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2 Abstract

The advent of online social networks has completely transformed the way we

communicate, with news, opinions, and ideas now spreading faster than ever before

(Guille et al., 2013; Lee et al., 2022). That online social networks have a profound

impact on the spread of information suggests further investigation of the relationship

between network structure and information diffusion (Light & Moody, 2020).

This honors thesis investigates degree assortativity – a measure of large-scale

network structure that has often only been a footnote in relevant literature on infor-

mation diffusion in online social networks – and its effect on the speed of informa-

tion diffusion in online social networks. Two rewiring algorithms (Xulvi-Brunet &

Sokolov, 2005) were applied to rewire a Facebook friend circle (n = 44) with varying

degree assortativity, ranging from approximately −0.7 to 0.4. For each of the 160

rewired graphs, a random node was selected to infect (i.e., spread information to)

its neighbors with probabilities ranging from 10 to 50 percent, and the number of

infected nodes after each round of diffusion was recorded.

Results suggest that degree assortativity and the speed of information dif-

fusion have a strong inverse relationship – disassortative networks spread the same

information faster. Moreover, degree assortativity appears to drive the speed of in-

formation diffusion more than its correlates, clustering coefficient and average path

length (Xulvi-Brunet & Sokolov, 2005).
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3 Introduction

Human social networks affect our lives, health, desires, feelings, thoughts,

and actions (Yale Institute for Network Science, 2022). The study of the structure

and function of social networks – relationships between people – can help us develop

healthier, more cooperative, and smarter communities. Though thinking in terms of

social networks dates to as early as 1908 (Furht, 2010; Simmel, 1908), social network

analysis remains a largely underdeveloped arena compared to other sociological sub-

fields.

One subtopic within this burgeoning field concerning social relationships is

diffusion – the process through which people spread behaviors, infections, objects,

and information through both simple and complex processes of contagion. While

what exactly a person passes through their social network helps determine how it

diffuses, so does the structure of their social network writ large. The interaction be-

tween structure and diffusion within social network analysis is not well-documented

and warrants further investigation – exploring “linkages between structure and dif-

fusion is a necessary next step in the growing body of research [of] experimental

diffusion manipulations” (Light & Moody, 2020).

A noteworthy inhibitor to the growth of the field of social network analy-

sis is the (in)feasibility of experimentally manipulating relationships between people

(Light & Moody, 2020) – for instance, it is impossible to make two people become

friends as an experimental treatment. Due to the innately low feasibility of social

network experiments, simulation experiments are quite common, and their methods

and results are often extrapolated to predict what one might expect if the simulated
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phenomenon were to occur in the real world (Mutlu & Garibay, 2020). Here, the

power of a simulation is harnessed to hopefully illuminate the poorly understood

relationship between structure and diffusion. Moreover, the promising results de-

scribed in subsequent sections could potentially indicate to more sophisticated and

endowed research groups that this topic is worthy of a more elaborate experiment.

This thesis aims to make a significant and specific stride in the field of so-

cial network analysis by investigating the relationship between network structure and

diffusion. I experimentally manipulate degree assortativity – an important character-

istic of a network’s shape that, due to social network analysis being on the frontier

of knowledge, is not well documented. I define degree assortativity, contextualize

what is known about it, and test its effect on the speed of information diffusion

through online social networks, a relationship that is yet to be tested. Namely, this

thesis asks, does degree assortativity affect the rate at which information diffuses

throughout simulated online social networks?

4 Literature Review

4.1 Degree assortativity

Broadly speaking, assortativity is a measure of a network’s structure. Within

the field of social network analysis, much attention is often disproportionately brought

to properties of individual vertices – for example, “how far apart they are, what their

degrees are, and so forth” (i.e., path length, number of connections, centrality) (New-

man & Girvan, 2002). Though understanding the properties of individual vertices
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can often help identify who the most influential players are in a network, measures of

large-scale network structure – such as assortativity – can help detect communities

(Newman & Girvan, 2002), understand processes of threshold models of contagion

(Mutlu & Garibay, 2020), and investigate how things and ideas flow through net-

works writ large (Vega-Oliveros et al., 2020).

Assortativity, or assortative mixing, is a measure of large-scale network struc-

ture that describes the extent to which ‘birds of a feather flock together.’ Newman

and Girvan pioneered the concept of assortativity in 2003, describing assortativity

as the “preferential association of network vertices with others that are like them

in some way” (Newman & Girvan, 2002). Identifying in what way network vertices

are similar to each other is crucial to any experimental design of assortativity. Al-

though in theory the term assortativity can refer to any quality which nodes share,

since at least 2005, social network analysis practitioners have tended to interchange-

ably address assortativity and degree assortativity (Xulvi-Brunet & Sokolov, 2005) –

that is, the propensity for people to connect with other people with a similar degree

(i.e., number of connections) (G. Wang et al., 2014). Broadly, degree assortatively

has rarely been experimentally manipulated as an independent variable. (Mutlu &

Garibay, 2020).

Figure 1 illustrates two networks designed by Shirado et al., 2019. While

both networks contain fifteen nodes and eighteen edges, they vary in assortativity.

In addition, both networks feature the same degree distribution – “6 nodes with

1 edge, 3 nodes with 2 edges, 3 nodes with 3 edges, and 3 nodes with 5 edges”

(Shirado et al., 2019). Because both networks feature the same degree distribution,
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the point of this figure is to demonstrate how degree assortativity is a property of

the connections between people, not the people themselves. Two distinct circles of

friends can feature the same group of people with the same personal attributes, but

a few rewired connections can impact how popular nodes and less popular nodes

choose to connect with one another.

(a) Degree-disassortative network (b) Degree-assortative network

Figure 1: Illustration of two networks with varying assortativity (Shirado et al., 2019,
p. 2)

Assortativity, first quantified by Newman and Girvan, 2002, is measured as a

Pearson correlation coefficient (Bliss et al., 2012; Hu & Wang, 2009).

