which are suitable for the proposed approach that relies on many single-hidden-layer ANNs instead of one or few large deep ANNs which produce a black-box that cannot be explained to the aviation regulators. The results demonstrate that the IAS is capable of imitating low-level sub-cognitive skills such as rapid and continuous stabilization attempts in stormy weather conditions, and high-level strategic skills such as the sequence of sub-tasks necessary to takeoff, land, and handle emergencies

    A STOL airworthiness investigation using a simulation of a deflected slipstream transport. Volume 1: Summary of results and airworthiness implications

    Get PDF
    A simulator study of short takeoff and landing (STOL) aircraft was conducted using a model of a deflected slipstream transport aircraft. The subjects considered are: (1) the approach, (2) flare and landing, (3) go-around, and (4) takeoff phases of flight. The results are summarized and possible implications with regard to airworthiness criteria are discussed. A data base is provided for future STOL airworthiness requirements and a preliminary indication of potential problem areas is developed. Comparison of the simulation results with various proposed STOL criteria indicates significant deficiencies in many of these criteria

    NASA TLA workload analysis support. Volume 1: Detailed task scenarios for general aviation and metering and spacing studies

    Get PDF
    The techniques required to produce and validate six detailed task timeline scenarios for crew workload studies are described. Specific emphasis is given to: general aviation single pilot instrument flight rules operations in a high density traffic area; fixed path metering and spacing operations; and comparative workload operation between the forward and aft-flight decks of the NASA terminal control vehicle. The validation efforts also provide a cursory examination of the resultant demand workload based on the operating procedures depicted in the detailed task scenarios

    Runway exit designs for capacity improvement demonstrations. Phase 2: Computer model development

    Get PDF
    The development is described of a computer simulation/optimization model to: (1) estimate the optimal locations of existing and proposed runway turnoffs; and (2) estimate the geometric design requirements associated with newly developed high speed turnoffs. The model described, named REDIM 2.0, represents a stand alone application to be used by airport planners, designers, and researchers alike to estimate optimal turnoff locations. The main procedures are described in detail which are implemented in the software package and possible applications are illustrated when using 6 major runway scenarios. The main output of the computer program is the estimation of the weighted average runway occupancy time for a user defined aircraft population. Also, the location and geometric characteristics of each turnoff are provided to the user

    Landing site reachability and decision making for UAS forced landings

    Get PDF
    After a huge amount of success within the military, the benefits of the use of unmanned aerial systems over manned aircraft is obvious. They are becoming cheaper and their functions advancing to such a point that there is now a large drive for their use by civilian operators. However there are a number of significant challenges that are slowing their inevitable integration into the national airspace systems of countries. A large array of emergency situations will need to be dealt with autonomously by contingency management systems to prevent potentially deadly incidences. One such emergency situation that will need autonomous intervention, is the total loss of thrust from engine failure. The complex multi faceted task of landing the stricken aircraft at a potentially unprepared site is called a forced landing. This thesis presents methods to address a number of critical parts of a forced landing system for use by an unmanned aerial system. In order for an emergency landing site to be considered, it needs to be within glide range. In order to find a landing site s reachability from the point of engine failure the aircraft s glide performance and a glide path must be known. A method by which to calculate the glide performance, both from aircraft parameters or experiments is shown. These are based on a number of steady state assumptions to make them generic and quick to compute. Despite the assumptions, these are shown to have reasonable accuracy. A minimum height loss path to the landing site is defined, which takes account of a steady uniform wind. While this path is not the path to be flown it enables a measure of how reachable a landing site is, as any extra height the aircraft has once it gets to the site makes a site more reachable. It is shown that this method is fast enough to be run online and is generic enough for use on a range of aircraft. Based on identified factors that make a landing site more suitable, a multi criteria decision making Bayesian network is developed to decide upon which site a unmanned aircraft should land in. It can handle uncertainty and non-complete information while guaranteeing a fast reasonable decision, which is critical in this time sensitive situation. A high fidelity simulation environment and flight test platform are developed in order to test the performance of the developed algorithms. The test environments developed enable rapid prototyping of algorithms not just within the scope of this thesis, but on a range of vehicle types. In simulation the minimum height loss paths show good accuracy, for two completely different types of aircraft. The decision making algorithms show that they are capable of being ran online in a flight test. They make a reasonable decision and are capable of quickly reacting to changing conditions, enabling redirection to a more suitable landing site

    Handling Qualities Evaluation of a Supersonic Tailless Air Vehicle

    Get PDF
    This thesis presents the results of a handling qualities evaluation of a supersonic tailless air vehicle. The 2006 Quadrennial Defense Review mandated the need for the next generation of long-range strike aircraft by 2018. Due to speed and stealth requirements, this resulted in a tailless aircraft with an instantaneous center of rotation located well forward of that of a conventional aircraft. This thesis examines how this center of rotation affected pilot handling qualities ratings. This effect should have been the most pronounced during approach and landing, and was where the testing focused. The goal of this research was to develop a systematic procedure for evaluating the handling qualities of this aircraft, and to determine how different pilot flying techniques or pilot-inceptor interactions influenced them. This procedure was demonstrated in simulator testing and in flight testing on the Calspan-operated Total In-Flight Simulator aircraft

    Exploration of an oculometer-based model of pilot workload

    Get PDF
    Potential relationships between eye behavior and pilot workload are discussed. A Honeywell Mark IIA oculometer was used to obtain the eye data in a fixed base transport aircraft simulation facility. The data were analyzed to determine those parameters of eye behavior which were related to changes in level of task difficulty of the simulated manual approach and landing on instruments. A number of trends and relationships between eye variables and pilot ratings were found. A preliminary equation was written based on the results of a stepwise linear regression. High variability in time spent on various instruments was related to differences in scanning strategy among pilots. A more detailed analysis of individual runs by individual pilots was performed to investigate the source of this variability more closely. Results indicated a high degree of intra-pilot variability in instrument scanning. No consistent workload related trends were found. Pupil diameter which had demonstrated a strong relationship to task difficulty was extensively re-exmained
    • …
    corecore