1,018 research outputs found

    Realizing arbitrary-precision modular multiplication with a fixed-precision multiplier datapath

    Get PDF
    Within the context of cryptographic hardware, the term scalability refers to the ability to process operands of any size, regardless of the precision of the underlying data path or registers. In this paper we present a simple yet effective technique for increasing the scalability of a fixed-precision Montgomery multiplier. Our idea is to extend the datapath of a Montgomery multiplier in such a way that it can also perform an ordinary multiplication of two n-bit operands (without modular reduction), yielding a 2n-bit result. This conventional (nxn->2n)-bit multiplication is then used as a “sub-routine” to realize arbitrary-precision Montgomery multiplication according to standard software algorithms such as Coarsely Integrated Operand Scanning (CIOS). We show that performing a 2n-bit modular multiplication on an n-bit multiplier can be done in 5n clock cycles, whereby we assume that the n-bit modular multiplication takes n cycles. Extending a Montgomery multiplier for this extra functionality requires just some minor modifications of the datapath and entails a slight increase in silicon area

    Hardware Implementations for Symmetric Key Cryptosystems

    Get PDF
    The utilization of global communications network for supporting new electronic applications is growing. Many applications provided over the global communications network involve exchange of security-sensitive information between different entities. Often, communicating entities are located at different locations around the globe. This demands deployment of certain mechanisms for providing secure communications channels between these entities. For this purpose, cryptographic algorithms are used by many of today\u27s electronic applications to maintain security. Cryptographic algorithms provide set of primitives for achieving different security goals such as: confidentiality, data integrity, authenticity, and non-repudiation. In general, two main categories of cryptographic algorithms can be used to accomplish any of these security goals, namely, asymmetric key algorithms and symmetric key algorithms. The security of asymmetric key algorithms is based on the hardness of the underlying computational problems, which usually require large overhead of space and time complexities. On the other hand, the security of symmetric key algorithms is based on non-linear transformations and permutations, which provide efficient implementations compared to the asymmetric key ones. Therefore, it is common to use asymmetric key algorithms for key exchange, while symmetric key counterparts are deployed in securing the communications sessions. This thesis focuses on finding efficient hardware implementations for symmetric key cryptosystems targeting mobile communications and resource constrained applications. First, efficient lightweight hardware implementations of two members of the Welch-Gong (WG) family of stream ciphers, the WG(29,11)\left(29,11\right) and WG-1616, are considered for the mobile communications domain. Optimizations in the WG(29,11)\left(29,11\right) stream cipher are considered when the GF(229)GF\left(2^{29}\right) elements are represented in either the Optimal normal basis type-II (ONB-II) or the Polynomial basis (PB). For WG-1616, optimizations are considered only for PB representations of the GF(216)GF\left(2^{16}\right) elements. In this regard, optimizations for both ciphers are accomplished mainly at the arithmetic level through reducing the number of field multipliers, based on novel trace properties. In addition, other optimization techniques such as serialization and pipelining, are also considered. After this, the thesis explores efficient hardware implementations for digit-level multiplication over binary extension fields GF(2m)GF\left(2^{m}\right). Efficient digit-level GF(2m)GF\left(2^{m}\right) multiplications are advantageous for ultra-lightweight implementations, not only in symmetric key algorithms, but also in asymmetric key algorithms. The thesis introduces new architectures for digit-level GF(2m)GF\left(2^{m}\right) multipliers considering the Gaussian normal basis (GNB) and PB representations of the field elements. The new digit-level GF(2m)GF\left(2^{m}\right) single multipliers do not require loading of the two input field elements in advance to computations. This feature results in high throughput fast multiplication in resource constrained applications with limited capacity of input data-paths. The new digit-level GF(2m)GF\left(2^{m}\right) single multipliers are considered for both the GNB and PB. In addition, for the GNB representation, new architectures for digit-level GF(2m)GF\left(2^{m}\right) hybrid-double and hybrid-triple multipliers are introduced. The new digit-level GF(2m)GF\left(2^{m}\right) hybrid-double and hybrid-triple GNB multipliers, respectively, accomplish the multiplication of three and four field elements using the latency required for multiplying two field elements. Furthermore, a new hardware architecture for the eight-ary exponentiation scheme is proposed by utilizing the new digit-level GF(2m)GF\left(2^{m}\right) hybrid-triple GNB multipliers

    High Speed and Low-Complexity Hardware Architectures for Elliptic Curve-Based Crypto-Processors