”As with assortative mixing on discrete characteristics, one can define an

assortativity coefficient to quantify the extent to which mixing is biased

according to scalar vertex properties. To do this, we define exy to be the

fraction of edges in our network that connect a vertex of property x to

another of property y. The matrix exy must satisfy sum rules as before,

of the form
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∑
xy

exy = 1,
∑
y

exy = ax,
∑
x

exy = by, (1)

where ax and by are, respectively, the fraction of edges that start and end

at vertices with ages x and y. Then the appropriate definition for the

assortativity coefficient is

r =

∑
xy xy(exy − axby)

σaσb

, (2)

where σa and σb are the standard deviations of the distributions ax and

by.” (Newman & Girvan, 2002)

The coefficient of degree assortativity, r, always ranges between −1 (disas-

sortative) and 1 (assortative). A coefficient of degree assortativity of 0 is considered

neutral or uncorrelated. For illustrative purposes, using the Pearson correlation coef-

ficient to calculate the coefficient of degree assortativity for the degree-disassortative

network in Figure 1, we find r = −0.744, and for the degree-assortative network, the

coefficient of degree assortativity is r = 0.233 (Shirado et al., 2019). As evidenced

in the methods section, the probability of obtaining strongly degree-assortative and

degree-disassortative networks through random rewiring decreases as the number of

nodes increases, so degree assortativity of magnitude r > 0.3 is rarely observed in

large human social networks (Newman, 2001).
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4.2 Different networks have different assortativities

Simply put, different social networks have different degree assortativities.

“Many human networks are exceptionally degree assortative” (Newman & Girvan,

2002; Shirado et al., 2019). Numerous observational studies have measured degree

assortativity as a dependent variable, and their findings suggest that social networks

range in assortativity, both among and between online and offline social networks

(Bliss et al., 2012; Cero & Witte, 2020; Hu & Wang, 2009; Mutlu & Garibay, 2020;

Newman & Girvan, 2002; G. Wang et al., 2014). Broadly, there appears to be a

disparity in assortativity between online versus offline social networks. While it is a

popular hypothesis that social networks tend to be assortative (Mutlu & Garibay,

2020), the study of online social networks has challenged this hypothesis, as “many

[online social networks] show [a] disassortative or neutral mixing feature” (Hu &

Wang, 2009).

Table 1: Degree assortativity coefficients, r, across online and real-life social networks

Type Network r Reference

Online social network Facebook 0.116 G. Wang et al., 2014
Twitter -0.025 G. Wang et al., 2014
Internet -0.189 Qian Chen et al., 2002
YouTube -0.033 Mislove et al., 2007
Reddit -0.111 Mutlu and Garibay, 2020
Instagram -0.097 Ferrara et al., 2014
LinkedIn -0.199 Rajendran, 2021
Whisper -0.011 G. Wang et al., 2014

Real social network Email address books 0.092 Newman et al., 2002
Film actor collaborations 0.208 Watts and Strogatz, 1998
Physics coauthorship 0.363 Newman, 2001
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As shown in Table 1, degree assortativity can widely vary across online and

offline human social networks. The focus of this paper is on assortativity in online

social networks, and among them, Facebook stands alone in being degree-assortative.

4.2.1 The emergence of degree assortativity

That most online social networks are degree-disassortative calls into question

the influence that high-degree individuals have on the assortativity of an online social

network (Barabási & Bonabeau, 2003). Indeed, for most online social networks, high-

degree individuals have a defining impact on the degree assortativity of the overall

online social network, but as the degree assortativity of Facebook stands alone, so

might the impact of high-degree individuals on the assortativity of Facebook. For

instance, the impact of high-degree users on degree assortativity is similar for Twitter

and Instagram but different for Facebook, and this is likely because the social role

of high-degree individuals differs between Twitter and Instagram versus Facebook.

Twitter is characterized by its public and open nature in which high-degree

individuals act as broadcasters, thus reaching a high number of users with their

Tweets (Kwak et al., 2010). That the users with the highest degrees on Twitter tend

to use the platform more as a site of broadcasting news media than as a social network

likely drives, at least in part, the deviation of Twitter from the well-known trend of

offline human social networks to be degree-assortative (Kwak et al., 2010; G. Wang et

al., 2014). Instagram is a similar site of mass communication from the high-degree

users to the low-degree users, but with its emphasis on visual content, the high-

degree individuals of Instagram are particularly well-positioned to be successful social
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media marketers through posting simple, popular, visually-striking advertisements

(Jaakonmäki et al., 2017). As such, Instagram has become an increasingly popular

destination for marketers looking to grow their social media exposure (Jaakonmäki

et al., 2017).

On another hand, because Facebook is more oriented toward personal con-

nections and friendships that other online social networks, perhaps Facebook’s high-

degree individuals have a distinct impact on degree assortativity compared to high-

degree individuals on other online social networks. Compared to Twitter and In-

stagram, friendships on Facebook tend to be longer-lasting, and Ellison et al., 2007

suggest that the greater similarities between friendships on Facebook and friend-

ships in real life (compared to less similarities between friendships on other online

social networks and real-life friendships) bridge online popularity with offline social

capital. Therefore, high-degree individuals on Facebook might leverage their con-

nections for offline social capital gain, whereas high-degree individuals on Twitter

and Instagram might leverage their connections for online influencing, marketing,

or broadcasting (Ellison et al., 2007; Jaakonmäki et al., 2017; Kwak et al., 2010).

Thusly, because the self-presentation of a Facebook user is often more reflective of

their offline self-presentation (Marwick, 2015), perhaps high-degree Facebook users

have a lesser impact on the assortativity of the overall Facebook network than mar-

keters on Instagram or broadcasters on Twitter.

In sum, Facebook is unique among other online social networks not only for its

positive degree assortativity, but for its distinct connection with offline social capital.

Simply put, high-degree individuals on Facebook might have high degrees due to the
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well-known tendency for humans to form offline connections assortatively (Kwak et

al., 2010; Newman et al., 2002), whereas the same is not necessarily true for other

online social networks. Thus, Facebook is certainly a special network for its positive

degree assortativity and the online-offline similarities for high-degree individuals on

the platform (Kwak et al., 2010; Newman et al., 2002; Ugander et al., 2011). Testing

the effect of degree assortativity on the speed of information diffusion on Facebook

could have profound implications on the digitization of human connection because the

degree assortativity of Facebook might be more indicative of the degree assortativity

of offline connections. Therefore, the effect of Facebook’s degree assortativity on

Facebook’s speed of information diffusion could substantiate claims about the effect

of offline degree assortativity and offline speed of information diffusion, at least more

so than other online social networks.

The emergence of assortative mixing patterns from high-degree individuals in

online social networks aligns with social network analysis theories that predate the

advent of digitized human connection. From a theoretical standpoint, the notion that

a small number of people can influence the topology of a network is well-established

(Barabási & Bonabeau, 2003). Simply put, popular individuals can attract connec-

tions and springboard information spread with their vast network, whereas newer,

less popular users have fewer connections and therefore fewer opportunities to spread

information.

Furthermore, the propensity for people to preferentially attach is an addi-

tional factor of how degree assortativity emerges in a social network. In general,

people tend to form connections with well-connected people, thus leading to a rich
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getting richer effect (Barabási & Albert, 1999). People attaching preferentially often

results in human social networks featuring a small number of highly connected nodes,

while most nodes have a low degree. Preferential attachment has been found to lead

to the emergence of scale-free networks, and because scale-free networks are charac-

terized by power-law degree distributions, they are by definition degree-assortative.

Therefore, as preferential attachment drives the emergence of scale-free architecture,

by that same token, preferential attachment drives the emergence of degree assorta-

tivity.

In Scale-Free Networks, Barabási and Bonabeau (2003) comprehensively dis-

tinguish how the presence of just a handful of highly connected nodes can lead to

people preferentially attaching, thereby forming degree-assortative networks that ma-

ture into scale-free networks. In scale-free networks, the few nodes with the highest

degrees tend to connect with each other, and the formation of a core of high-degree

nodes can significantly impact degree assortativity, the topology of a network, and

the behavior of a network writ large (Barabási & Bonabeau, 2003).

4.2.2 Offline versus online social networks

Numerous studies suggest that offline social networks tend to have higher

assortativities than online social networks (Hu & Wang, 2009), and there appears

to be one central theory that strives to explain this distinction. G. Wang et al.,

2014 suggest that when people move between our online versus offline social net-

works, they are not changing any individual properties about themselves, but rather

entering communities that are built around forming connections in a distinctly on-
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line way. “By formalizing our offline social relationships into digital form, [online

social networks] have greatly expanded our capacity for social interactions, both in

volume and frequency” (G. Wang et al., 2014). Simply put, people form connec-

tions differently online than they do offline, which leads to disparities in measures

of large-scale network structure, such as network density and degree assortativity

(Jaakonmäki et al., 2017; Kwak et al., 2010; G. Wang et al., 2014). In context, the

digitization of human connections in online social networks is not the same across

online social networks because they have different assortativities. This simulation

experiment aims to uncover what effect, if any, this assortative disparity has on how

quickly information can spread through online circles.

4.2.3 Variations in assortativity between online social networks

While online social networks tend to exhibit disassortative or neutral mixing

by degree G. Wang et al., 2014, studies show homophilic contents spread online, such

as users’ happiness scores (Bliss et al., 2012) and their number of suicide-related

verbalizations (Cero & Witte, 2020) show assortative mixing patterns. Further, far

from all popular online social networks are degree-disassortative – for example, sites

like Facebook, MySpace, and Flickr are degree-assortative (Mutlu & Garibay, 2020).

In addition, a popular Chinese networking platform, Wealink, displayed a shift from

degree-assortativity to degree-disassortativity between 2005 and 2007 (Hu & Wang,

2009). Thus, not only does the assortativity of online social networks differ from that

of offline social networks, but online social networks exhibit a range of assortativity.

Therefore, degree assortativity in online social networks has the propensity to change.
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Knowing how degree assortativity affects the speed of information diffusion could lead

to online social network companies adjusting how people form connections in order

to drive faster dissemination of information.

4.3 Information diffusion in online social networks

In addition, online social networks are particularly effective at spreading in-

formation – “online social networks play a major role in the spread of information

at very large scale” (Guille et al., 2013; Kwak et al., 2010; Mutlu & Garibay, 2020).

Popular online social networks – which spread information – have been observed to

be assortative, neutral, and disassortative. While this could imply that assortativity

plays no role in the spread of information, this is highly unlikely to be the case be-

cause a substantial body of literature supports the notion of assortativity as a major

influencer in processes of contagion (i.e., information diffusion) across social networks

(Bliss et al., 2012; Mutlu & Garibay, 2020). Generally, while information can dif-

fuse no matter the assortativity of a network, evidence suggests that assortativity

strongly influences the fraction of the network information can reach.

Figure 2 is a visualization of the relationship between the degree distribution

of a network and the size of its giant component (the largest connected cluster)

across varying levels of assortativity. This figure suggests that disassortative online

social circles might spread information faster as they tend to create larger connected

components at higher mean degrees, which is what tight-knit online social circles

look like (Mutlu & Garibay, 2020).
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Figure 2: Percent of nodes in the giant component, S, versus the mean degree of the
network, κ (Newman & Girvan, 2002)

4.3.1 Does assortativity affect the speed of information diffusion?

In principle, for networks in which the average person only has a few connec-

tions, the network tends to be more interconnected when it is assortatively mixed

by degree (because the giant component is larger). Moreover, as the average node

grows in degree, disassortative networks yield the largest giant component compared

to assortatively and neutrally mixed networks (Newman & Girvan, 2002). This mech-

anism has far-reaching implications for processes of contagion, such as information

diffusion, due to the presence of core-periphery architecture in assortative networks

(Barabási & Bonabeau, 2003; Newman & Girvan, 2002).

