39,507 research outputs found

    A machine vision extension for the Ruby programming language

    Get PDF
    Dynamically typed scripting languages have become popular in recent years. Although interpreted languages allow for substantial reduction of software development time, they are often rejected due to performance concerns. In this paper we present an extension for the programming language Ruby, called HornetsEye, which facilitates the development of real-time machine vision algorithms within Ruby. Apart from providing integration of crucial libraries for input and output, HornetsEye provides fast native implementations (compiled code) for a generic set of array operators. Different array operators were compared with equivalent implementations in C++. Not only was it possible to achieve comparable real-time performance, but also to exceed the efficiency of the C++ implementation in several cases. Implementations of several algorithms were given to demonstrate how the array operators can be used to create concise implementations.</p

    Implementation of non-linear templates using a decomposition technique by a 0.5 /spl mu/m CMOS CNN universal chip

    Get PDF
    This paper demonstrates the processing capabilities of a recently designed analog programmable array processor. This new prototype, called CNNUC3, follows the cellular neural network universal machine computing paradigm. Due to its very advanced features and algorithmic capabilities, this chip has been demonstrated to be able to perform not only linear templates executions, but also to be very adequate for the implementation of non-linear templates by using a decomposition method. This paper focus on the application examples of the execution of non-linear templates with the CNNUC3 prototype. A brief description of the theoretical background is also presented in the paper

    Optical implementations of radial basis classifiers

    Get PDF
    We describe two optical systems based on the radial basis function approach to pattern classification. An optical-disk-based system for handwritten character recognition is demonstrated. The optical system computes the Euclidean distance between an unknown input and 650 stored patterns at a demonstrated rate of 26,000 pattern comparisons/s. The ultimate performance of this system is limited by optical-disk resolution to 10^11 binary operations/s. An adaptive system is also presented that facilitates on-line learning and provides additional robustness

    Unified Heat Kernel Regression for Diffusion, Kernel Smoothing and Wavelets on Manifolds and Its Application to Mandible Growth Modeling in CT Images

    Full text link
    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface.Comment: Accepted in Medical Image Analysi
    corecore