    Get PDF
    The elliptic curve cryptography (ECC) has been identified as an efficient scheme for public-key cryptography. This thesis studies efficient implementation of ECC crypto-processors on hardware platforms in a bottom-up approach. We first study efficient and low-complexity architectures for finite field multiplications over Gaussian normal basis (GNB). We propose three new low-complexity digit-level architectures for finite field multiplication. Architectures are modified in order to make them more suitable for hardware implementations specially focusing on reducing the area usage. Then, for the first time, we propose a hybrid digit-level multiplier architecture which performs two multiplications together (double-multiplication) with the same number of clock cycles required as the one for one multiplication. We propose a new hardware architecture for point multiplication on newly introduced binary Edwards and generalized Hessian curves. We investigate higher level parallelization and lower level scheduling for point multiplication on these curves. Also, we propose a highly parallel architecture for point multiplication on Koblitz curves by modifying the addition formulation. Several FPGA implementations exploiting these modifications are presented in this thesis. We employed the proposed hybrid multiplier architecture to reduce the latency of point multiplication in ECC crypto-processors as well as the double-exponentiation. This scheme is the first known method to increase the speed of point multiplication whenever parallelization fails due to the data dependencies amongst lower level arithmetic computations. Our comparison results show that our proposed multiplier architectures outperform the counterparts available in the literature. Furthermore, fast computation of point multiplication on different binary elliptic curves is achieved

    Area- Efficient VLSI Implementation of Serial-In Parallel-Out Multiplier Using Polynomial Representation in Finite Field GF(2m)

    Full text link
    Finite field multiplier is mainly used in elliptic curve cryptography, error-correcting codes and signal processing. Finite field multiplier is regarded as the bottleneck arithmetic unit for such applications and it is the most complicated operation over finite field GF(2m) which requires a huge amount of logic resources. In this paper, a new modified serial-in parallel-out multiplication algorithm with interleaved modular reduction is suggested. The proposed method offers efficient area architecture as compared to proposed algorithms in the literature. The reduced finite field multiplier complexity is achieved by means of utilizing logic NAND gate in a particular architecture. The efficiency of the proposed architecture is evaluated based on criteria such as time (latency, critical path) and space (gate-latch number) complexity. A detailed comparative analysis indicates that, the proposed finite field multiplier based on logic NAND gate outperforms previously known resultsComment: 19 pages, 4 figure

    High speed world level finite field multipliers in F2m

    Get PDF
    Finite fields have important applications in number theory, algebraic geometry, Galois theory, cryptography, and coding theory. Recently, the use of finite field arithmetic in the area of cryptography has increasingly gained importance. Elliptic curve and El-Gamal cryptosystems are two important examples of public key cryptosystems widely used today based on finite field arithmetic. Research in this area is moving toward finding new architectures to implement the arithmetic operations more efficiently. Two types of finite fields are commonly used in practice, prime field GF(p) and the binary extension field GF(2 m). The binary extension fields are attractive for high speed cryptography applications since they are suitable for hardware implementations. Hardware implementation of finite field multipliers can usually be categorized into three categories: bit-serial, bit-parallel, and word-level architectures. The word-level multipliers provide architectural flexibility and trade-off between the performance and limitations of VLSI implementation and I/O ports, thus it is of more practical significance. In this work, different word level architectures for multiplication using binary field are proposed. It has been shown that the proposed architectures are more efficient compared to similar proposals considering area/delay complexities as a measure of performance. Practical size multipliers for cryptography applications have been realized in hardware using FPGA or standard CMOS technology, to similar proposals considering area/delay complexities as a measure of performance. Practical size multipliers for cryptography applications have been realized in hardware using FPGA or standard CMOS technology. Also different VLSI implementations for multipliers were explored which resulted in more efficient implementations for some of the regular architectures. The new implementations use a simple module designed in domino logic as the main building block for the multiplier. Significant speed improvements was achieved designing practical size multipliers using the proposed methodology

    Digit-Level Serial-In Parallel-Out Multiplier Using Redundant Representation for a Class of Finite Fields

    Get PDF
    Two digit-level finite field multipliers in F2m using redundant representation are presented. Embedding F2m in cyclotomic field F2(n) causes a certain amount of redundancy and consequently performing field multiplication using redundant representation would require more hardware resources. Based on a specific feature of redundant representation in a class of finite fields, two new multiplication algorithms along with their pertaining architectures are proposed to alleviate this problem. Considering area-delay product as a measure of evaluation, it has been shown that both the proposed architectures considerably outperform existing digit-level multipliers using the same basis. It is also shown that for a subset of the fields, the proposed multipliers are of higher performance in terms of area-delay complexities among several recently proposed optimal normal basis multipliers. The main characteristics of the postplace&route application specific integrated circuit implementation of the proposed multipliers for three practical digit sizes are also reported