Assortative networks exhibit a core-periphery anatomy across all levels of

21



network density (i.e., the average degree of a node) (Newman & Girvan, 2002) – the

popular nodes that connect with other popular nodes are the core, and the unpopular

nodes are the periphery. While this can allow for interconnectedness among the core

at low levels of network density, this also makes connections with the periphery

difficult, even at high levels of network density.

In epidemiological terms, . . . assortative networks will support the spread

and persistence of a disease more easily than disassortative ones, because

they possess a core group of connected high-degree vertices. But the dis-

ease is also restricted mostly to that core group. In a disassortative net-

work, although percolation and hence epidemic disease requires a denser

network to begin with, when it does happen it will affect a larger fraction

of the network, because it is not restricted to a core group(Newman &

Girvan, 2002).

Extrapolating disease contagion to the spread of information, information may quickly

spread throughout an assortatively mixed network’s core but could encounter diffi-

culties in spreading to the periphery of the network. On another hand, because

disassortative networks do not have core-periphery architecture, information may

spread to a larger portion of a social network, but this demands high network den-

sity.

Because online social networks tend to be disassortative and online connec-

tions can be formed faster than offline connections, evidence suggests that disassor-

tative networks are perhaps better suited for diffusing information throughout the
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entirety of an online social network (Mutlu & Garibay, 2020; G. Wang et al., 2014;

T. Wang et al., 2018).

Though differences in assortativity among online social networks are well-

known, the specific structural and functional role that assortativity plays in infor-

mation diffusion in online social networks is difficult to investigate given the vast

contextual differences between online communities. In part, differences in function-

ality between online social networks – such as anonymity, user engagement, content

posting, interaction, and temporal features (G. Wang et al., 2014) – point to an

experiment as the only viable method of investigating the relationship between as-

sortativity and information diffusion in online social networks.

5 Data and Methods

There are several ways to define how those in online social networks are con-

nected. Though Facebook obviously is based around friends, people can form connec-

tions through liking the same content, commenting on the same post, for instance.

There is an arms race against social network analysis practicians versus private online

social network companies for methods of finding and defining friendships.

5.1 Data

Collecting data on who is friends with whom in online social networks is

particularly difficult without access to private company data. However, in some

rare circumstances, scientists have been allowed to record the friendships of a small
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handful of willing participants.

This thesis uses Facebook friend network data that was collected by Mcauley

and Leskovec (2014) and was made publicly available through the Stanford Network

Analysis Project Leskovec and Krevl (2014). In ”Discovering social circles in ego

networks,” Mcauley and Leskovec developed a Facebook application that allowed

them to collect the friend network data of ten Stanford graduate students. This

application yielded ten distinct circles of Facebook friends, which are depicted in the

following plot and described in the table thereafter.

Table 2: Descriptive network statistics of the Facebook social circles graph

Statistic Value

Number of Nodes 4039
Number of Edges 88234
Density 0.011
Average Degree 43.691
Diameter 8
Clustering Coefficient 0.519
Assortativity 0.064
Average Path Length 3.693
Degree Scaling Exponent 2.51
Number of Connected Components 1
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Figure 3: Plot of the Facebook social circles graph. Higher degrees are represented
with lighter colors.
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Though part of one connected component, the ten circles of Facebook friends

appear somewhat separated from one another. Because this network does not include

the important friendships that might connect one circle of friends to another, broadly

speaking, this collection of ten loosely connected circles of Facebook friends does not

represent how, in the anatomy of the Facebook network, neighborhoods of users are

surprisingly dense (Ugander et al., 2011).

To make this valuable Facebook network data appropriate, the smallest cir-

cle of friends out of the ten in the data set was isolated. Simulating the process

of information diffusion through a small group of Facebook friends offers several

methodological advantages, one such advantage being that isolating the smallest cir-

cle can more truthfully inform how assortativity influences the speed of information

diffusion within close-knit circles of friends. Because the mechanisms of diffusion

through online social networks are very much an active body of research, the ways in

which information diffuses in online social networks become more elusive as it scales.

In addition, selecting just one Facebook circle also significantly limits the

computational resources required to rewire the network and simulate processes of

information diffusion. Designing a simulation experiment that is not computationally

exhaustive not only adds convenience to this experimental methodology, but also

repeatability. A plot of the isolated Facebook social circle subgraph is displayed

below, followed by descriptive network statistics.
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Figure 4: Plot of the Facebook social circles subgraph. Higher degrees are represented
with lighter colors.

Table 3: Descriptive network statistics of the Facebook social circles subgraph

Statistic Value

Number of Nodes 44
Number of Edges 276
Density 0.292
Average Degree 12.545
Diameter 5
Clustering Coefficient 0.444
Assortativity 0.053
Average Path Length 2.567
Degree Scaling Exponent 4.558
Number of Connected Components 1
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This subgraph features an assortativity relatively similar to the assortativity

of the entire Facebook network (r = 0.116) as measured by G. Wang et al., 2014.

Therefore, this subgraph is more relevant to the assortative focus of this project

while also being more computationally manageable.

5.2 Methods

5.2.1 Measures

The independent variable of this experiment will be the coefficient of degree

assortativity as measured by the Pearson correlation coefficient. Observing the frac-

tion of nodes who know the information being diffused after each round will allow

the dependent variable – speed of information diffusion – to be calculated.

5.2.2 Rewiring Procedure

Changing the assortativity of a network while minimizing change in other at-

tributes in network shape is complicated. One approach to empirically manipulating

assortativity is through random rewiring while holding the degree distribution con-

stant. This is possible by employing the rewire() and keeping degseq() functions in

igraph (Csardi et al., n.d.). The degree distribution of a network is a key influencer

of its shape, so holding it constant throughout a randomized rewiring process helps

minimize the change in a network’s architecture as it relates to the number of con-

nections each node has (Shirado et al., 2019). Below is the degree distribution of the

Facebook subgraph.

