52 research outputs found

    Twitter reciprocal reply networks exhibit assortativity with respect to happiness

    Full text link
    The advent of social media has provided an extraordinary, if imperfect, 'big data' window into the form and evolution of social networks. Based on nearly 40 million message pairs posted to Twitter between September 2008 and February 2009, we construct and examine the revealed social network structure and dynamics over the time scales of days, weeks, and months. At the level of user behavior, we employ our recently developed hedonometric analysis methods to investigate patterns of sentiment expression. We find users' average happiness scores to be positively and significantly correlated with those of users one, two, and three links away. We strengthen our analysis by proposing and using a null model to test the effect of network topology on the assortativity of happiness. We also find evidence that more well connected users write happier status updates, with a transition occurring around Dunbar's number. More generally, our work provides evidence of a social sub-network structure within Twitter and raises several methodological points of interest with regard to social network reconstructions.Comment: 22 pages, 21 figures, 5 tables, In press at the Journal of Computational Scienc

    An Evolutionary Algorithm Approach to Link Prediction in Dynamic Social Networks

    Full text link
    Many real world, complex phenomena have underlying structures of evolving networks where nodes and links are added and removed over time. A central scientific challenge is the description and explanation of network dynamics, with a key test being the prediction of short and long term changes. For the problem of short-term link prediction, existing methods attempt to determine neighborhood metrics that correlate with the appearance of a link in the next observation period. Recent work has suggested that the incorporation of topological features and node attributes can improve link prediction. We provide an approach to predicting future links by applying the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to optimize weights which are used in a linear combination of sixteen neighborhood and node similarity indices. We examine a large dynamic social network with over 10610^6 nodes (Twitter reciprocal reply networks), both as a test of our general method and as a problem of scientific interest in itself. Our method exhibits fast convergence and high levels of precision for the top twenty predicted links. Based on our findings, we suggest possible factors which may be driving the evolution of Twitter reciprocal reply networks.Comment: 17 pages, 12 figures, 4 tables, Submitted to the Journal of Computational Scienc

    Testing Propositions Derived from Twitter Studies: Generalization and Replication in Computational Social Science

    Get PDF
    Replication is an essential requirement for scientific discovery. The current study aims to generalize and replicate 10 propositions made in previous Twitter studies using a representative dataset. Our findings suggest 6 out of 10 propositions could not be replicated due to the variations of data collection, analytic strategies employed, and inconsistent measurements. The studyโ€™s contributions are twofold: First, it systematically summarized and assessed some important claims in the field, which can inform future studies. Second, it proposed a feasible approach to generating a random sample of Twitter users and its associated ego networks, which might serve as a solution for answering social-scientific questions at the individual level without accessing the complete data archive.published_or_final_versio

    Dynamics of Trust Reciprocation in Heterogenous MMOG Networks

    Full text link
    Understanding the dynamics of reciprocation is of great interest in sociology and computational social science. The recent growth of Massively Multi-player Online Games (MMOGs) has provided unprecedented access to large-scale data which enables us to study such complex human behavior in a more systematic manner. In this paper, we consider three different networks in the EverQuest2 game: chat, trade, and trust. The chat network has the highest level of reciprocation (33%) because there are essentially no barriers to it. The trade network has a lower rate of reciprocation (27%) because it has the obvious barrier of requiring more goods or money for exchange; morever, there is no clear benefit to returning a trade link except in terms of social connections. The trust network has the lowest reciprocation (14%) because this equates to sharing certain within-game assets such as weapons, and so there is a high barrier for such connections because they require faith in the players that are granted such high access. In general, we observe that reciprocation rate is inversely related to the barrier level in these networks. We also note that reciprocation has connections across the heterogeneous networks. Our experiments indicate that players make use of the medium-barrier reciprocations to strengthen a relationship. We hypothesize that lower-barrier interactions are an important component to predicting higher-barrier ones. We verify our hypothesis using predictive models for trust reciprocations using features from trade interactions. Using the number of trades (both before and after the initial trust link) boosts our ability to predict if the trust will be reciprocated up to 11% with respect to the AUC

