70,236 research outputs found

    Role of homeostasis in learning sparse representations

    Full text link
    Neurons in the input layer of primary visual cortex in primates develop edge-like receptive fields. One approach to understanding the emergence of this response is to state that neural activity has to efficiently represent sensory data with respect to the statistics of natural scenes. Furthermore, it is believed that such an efficient coding is achieved using a competition across neurons so as to generate a sparse representation, that is, where a relatively small number of neurons are simultaneously active. Indeed, different models of sparse coding, coupled with Hebbian learning and homeostasis, have been proposed that successfully match the observed emergent response. However, the specific role of homeostasis in learning such sparse representations is still largely unknown. By quantitatively assessing the efficiency of the neural representation during learning, we derive a cooperative homeostasis mechanism that optimally tunes the competition between neurons within the sparse coding algorithm. We apply this homeostasis while learning small patches taken from natural images and compare its efficiency with state-of-the-art algorithms. Results show that while different sparse coding algorithms give similar coding results, the homeostasis provides an optimal balance for the representation of natural images within the population of neurons. Competition in sparse coding is optimized when it is fair. By contributing to optimizing statistical competition across neurons, homeostasis is crucial in providing a more efficient solution to the emergence of independent components

    Fast Dictionary Learning for Sparse Representations of Speech Signals

    Get PDF
    © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Published version: IEEE Journal of Selected Topics in Signal Processing 5(5): 1025-1031, Sep 2011. DOI: 10.1109/JSTSP.2011.2157892

    The Price of Information in Combinatorial Optimization

    Full text link
    Consider a network design application where we wish to lay down a minimum-cost spanning tree in a given graph; however, we only have stochastic information about the edge costs. To learn the precise cost of any edge, we have to conduct a study that incurs a price. Our goal is to find a spanning tree while minimizing the disutility, which is the sum of the tree cost and the total price that we spend on the studies. In a different application, each edge gives a stochastic reward value. Our goal is to find a spanning tree while maximizing the utility, which is the tree reward minus the prices that we pay. Situations such as the above two often arise in practice where we wish to find a good solution to an optimization problem, but we start with only some partial knowledge about the parameters of the problem. The missing information can be found only after paying a probing price, which we call the price of information. What strategy should we adopt to optimize our expected utility/disutility? A classical example of the above setting is Weitzman's "Pandora's box" problem where we are given probability distributions on values of nn independent random variables. The goal is to choose a single variable with a large value, but we can find the actual outcomes only after paying a price. Our work is a generalization of this model to other combinatorial optimization problems such as matching, set cover, facility location, and prize-collecting Steiner tree. We give a technique that reduces such problems to their non-price counterparts, and use it to design exact/approximation algorithms to optimize our utility/disutility. Our techniques extend to situations where there are additional constraints on what parameters can be probed or when we can simultaneously probe a subset of the parameters.Comment: SODA 201

    Almost Optimal Stochastic Weighted Matching With Few Queries

    Full text link
    We consider the {\em stochastic matching} problem. An edge-weighted general (i.e., not necessarily bipartite) graph G(V,E)G(V, E) is given in the input, where each edge in EE is {\em realized} independently with probability pp; the realization is initially unknown, however, we are able to {\em query} the edges to determine whether they are realized. The goal is to query only a small number of edges to find a {\em realized matching} that is sufficiently close to the maximum matching among all realized edges. This problem has received a considerable attention during the past decade due to its numerous real-world applications in kidney-exchange, matchmaking services, online labor markets, and advertisements. Our main result is an {\em adaptive} algorithm that for any arbitrarily small Ï”>0\epsilon > 0, finds a (1−ϔ)(1-\epsilon)-approximation in expectation, by querying only O(1)O(1) edges per vertex. We further show that our approach leads to a (1/2−ϔ)(1/2-\epsilon)-approximate {\em non-adaptive} algorithm that also queries only O(1)O(1) edges per vertex. Prior to our work, no nontrivial approximation was known for weighted graphs using a constant per-vertex budget. The state-of-the-art adaptive (resp. non-adaptive) algorithm of Maehara and Yamaguchi [SODA 2018] achieves a (1−ϔ)(1-\epsilon)-approximation (resp. (1/2−ϔ)(1/2-\epsilon)-approximation) by querying up to O(wlog⁥n)O(w\log{n}) edges per vertex where ww denotes the maximum integer edge-weight. Our result is a substantial improvement over this bound and has an appealing message: No matter what the structure of the input graph is, one can get arbitrarily close to the optimum solution by querying only a constant number of edges per vertex. To obtain our results, we introduce novel properties of a generalization of {\em augmenting paths} to weighted matchings that may be of independent interest

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio
    • 

    corecore