This degree distribution indicates that the vast majority of Facebook users in
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Figure 5: Degree distribution of the Facebook social circles subgraph

this circle have between zero and twenty friends while a few users have thirty-five or

more Facebook friends. Such a distribution – in which most nodes have a handful

of connections and a handful of nodes have most connections – is indicative of scale-

free architecture. When a network is scale-free, it means that there is a very small

proportion of nodes with such high degrees that they exceed the scale of the degree

distribution of the other nodes (Barabási and Bonabeau, 2003).

Both scale-free architecture and degree assortativity are calculated based on

the degrees of the nodes in a network – therefore, minimizing changes in the degree

distribution of the Facebook subgraph is imperative to the success of this research.

How can one preserve this foundational aspect of the architecture of the Facebook

subgraph while also experimentally manipulating assortativity?

As aforementioned, Csardi et al., n.d. authored a rewiring algorithm that al-

lows one to randomly rewire the connections in a network to experimentally manip-
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ulate degree assortativity while maintaining the degree distribution of the network.

The process of rewiring every connection in the Facebook subgraph was conducted

10,000 times and the assortativity was recorded after every round of rewiring. Below

is a histogram of the range of assortativity achieved through randomized rewiring

while holding the degree distribution constant.

Figure 6: Histogram of assortativity after 10,000 trials

This distribution of assortativity is centered around a mean of r = −0.03, far

from the observed assortativity of r = 0.05 of the Facebook subgraph. A difference

of means test, the results of which are presented in the subsequent section, can test

whether the Facebook subgraph has a significantly higher assortativity than would

be expected through random rewiring.

For the purposes of this simulation experiment, this range of assortativity is

unsatisfactory, as it fails to include assortativities greater than 0.1, which have been

observed in online social networks such as Facebook (Ugander et al., 2011). Simply
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put, obtaining assortativity values beyond the bounds achieved with 10,000 trials

would be extraordinarily unlikely.

Thankfully, the ability to further change degree assortativity as an indepen-

dent variable without changing the overall degree distribution is also feasible through

incorporating two rewiring algorithms pioneered by Xulvi-Brunet and Sokolov in

2005. In theory, these algorithms allow for changing the assortativity of a graph

anywhere between -1 and 1 while holding the degree distribution constant. The

algorithms are explained below:

Starting from a given network, two links of the network connecting four

different nodes are randomly chosen at each step. We consider the four

nodes associated with these two links, and order them with respect to

their degrees. Then, with probability p, the links are rewired in such a

way that one link connects the two nodes with the smaller degrees and

the other connects the two nodes with the larger degrees; otherwise the

links are randomly rewired. In the case that one or both of these new

links already existed in the network, the step is discarded and a new pair

of edges is selected. This restriction prevents the appearance of multi-

ple edges connecting the same pair of nodes. A repeated application of

the rewiring step leads to an assortative version of the original network.

Note that the algorithm does not change the degree of the nodes involved

and thus the overall degree distribution in the network. Changing the

parameter p, it is possible to construct networks with different degrees

of assortativity. ... A minor change in our algorithm can produce dis-
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sortative mixing. As before, we start from a given network and at each

step we chose randomly two links of the network. We order the four

corresponding nodes with respect to their degrees. Now, however, we

rewire with probability p the edges so that one link connects the highest

connected node with the node with the lowest degree and the other link

connects the two remaining vertices; with probability 1 - p we rewire the

links randomly. In case that any of the new links already existed in the

network the step is discarded and a new pair of edges selected. Vary-

ing the parameter p, it is possible to construct networks with different

degrees of dissortativity. As before, the procedure does not change the

degree distribution of the network and does not lead to the appearance

of multiple and self-connections” (Xulvi-Brunet & Sokolov, 2005).
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If not, repeat.

yes

assortative disassortative

p p

1− p 1− p

no

Figure 7: Flowchart of assortative and disassortative rewiring algorithms (Xulvi-
Brunet & Sokolov, 2005)

33



Using R, I then applied these two algorithms to the Facebook subgraph to

experimentally manipulate degree assortativity while holding the degree distribution

constant. To demonstrate that these algorithms did not get lost in translation, five

randomly generated networks were rewired each 200 times, randomly deciding p val-

ues between 0 and 1. Histograms of the achieved assortativities for both algorithms

are depicted below.
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(a) Assortative algorithm

(b) Disassortative algorithm

Figure 8: Scatterplots of assortativity after 100 trials of Xulvi-Brunet and Sokolov
rewiring algorithm on 5 Erdos-Renyi random graphs with 30 nodes and a 10% prob-
ability of drawing an edge between two nodes. Dotted lines inidcate original assor-
tativities.
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One unforeseen idiosyncracy of the Xulvi-Brunet and Sokolov algorithms is

that they seem to be less effective at rewiring dense, tight-knit networks to strong

levels of either assortativity or disassortativity. After 50 trials of the assortative

model of the Xulvi-Brunet and Sokolov algorithms – this time on the Facebook

subgraph – a significantly smaller range of assortativities were achieved than were

achieved with the sparser Erdos-Renyi random graphs.

Figure 9: Histogram of assortativity after 50 trials of Xulvi-Brunet and Sokolov
rewiring algorithm on Facebook social circle subgraph

Perhaps this phenomenon occurs because the algorithm breaks a rewiring

step if any two edges do not connect four distinct nodes, and because the Facebook

subgraph is so dense it is breaking the majority of rewiring steps, thus increasing the

proportion of randomly rewired edges in relation to assortatively or disassortatively

rewired edges. When running the rewiring algorithm on a sparser graph (such as

Figure 6, in which choosing four unconnected nodes is more likely), the Xulvi-Brunet
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and Sokolov algorithm produces a range of assortativities that are impossible via

random rewiring.

Despite the Xulvi-Brunet and Sokolov rewiring procedures encountering dif-

ficulty in obtaining the highest levels of assortativity, it still expanded the range

of assortativity that was possible through the randomized rewiring procedure after

160 trials of rewiring the Facebook subgraph. Figure 10 presents a scatterplot of all

160 rewired graphs, the p values used to rewire them, and the assortativity of the

Facebook subgraph.