    ๊ฐœ์ธ ์‚ฌํšŒ๋ง ๋„คํŠธ์›Œํฌ ๋ถ„์„ ๊ธฐ๋ฐ˜ ์˜จ๋ผ์ธ ์‚ฌํšŒ ๊ณต๊ฒฉ์ž ํƒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ๊น€์ข…๊ถŒ.In the last decade we have witnessed the explosive growth of online social networking services (SNSs) such as Facebook, Twitter, Weibo and LinkedIn. While SNSs provide diverse benefits โ€“ for example, fostering inter-personal relationships, community formations and news propagation, they also attracted uninvited nuiance. Spammers abuse SNSs as vehicles to spread spams rapidly and widely. Spams, unsolicited or inappropriate messages, significantly impair the credibility and reliability of services. Therefore, detecting spammers has become an urgent and critical issue in SNSs. This paper deals with spamming in Twitter and Weibo. Instead of spreading annoying messages to the public, a spammer follows (subscribes to) normal users, and followed a normal user. Sometimes a spammer makes link farm to increase target accounts explicit influence. Based on the assumption that the online relationships of spammers are different from those of normal users, I proposed classification schemes that detect online social attackers including spammers. I firstly focused on ego-network social relations and devised two features, structural features based on Triad Significance Profile (TSP) and relational semantic features based on hierarchical homophily in an ego-network. Experiments on real Twitter and Weibo datasets demonstrated that the proposed approach is very practical. The proposed features are scalable because instead of analyzing the whole network, they inspect user-centered ego-networks. My performance study showed that proposed methods yield significantly better performance than prior scheme in terms of true positives and false positives.์ตœ๊ทผ ์šฐ๋ฆฌ๋Š” Facebook, Twitter, Weibo, LinkedIn ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ์‚ฌํšŒ ๊ด€๊ณ„๋ง ์„œ๋น„์Šค๊ฐ€ ํญ๋ฐœ์ ์œผ๋กœ ์„ฑ์žฅํ•˜๋Š” ํ˜„์ƒ์„ ๋ชฉ๊ฒฉํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ ์‚ฌํšŒ ๊ด€๊ณ„๋ง ์„œ๋น„์Šค๊ฐ€ ๊ฐœ์ธ๊ณผ ๊ฐœ์ธ๊ฐ„์˜ ๊ด€๊ณ„ ๋ฐ ์ปค๋ฎค๋‹ˆํ‹ฐ ํ˜•์„ฑ๊ณผ ๋‰ด์Šค ์ „ํŒŒ ๋“ฑ์˜ ์—ฌ๋Ÿฌ ์ด์ ์„ ์ œ๊ณตํ•ด ์ฃผ๊ณ  ์žˆ๋Š”๋ฐ ๋ฐ˜ํ•ด ๋ฐ˜๊ฐ‘์ง€ ์•Š์€ ํ˜„์ƒ ์—ญ์‹œ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋‹ค. ์ŠคํŒจ๋จธ๋“ค์€ ์‚ฌํšŒ ๊ด€๊ณ„๋ง ์„œ๋น„์Šค๋ฅผ ๋™๋ ฅ ์‚ผ์•„ ์ŠคํŒธ์„ ๋งค์šฐ ๋น ๋ฅด๊ณ  ๋„“๊ฒŒ ์ „ํŒŒํ•˜๋Š” ์‹์œผ๋กœ ์•…์šฉํ•˜๊ณ  ์žˆ๋‹ค. ์ŠคํŒธ์€ ์ˆ˜์‹ ์ž๊ฐ€ ์›์น˜ ์•Š๋Š” ๋ฉ”์‹œ์ง€๋“ค์„ ์ผ์ปฝ๋Š”๋ฐ ์ด๋Š” ์„œ๋น„์Šค์˜ ์‹ ๋ขฐ๋„์™€ ์•ˆ์ •์„ฑ์„ ํฌ๊ฒŒ ์†์ƒ์‹œํ‚จ๋‹ค. ๋”ฐ๋ผ์„œ, ์ŠคํŒจ๋จธ๋ฅผ ํƒ์ง€ํ•˜๋Š” ๊ฒƒ์ด ํ˜„์žฌ ์†Œ์…œ ๋ฏธ๋””์–ด์—์„œ ๋งค์šฐ ๊ธด๊ธ‰ํ•˜๊ณ  ์ค‘์š”ํ•œ ๋ฌธ์ œ๊ฐ€ ๋˜์—ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๋Œ€ํ‘œ์ ์ธ ์‚ฌํšŒ ๊ด€๊ณ„๋ง ์„œ๋น„์Šค๋“ค ์ค‘ Twitter์™€ Weibo์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ŠคํŒจ๋ฐ์„ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์œ ํ˜•์˜ ์ŠคํŒจ๋ฐ๋“ค์€ ๋ถˆํŠน์ • ๋‹ค์ˆ˜์—๊ฒŒ ๋ฉ”์‹œ์ง€๋ฅผ ์ „ํŒŒํ•˜๋Š” ๋Œ€์‹ ์—, ๋งŽ์€ ์ผ๋ฐ˜ ์‚ฌ์šฉ์ž๋“ค์„ 'ํŒ”๋กœ์šฐ(๊ตฌ๋…)'ํ•˜๊ณ  ์ด๋“ค๋กœ๋ถ€ํ„ฐ '๋งž ํŒ”๋กœ์ž‰(๋งž ๊ตฌ๋…)'์„ ์ด๋Œ์–ด ๋‚ด๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ๋•Œ๋กœ๋Š” link farm์„ ์ด์šฉํ•ด ํŠน์ • ๊ณ„์ •์˜ ํŒ”๋กœ์›Œ ์ˆ˜๋ฅผ ๋†’์ด๊ณ  ๋ช…์‹œ์  ์˜ํ–ฅ๋ ฅ์„ ์ฆ๊ฐ€์‹œํ‚ค๊ธฐ๋„ ํ•œ๋‹ค. ์ŠคํŒจ๋จธ์˜ ์˜จ๋ผ์ธ ๊ด€๊ณ„๋ง์ด ์ผ๋ฐ˜ ์‚ฌ์šฉ์ž์˜ ์˜จ๋ผ์ธ ์‚ฌํšŒ๋ง๊ณผ ๋‹ค๋ฅผ ๊ฒƒ์ด๋ผ๋Š” ๊ฐ€์ • ํ•˜์—, ๋‚˜๋Š” ์ŠคํŒจ๋จธ๋“ค์„ ํฌํ•จํ•œ ์ผ๋ฐ˜์ ์ธ ์˜จ๋ผ์ธ ์‚ฌํšŒ๋ง ๊ณต๊ฒฉ์ž๋“ค์„ ํƒ์ง€ํ•˜๋Š” ๋ถ„๋ฅ˜ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋‚˜๋Š” ๋จผ์ € ๊ฐœ์ธ ์‚ฌํšŒ๋ง ๋‚ด ์‚ฌํšŒ ๊ด€๊ณ„์— ์ฃผ๋ชฉํ•˜๊ณ  ๋‘ ๊ฐ€์ง€ ์ข…๋ฅ˜์˜ ๋ถ„๋ฅ˜ ํŠน์„ฑ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋“ค์€ ๊ฐœ์ธ ์‚ฌํšŒ๋ง์˜ Triad Significance Profile (TSP)์— ๊ธฐ๋ฐ˜ํ•œ ๊ตฌ์กฐ์  ํŠน์„ฑ๊ณผ Hierarchical homophily์— ๊ธฐ๋ฐ˜ํ•œ ๊ด€๊ณ„ ์˜๋ฏธ์  ํŠน์„ฑ์ด๋‹ค. ์‹ค์ œ Twitter์™€ Weibo ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•์ด ๋งค์šฐ ์‹ค์šฉ์ ์ด๋ผ๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์ œ์•ˆํ•œ ํŠน์„ฑ๋“ค์€ ์ „์ฒด ๋„คํŠธ์›Œํฌ๋ฅผ ๋ถ„์„ํ•˜์ง€ ์•Š์•„๋„ ๊ฐœ์ธ ์‚ฌํšŒ๋ง๋งŒ ๋ถ„์„ํ•˜๋ฉด ๋˜๊ธฐ ๋•Œ๋ฌธ์— scalableํ•˜๊ฒŒ ์ธก์ •๋  ์ˆ˜ ์žˆ๋‹ค. ๋‚˜์˜ ์„ฑ๋Šฅ ๋ถ„์„ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์ด ๊ธฐ์กด ๋ฐฉ๋ฒ•์— ๋น„ํ•ด true positive์™€ false positive ์ธก๋ฉด์—์„œ ์šฐ์ˆ˜ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค.1 Introduction 1 2 Related Work 6 2.1 OSN Spammer Detection Approaches 6 2.1.1 Contents-based Approach 6 2.1.2 Social Network-based Approach 7 2.1.3 Subnetwork-based Approach 8 2.1.4 Behavior-based Approach 9 2.2 Link Spam Detection 10 2.3 Data mining schemes for Spammer Detection 10 2.4 Sybil Detection 12 3 Triad Significance Profile Analysis 14 3.1 Motivation 14 3.2 Twitter Dataset 18 3.3 Indegree and Outdegree of Dataset 20 3.4 Twitter spammer Detection with TSP 22 3.5 TSP-Filtering 27 3.6 Performance Evaluation of TSP-Filtering 29 4 Hierarchical Homophily Analysis 33 4.1 Motivation 33 4.2 Hierarchical Homophily in OSN 37 4.2.1 Basic Analysis of Datasets 39 4.2.2 Status gap distribution and Assortativity 44 4.2.3 Hierarchical gap distribution 49 4.3 Performance Evaluation of HH-Filtering 53 5 Overall Performance Evaluation 58 6 Conclusion 63 Bibliography 65Docto