    Efficient Arithmetic for the Implementation of Elliptic Curve Cryptography

    Get PDF
    The technology of elliptic curve cryptography is now an important branch in public-key based crypto-system. Cryptographic mechanisms based on elliptic curves depend on the arithmetic of points on the curve. The most important arithmetic is multiplying a point on the curve by an integer. This operation is known as elliptic curve scalar (or point) multiplication operation. A cryptographic device is supposed to perform this operation efficiently and securely. The elliptic curve scalar multiplication operation is performed by combining the elliptic curve point routines that are defined in terms of the underlying finite field arithmetic operations. This thesis focuses on hardware architecture designs of elliptic curve operations. In the first part, we aim at finding new architectures to implement the finite field arithmetic multiplication operation more efficiently. In this regard, we propose novel schemes for the serial-out bit-level (SOBL) arithmetic multiplication operation in the polynomial basis over F_2^m. We show that the smallest SOBL scheme presented here can provide about 26-30\% reduction in area-complexity cost and about 22-24\% reduction in power consumptions for F_2^{163} compared to the current state-of-the-art bit-level multiplier schemes. Then, we employ the proposed SOBL schemes to present new hybrid-double multiplication architectures that perform two multiplications with latency comparable to the latency of a single multiplication. Then, in the second part of this thesis, we investigate the different algorithms for the implementation of elliptic curve scalar multiplication operation. We focus our interest in three aspects, namely, the finite field arithmetic cost, the critical path delay, and the protection strength from side-channel attacks (SCAs) based on simple power analysis. In this regard, we propose a novel scheme for the scalar multiplication operation that is based on processing three bits of the scalar in the exact same sequence of five point arithmetic operations. We analyse the security of our scheme and show that its security holds against both SCAs and safe-error fault attacks. In addition, we show how the properties of the proposed elliptic curve scalar multiplication scheme yields an efficient hardware design for the implementation of a single scalar multiplication on a prime extended twisted Edwards curve incorporating 8 parallel multiplication operations. Our comparison results show that the proposed hardware architecture for the twisted Edwards curve model implemented using the proposed scalar multiplication scheme is the fastest secure SCA protected scalar multiplication scheme over prime field reported in the literature

    Error Detecting Dual Basis Bit Parallel Systolic Multiplication Architecture over GF(2m)

    Get PDF
    An error tolerant hardware efficient very large scale integration (VLSI) architecture for bit parallel systolic multiplication over dual base, which can be pipelined, is presented. Since this architecture has the features of regularity, modularity and unidirectional data flow, this structure is well suited to VLSI implementations. The length of the largest delay path and area of this architecture are less compared to the bit parallel systolic multiplication architectures reported earlier. The architecture is implemented using Austria Micro System's 0.35 m CMOS (complementary metal oxide semiconductor) technology. This architecture can also operate over both the dual-base and polynomial base

    Multiple bit error correcting architectures over finite fields

    Get PDF
    This thesis proposes techniques to mitigate multiple bit errors in GF arithmetic circuits. As GF arithmetic circuits such as multipliers constitute the complex and important functional unit of a crypto-processor, making them fault tolerant will improve the reliability of circuits that are employed in safety applications and the errors may cause catastrophe if not mitigated. Firstly, a thorough literature review has been carried out. The merits of efficient schemes are carefully analyzed to study the space for improvement in error correction, area and power consumption. Proposed error correction schemes include bit parallel ones using optimized BCH codes that are useful in applications where power and area are not prime concerns. The scheme is also extended to dynamically correcting scheme to reduce decoder delay. Other method that suits low power and area applications such as RFIDs and smart cards using cross parity codes is also proposed. The experimental evaluation shows that the proposed techniques can mitigate single and multiple bit errors with wider error coverage compared to existing methods with lesser area and power consumption. The proposed scheme is used to mask the errors appearing at the output of the circuit irrespective of their cause. This thesis also investigates the error mitigation schemes in emerging technologies (QCA, CNTFET) to compare area, power and delay with existing CMOS equivalent. Though the proposed novel multiple error correcting techniques can not ensure 100% error mitigation, inclusion of these techniques to actual design can improve the reliability of the circuits or increase the difficulty in hacking crypto-devices. Proposed schemes can also be extended to non GF digital circuits

    Optimizing scalar multiplication for koblitz curves using hybrid FPGAs

    Get PDF
    Elliptic curve cryptography (ECC) is a type of public-key cryptosystem which uses the additive group of points on a nonsingular elliptic curve as a cryptographic medium. Koblitz curves are special elliptic curves that have unique properties which allow scalar multiplication, the bottleneck operation in most ECC cryptosystems, to be performed very efficiently. Optimizing the scalar multiplication operation on Koblitz curves is an active area of research with many proposed algorithms for FPGA and software implementations. As of yet little to no research has been reported on using the capabilities of hybrid FPGAs, such as the Xilinx Virtex-4 FX series, which would allow for the design of a more flexible single-chip system that performs scalar multiplication and is not constrained by high communication costs between hardware and software. While the results obtained in this thesis were competitive with many other FPGA implementations, the most recent research efforts have produced significantly faster FPGA based systems. These systems were created by utilizing new and interesting approaches to improve the runtime of performing scalar multiplication on Koblitz curves and thus significantly outperformed the results obtained in this thesis. However, this thesis also functioned as a comparative study of the usage of different basis representations and proved that strict polynomial basis approaches can compete with strict normal basis implementations when performing scalar multiplication on Koblitz curves
    corecore