7,167 research outputs found

    Blind separation of underdetermined mixtures with additive white and pink noises

    Get PDF
    This paper presents an approach for underdetermined blind source separation in the case of additive Gaussian white noise and pink noise. Likewise, the proposed approach is applicable in the case of separating I + 3 sources from I mixtures with additive two kinds of noises. This situation is more challenging and suitable to practical real world problems. Moreover, unlike to some conventional approaches, the sparsity conditions are not imposed. Firstly, the mixing matrix is estimated based on an algorithm that combines short time Fourier transform and rough-fuzzy clustering. Then, the mixed signals are normalized and the source signals are recovered using modified Gradient descent Local Hierarchical Alternating Least Squares Algorithm exploiting the mixing matrix obtained from the previous step as an input and initialized by multiplicative algorithm for matrix factorization based on alpha divergence. The experiments and simulation results show that the proposed approach can separate I + 3 source signals from I mixed signals, and it has superior evaluation performance compared to some conventional approaches

    Sparse and Non-Negative BSS for Noisy Data

    Full text link
    Non-negative blind source separation (BSS) has raised interest in various fields of research, as testified by the wide literature on the topic of non-negative matrix factorization (NMF). In this context, it is fundamental that the sources to be estimated present some diversity in order to be efficiently retrieved. Sparsity is known to enhance such contrast between the sources while producing very robust approaches, especially to noise. In this paper we introduce a new algorithm in order to tackle the blind separation of non-negative sparse sources from noisy measurements. We first show that sparsity and non-negativity constraints have to be carefully applied on the sought-after solution. In fact, improperly constrained solutions are unlikely to be stable and are therefore sub-optimal. The proposed algorithm, named nGMCA (non-negative Generalized Morphological Component Analysis), makes use of proximal calculus techniques to provide properly constrained solutions. The performance of nGMCA compared to other state-of-the-art algorithms is demonstrated by numerical experiments encompassing a wide variety of settings, with negligible parameter tuning. In particular, nGMCA is shown to provide robustness to noise and performs well on synthetic mixtures of real NMR spectra.Comment: 13 pages, 18 figures, to be published in IEEE Transactions on Signal Processin

    Painless Breakups -- Efficient Demixing of Low Rank Matrices

    Full text link
    Assume we are given a sum of linear measurements of ss different rank-rr matrices of the form y=k=1sAk(Xk)y = \sum_{k=1}^{s} \mathcal{A}_k ({X}_k). When and under which conditions is it possible to extract (demix) the individual matrices Xk{X}_k from the single measurement vector y{y}? And can we do the demixing numerically efficiently? We present two computationally efficient algorithms based on hard thresholding to solve this low rank demixing problem. We prove that under suitable conditions these algorithms are guaranteed to converge to the correct solution at a linear rate. We discuss applications in connection with quantum tomography and the Internet-of-Things. Numerical simulations demonstrate empirically the performance of the proposed algorithms
    corecore