Figure 10: Histogram of assortativity after 160 trials of Xulvi-Brunet and Sokolov
rewiring algorithm on Facebook social circle subgraph

Perhaps the most intriguing artifact of this data visualization is the diver-

gence of assortativities as p increases. These two trends represent the two rewiring

algorithms. Across the 160 trials, the assortative or disassortative rewiring algorithm

was chosen at random, and as demonstrated in Figure 8, higher p values increase
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the change in assortativity for both the assortative and disassortative algorithms.

The most assortative and disassortative rewired Facebook subgraphs are plotted in

Figure 11, and their respective assortativities represent the range of assortativity

achieved with the Xulvi-Brunei and Sokolov rewiring algorithms.

(a) r = −0.733 (b) r = 0.387

Figure 11: Minimal and maximal assortativities

Thus, the Xulvi-Brunet and Sokolov rewiring procedure proved effective at

experimentally manipulating the assortativity of the Facebook graph while main-

taining a consistent degree distribution. However, controlling the degree distribution

does not imply that other aspects of the structure of a network change with as-

sortativity. Specifically, average path length, clustering coefficient, shell structure,

and percolation properties change significantly with changes in assortativity (Xulvi-

Brunet & Sokolov, 2005). Average path length and clustering coefficient are two

relevant confounders that are addressed by controlling for them in a regression in

the subsequent section.
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5.2.3 Threshold model of information diffusion

Spreading information is a process of diffusion through a network. As afore-

mentioned, the ways in which things spread through a network is an active area of

research. The simplest model of information diffusion is a threshold model, which

suggests that people adopt ideas after a certain proportion of their immediate friends

have adopted it.

According to Professor Hirokazu Shirado, simpler simulated models of infor-

mation diffusion through a network allow for a greater extent of reproducability

and compatibility with several schools of thought. Countless models of information

diffusion encompass the field of social network analysis, and as one creates a more

sophisticated model of information diffusion, it also polarizes that model from areas

of research that might not adhere to that school of thought.

Thus, the diffusion model adopted is not far from a simple flip of a coin. In the

first round of information diffusion, a node is selected at random to be the first person

to be ’infected’ with the information. For every subsequent round of infection, the

infected node spreads the information to each of their connections with a ten percent

chance, independently.

Diffusing information is a process of infection (G. Wang et al., 2014; T. Wang

et al., 2018). For each iteration of information diffusion, a node was selected at

random to be the first and only infected node in the graph. Then, each of the seed

node’s connections were infected with a ten percent probability. Below is a visual

demonstration of the process of infection spread throughout the original Facebook

subgraph.
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(a) Round 2/12 (b) Round 8/12

Figure 12: Process of infection spread

Rounds of infection are continued until at least 80% of the network becomes

infected – this choice of 80% is slightly arbitrary, but takes into account that those

last 20% of nodes are not relevant to the process that led to the majority of the

network becoming infected.

In summary, using the Xulvi-Brunet and Sokolov rewiring algorithms from

2005, 160 versions of the Facebook subgraph were created that range in assortativity

from r = −0.733 to r = 0.387. These networks all have the save degree distribution.

Information will be diffused information via a threshold diffusion model, which offers

simplicity and repeatability.

6 Results

Broadly, the results of this thesis support the hypothesis that the speed of

information diffusion and assortativity have an inverse relationship. That is, as

assortativity increases, the speed of information diffusion decreases. In addition,

results indicate that friends in the Facebook subgraph form connections that increase
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degree assortativity statistically significantly higher than the same number of random

connections would. Moreover, results suggest that assortativity predicts the speed of

information diffusion with strong statistical significance, whereas other measures of

large-scale network structure that correlate with assortativity, such as average path

length and clustering coefficient, do not.

Table 4: Facebook subgraph assortativity versus randomly rewired assortativity

t value df p value Confidence Interval

-3.291 9999 0.001 -0.145 0.003

α = 0.05

The difference of means test summarized in Table 4 suggests that Facebook

users in the social circle form connections assortatively with strong statistical sig-

nificance. Indeed, Facebook users in the social circle tend to form connections with

popular, highly connected users, and this phenomenon is extremely unlikely to be

due to random chance. Does this elevated assortativity of the Facebook subgraph

offer an advantageous speed of information diffusion? Simulation results, discussed

hereafter, suggest that the speed of information diffusion of the original Facebook

subgraph is relatively slow.

To investigate how assortativity affects information diffusion, the threshold

diffusion process was repeated 100 times for each of the 161 subgraphs (1 original, 160

rewired with the Xulvi-Brunet and Sokolov rewiring algorithms). The density curve

below depicts how many rounds, on average, it took for each class of rewired graph

to reach 80% diffusion. Here, ”class” implies that when the subgraph is rewired to

have a greater assortativity, it is classified as assortative, and vice versa.

41



Figure 13: Density curve of how many rounds it took to reach 80% infection for each
class of network

Regardless of direction or magnitude, when rewired, the Facebook subgraphs

tended to diffuse information more quickly than the original version. This finding

suggests that the assortativity of the Facebook subgraph, r = 0.05, lends itself

to a process of information diffusion that could be accelerated with assortative or

disassortative rewiring.

The fact that the disassortative class of rewired graphs has a greater density

between rounds 0 through 100 indicates that, on average, when the Facebook graph

was rewired disassortatively, regardless of magnitude, it tended to spread information

faster than assortatively rewired graphs. Moreover, on average, and under a threshold

model of diffusion, information diffuses fastest when a Facebook subgraph is rewired

disassortatively.
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Figure 14: Smoothed regression of cumulative percent infected versus number of
rounds for each of the networks

Figure 15: Scatterplots of cumulative percent infected versus number of rounds for
each of the networks

On average, disassortatively rewired subgraphs diffused information faster

than assortatively rewired subgraphs. Moreover, the original Facebook subgraph

diffused information slower than the average disassortatively or assortatively rewired

subgraph.
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Figure 16: Assortativity versus speed of information diffusion

In Figure 16, the average number of rounds to reach 80% infection for each

of the 161 subgraphs was plotted against their respective assortativities, and a loess

regression was fitted to the direct correlation. As shown, assortativity appears to

have a profound impact on the number of rounds it takes to reach 80% infection.