    Information diffusion in online social networks: a simulation experiment

    Get PDF
    The advent of online social networks has completely transformed the way we communicate, with news, opinions, and ideas now spreading faster than ever before (Guille et al., 2013; Lee et al., 2022). That online social networks have a profound impact on the spread of information suggests further investigation of the relationship between network structure and information diffusion (Light & Moody, 2020). This honors thesis investigates degree assortativity โ€“ a measure of large-scale network structure that has often only been a footnote in relevant literature on infor- mation diffusion in online social networks โ€“ and its effect on the speed of informa- tion diffusion in online social networks. Two rewiring algorithms (Xulvi-Brunet & Sokolov, 2005) were applied to rewire a Facebook friend circle (n = 44) with varying degree assortativity, ranging from approximately โˆ’0.7 to 0.4. For each of the 160 rewired graphs, a random node was selected to infect (i.e., spread information to) its neighbors with probabilities ranging from 10 to 50 percent, and the number of infected nodes after each round of diffusion was recorded. Results suggest that degree assortativity and the speed of information dif- fusion have a strong inverse relationship โ€“ disassortative networks spread the same information faster. Moreover, degree assortativity appears to drive the speed of in- formation diffusion more than its correlates, clustering coefficient and average path length (Xulvi-Brunet & Sokolov, 2005)

    Emoticon-based Ambivalent Expression: A Hidden Indicator for Unusual Behaviors in Weibo

    Full text link
    Recent decades have witnessed online social media being a big-data window for quantificationally testifying conventional social theories and exploring much detailed human behavioral patterns. In this paper, by tracing the emoticon use in Weibo, a group of hidden "ambivalent users" are disclosed for frequently posting ambivalent tweets containing both positive and negative emotions. Further investigation reveals that this ambivalent expression could be a novel indicator of many unusual social behaviors. For instance, ambivalent users with the female as the majority like to make a sound in midnights or at weekends. They mention their close friends frequently in ambivalent tweets, which attract more replies and thus serve as a more private communication way. Ambivalent users also respond differently to public affairs from others and demonstrate more interests in entertainment and sports events. Moreover, the sentiment shift of words adopted in ambivalent tweets is more evident than usual and exhibits a clear "negative to positive" pattern. The above observations, though being promiscuous seemingly, actually point to the self regulation of negative mood in Weibo, which could find its base from the emotion management theories in sociology but makes an interesting extension to the online environment. Finally, as an interesting corollary, ambivalent users are found connected with compulsive buyers and turn out to be perfect targets for online marketing.Comment: Data sets can be downloaded freely from www.datatang.com/data/47207 or http://pan.baidu.com/s/1mg67cbm. Any issues feel free to contact [email protected]
    • โ€ฆ
    corecore