16,445 research outputs found

    Jacobi fields, conjugate points and cut points on timelike geodesics in special spacetimes

    Get PDF
    Several physical problems such as the `twin paradox' in curved spacetimes have purely geometrical nature and may be reduced to studying properties of bundles of timelike geodesics. The paper is a general introduction to systematic investigations of the geodesic structure of physically relevant spacetimes. The investigations are focussed on the search of locally and globally maximal timelike geodesics. The method of dealing with the local problem is in a sense algorithmic and is based on the geodesic deviation equation. Yet the search for globally maximal geodesics is non-algorithmic and cannot be treated analytically by solving a differential equation. Here one must apply a mixture of methods: spacetime symmetries (we have effectively employed the spherical symmetry), the use of the comoving coordinates adapted to the given congruence of timelike geodesics and the conjugate points on these geodesics. All these methods have been effectively applied in both the local and global problems in a number of simple and important spacetimes and their outcomes have already been published in three papers. Our approach shows that even in Schwarzschild spacetime (as well as in other static spherically symetric ones) one can find a new unexpected geometrical feature: instead of one there are three different infinite sets of conjugate points on each stable circular timelike geodesic curve. Due to problems with solving differential equations we are dealing solely with radial and circular geodesics.Comment: A revised and expanded version, self-contained and written in an expository style. 36 pages, 0 figures. A substantially abridged version appeared in Acta Physica Polonica

    Boundary-Conforming Finite Element Methods for Twin-Screw Extruders: Unsteady - Temperature-Dependent - Non-Newtonian Simulations

    Full text link
    We present a boundary-conforming space-time finite element method to compute the flow inside co-rotating, self-wiping twin-screw extruders. The mesh update is carried out using the newly developed Snapping Reference Mesh Update Method (SRMUM). It allows to compute time-dependent flow solutions inside twin-screw extruders equipped with conveying screw elements without any need for re-meshing and projections of solutions - making it a very efficient method. We provide cases for Newtonian and non-Newtonian fluids in 2D and 3D, that show mesh convergence of the solution as well as agreement to experimental results. Furthermore, a complex, unsteady and temperature-dependent 3D test case with multiple screw elements illustrates the potential of the method also for industrial applications
    corecore