Moreover, variations in arbitrary parameters of the process of infection spread appear

to have no substantive effect on the relationship between assortativity and the speed

of information diffusion.

The first arbitrary decision in the infection spread process is the probability

of a node infecting a given connection – at the selected probability of ten percent,

the infection process is slow enough to illustrate a more pronounced difference in the

speed of information diffusion by the degree assortativity of each subgraph.
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Figure 17: Assortativity versus speed of information diffusion for varying infection
probabilities

At faster infection rates, information still passes faster in disassortative net-

works, and the overall shape of the relationship between assortativity and the speed

of information diffusion remains consistent. At some point, however, the probability

of infecting a connection can become so high that differences in assortativity have a

diminishing effect on the speed limit of information diffusion.

Secondly, that the simulated infection process randomly selects a node to

begin the infection process brings into question how a different method of selecting

the first infected node might change the observed strong, inverse relationship between

degree assortativity and the speed of information diffusion. An alternative selection

method is iterating through an ordered list of each node to guarantee that every

node is tested – such a method does not yield a substantive change in assortativity

and information diffusion.
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Figure 18: Assortativity versus speed of information diffusion for varying selection
methods

When selecting the first infected node from an ordered list versus random

selection, a similar phenomenon as illustrated in Figure 17 occurs, in which the

strong, inverse relationship between assortativity and the speed of information is

preserved with a minor change in the y-intercept. The difference in rounds between

the ordered list selection method and the random selection method is consistently

approximately 5 rounds across the distribution of assortativities, which suggests

that either selection method would yield a similar correlation coefficient for degree

assortativity versus average rounds of diffusion.

Third, the relationship between assortativity and the speed of information

diffusion does not appear to be determined by the exact subgraph selected. The

simulation experiment was repeated for a different Facebook subgraph of similar size

and degree assortativity, but of a greater density, lesser average path length, and
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greater clustering coefficient.

Figure 19: Assortativity versus speed of information diffusion for varying network
choices

Again, the overall trend is preserved, but as expected, due to the density

of the alternative subgraph being nearly double that of the original subgraph, the

Xulvi-Brunet and Sokolov, 2005 rewiring algorithm yielded a more limited set of

rewired assortativities. In addition, because the greater density fosters more chances

for infection to spread, the overall speed of information diffusion for the alternative

network is expectedly faster.

Lastly, the threshold of information diffusion, set at 80%, governs when the

simulated information diffusion process ends.
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Figure 20: Assortativity versus speed of information diffusion for varying saturation
thresholds

Again, similar to Figure 17, the overall trend between assortativity and the

speed of information diffusion is generally preserved despite changes in this parameter

of infection spread. At the lowest thresholds, the simulated infection process stops

too early for the topological diffusion mechanisms between degree-assortative and

degree-disassortative graphs to emerge.

In sum, the ten percent chance of infection, random starting node selection,

eighty percent threshold, and specific network choice are in place largely for illustra-

tive purposes – when these four controls are varied, results are substantively similar.

At some of the more extreme values, the infection process occurs too quickly for a

visible distinction between assortativity and speed of information diffusion to emerge.

Moreover, a linear regression of the same relationship was performed, indi-

cating a strong positive correlation between assortativity and rounds to reach 80%
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diffusion at all standard levels of significance. The first regression model indicates

that, on average, a 10% increase in assortativity is correlated with an increase in the

number of rounds of information diffusion of 0.67.

Furthermore, a standardized regression was performed to test the statistical

significance of the relationship between assortativity and the speed of information

diffusion while also controlling for average path length and clustering coefficient,

which Xulvi-Brunet and Sokolov found to correlate with changes in degree assorta-

tivity (2005). The process of standardizing each variable in the regression involved

dividing each variable by its standard error.

Table 5: Regression Results

Model 1: Linear regression Model 2: Standardized regression
Coef. P-value Coef. P-value

Intercept 19.13 < 0.001*** -0.01 0.93
Updated Assortativity 6.71 < 0.001*** 0.46 < 0.001***
Avg Path Length 0.16 0.12
Clustering Coefficient -0.12 0.08
R-squared 0.32 0.35
Adj. R-squared 0.32 0.33
F-statistic 73.62 27.46
P-value (F-stat) < 0.001*** < 0.001***

α = 0.01

Notice that the average path length and the clustering coefficient do not have

a statistically significant effect on the speed of information diffusion in model 2.

Such a result indicates that, while a friend circle’s assortativity might change with

its average path length and clustering coefficient, these measures of the shape of a

social network are unlikely to have as much as an effect on the speed of information

diffusion as degree assortativity does.
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The intercept and correlation coefficient of linear regression model 1, in addi-

tion to supplemental coefficients based on varying infection probabilities, is extrapo-

lated to predict how fast information might diffuse in small, tight-knit circles of users

in online social networks beyond Facebook based on differences in their assortativi-

ties. The predicted speed of information diffusion for Twitter, YouTube, Instagram,

Reddit, and LinkedIn are depicted in Figure 21.

Figure 21: Predicted speed of information diffusion for popular online social networks
across varying infection probabilities

LinkedIn is the least assortative network compared to the other five – given

its disassortative architecture, perhaps circles of LinkedIn users could spread infor-

mation roughly ten percent faster than a similar circle of users on Facebook, for

instance.

Although a ten percent difference in the speed of information diffusion might

appear underwhelming, at scale, small increases in the speed of information diffusion
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can make a powerful impact.

7 Conclusions

The objective of this thesis is to investigate what, if any, influence degree

assortativity has on the speed of information diffusion in online social networks. In

summary, the past twenty years of research on degree assortativity indicates that dif-

ferent popular online social networks feature different degree assortativities and that

these differences in assortativity might have an effect on how ideas diffuse through a

network.

