288 research outputs found

    Real Computational Universality: The Word Problem for a class of groups with infinite presentation

    Get PDF
    The word problem for discrete groups is well-known to be undecidable by a Turing Machine; more precisely, it is reducible both to and from and thus equivalent to the discrete Halting Problem. The present work introduces and studies a real extension of the word problem for a certain class of groups which are presented as quotient groups of a free group and a normal subgroup. Most important, the free group will be generated by an uncountable set of generators with index running over certain sets of real numbers. This allows to include many mathematically important groups which are not captured in the framework of the classical word problem. Our contribution extends computational group theory from the discrete to the Blum-Shub-Smale (BSS) model of real number computation. We believe this to be an interesting step towards applying BSS theory, in addition to semi-algebraic geometry, also to further areas of mathematics. The main result establishes the word problem for such groups to be not only semi-decidable (and thus reducible FROM) but also reducible TO the Halting Problem for such machines. It thus provides the first non-trivial example of a problem COMPLETE, that is, computationally universal for this model.Comment: corrected Section 4.

    Counting edge-injective homomorphisms and matchings on restricted graph classes

    Get PDF
    We consider the #W[1]\#\mathsf{W}[1]-hard problem of counting all matchings with exactly kk edges in a given input graph GG; we prove that it remains #W[1]\#\mathsf{W}[1]-hard on graphs GG that are line graphs or bipartite graphs with degree 22 on one side. In our proofs, we use that kk-matchings in line graphs can be equivalently viewed as edge-injective homomorphisms from the disjoint union of kk length-22 paths into (arbitrary) host graphs. Here, a homomorphism from HH to GG is edge-injective if it maps any two distinct edges of HH to distinct edges in GG. We show that edge-injective homomorphisms from a pattern graph HH can be counted in polynomial time if HH has bounded vertex-cover number after removing isolated edges. For hereditary classes H\mathcal{H} of pattern graphs, we complement this result: If the graphs in H\mathcal{H} have unbounded vertex-cover number even after deleting isolated edges, then counting edge-injective homomorphisms with patterns from H\mathcal{H} is #W[1]\#\mathsf{W}[1]-hard. Our proofs rely on an edge-colored variant of Holant problems and a delicate interpolation argument; both may be of independent interest.Comment: 35 pages, 9 figure

    Computable Categoricity of Trees of Finite Height

    Get PDF
    We characterize the structure of computably categorical trees of finite height, and prove that our criterion is both necessary and sufficient. Intuitively, the characterization is easiest to express in terms of isomorphisms of (possibly infinite) trees, but in fact it is equivalent to a ÎŁ03-condition. We show that all trees which are not computably categorical have computable dimension ω. Finally, we prove that for every n ≄ 1 in ω, there exists a computable tree of finite height which is ∆0n+1-categorical but not ∆0n-categorical
    • 

    corecore