This project aims to demonstrate, with a simulation experiment, that de-

gree assortativity has a strong effect on the speed of information diffusion through

tight-knit social circles. To create this simulation experiment, I rewired a 44-node

Facebook social circle using two rewiring algorithms that allowed me to change as-

sortativity while maintaining the same degree distribution. This process yielded 160

alternative versions of the original graph and, in essence, I observed how fast each

of them could diffuse the same information.

The results of my simulation experiment suggest that the more degree-disassortative

a network is, the faster it can spread information. Therefore, because online social

networks differ in degree assortativity, it is likely that the same information among

the same group of users could diffuse faster on a more disassortative platform. In

summary, evidence suggests different social media platforms likely diffuse information

at different speeds which are governed by their assortativities.
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Investigating how assortativity influences the speed of information diffusion

in online social networks contributes to a growing body of literature that seeks to

connect the structure and function of online social networks to the diffusion of infor-

mation. This has far-reaching implications for addressing how behaviors (Kim et al.,

2015), happiness (Bliss et al., 2012), suicide-related verbalizations (Cero & Witte,

2020), emergency notifications (Lee et al., 2022), and misinformation (Akrouf et al.,

2013) spread online.

Online social networks have a profound impact on the friendships we form and

the information we consume. As social media platforms incorporate algorithms to

drive the content we are exposed to, understanding how small changes in assortativity

can significantly impact the spread of ideas could potentially enable them to rewire

our social circles to allow us to spread information more quickly with our connections

while also preserving the essence of our networks.
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8 Appendix

1 #Assortative rewiring algorithm

2 library(igraph)

3 assortative_rewire <- function(network , p) {

4 g <- network

5 num_iterations <- 100 * gsize(g)

6 #100 is arbitrary but ensures every node will be

selected

7

8 progress_bar <- txtProgressBar(min = 0, max =

num_iterations , style = 3)

9

10 for (i in 1: num_iterations) {

11

12 edges <- E(g)

13 #Randomly select 2 edges

14 edge_indices <- sample(length(edges), 2, replace =

FALSE)

15 edge1 <- edges[edge_indices [1]]

16 edge2 <- edges[edge_indices [2]]

17 nodes <- unique(c(ends(g, edge1), ends(g, edge2)))

18 #Make a list of the unique nodes connected by the

randomly selected edges

19
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20 if (length(nodes) == 4) {

21 degrees <- degree(g, nodes)

22 sorted_nodes <- nodes[order(degrees)]

23 #If the 2 vertices connected by random edge 1 are

different from

24 #the 2 vertices connected by random edge 2, order

them by degree

25

26 if (runif (1) < p) {

27 new_edges <- c(sorted_nodes [1], sorted_nodes [2],

sorted_nodes [3], sorted_nodes [4])

28 #Order nodes by descending degree

29 } else {

30 #Alternatively , order nodes randomly

31 shuffled_nodes <- sample(sorted_nodes)

32 new_edges <- c(shuffled_nodes [1], shuffled_nodes

[2], shuffled_nodes [3], shuffled_nodes [4])

33 }

34

35 new_edge1 <- get.edge.ids(g, c(new_edges [1],

new_edges [2]), directed = FALSE , error = FALSE)

36 new_edge2 <- get.edge.ids(g, c(new_edges [3],

new_edges [4]), directed = FALSE , error = FALSE)

37
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38 if (new_edge1 == 0 && new_edge2 == 0) {

39 g <- delete_edges(g, c(edge1 , edge2))

40 g <- add_edges(g, new_edges)

41 #Do any of these new edges already exist? If not ,

42 #delete the original edges and add either the

randomly rewired edges or

43 #the assortatively rewired edges , whichever was

created above

44 }

45 }

46 setTxtProgressBar(progress_bar , i)

47 }

48 close(progress_bar)

49 return(g)

50 }

1 #Disassortative rewiring algorithm

2 library(igraph)

3 disassortative_rewire <- function(network , p) {

4 g <- network

5 num_iterations <- 100 * gsize(g)

6 #100 is arbitrary but ensures every node will be

selected

7

8 progress_bar <- txtProgressBar(min = 0, max =
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num_iterations , style = 3)

9

10 for (i in 1: num_iterations) {

11 edges <- E(g)

12 #Randomly select 2 edges

13 edge_indices <- sample(length(edges), 2, replace =

FALSE)

14 edge1 <- edges[edge_indices [1]]

15 edge2 <- edges[edge_indices [2]]

16 nodes <- unique(c(ends(g, edge1), ends(g, edge2)))

17 #Make a list of the unique nodes connected by the

randomly selected edges

18

19 if (length(nodes) == 4) {

20 degrees <- degree(g, nodes)

21 sorted_nodes <- nodes[order(degrees)]

22 #If the 2 vertices connected by random edge 1 are

different from

23 #the 2 vertices connected by random edge 2 , order

them by degree

24

25 if (runif (1) < p) {

26 new_edges <- c(sorted_nodes [1], sorted_nodes [4],

sorted_nodes [2], sorted_nodes [3])

56



27 #Order nodes alternating from highest to lowest

degree

28 } else {

29 #Alternatively , order nodes randomly

30 shuffled_nodes <- sample(sorted_nodes)

31 new_edges <- c(shuffled_nodes [1], shuffled_nodes

[2], shuffled_nodes [3], shuffled_nodes [4])

32 }

33

34 new_edge1 <- get.edge.ids(g, c(new_edges [1],

new_edges [2]), directed = FALSE , error = FALSE)

35 new_edge2 <- get.edge.ids(g, c(new_edges [3],

new_edges [4]), directed = FALSE , error = FALSE)

36

37 if (new_edge1 == 0 && new_edge2 == 0) {

38 g <- delete_edges(g, c(edge1 , edge2))

39 g <- add_edges(g, new_edges)

40 #Do any of these new edges already exist ? If not ,

41 #delete the original edges and add either the

randomly rewired edges or

42 #the disassortatively rewired edges , whichever was

created above

43 }

44 }
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45 setTxtProgressBar(progress_bar , i)

46 }

47 close(progress_bar)

48 return(g)

49 }
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