
University of Portland
Pilot Scholars

Mathematics Faculty Publications and Presentations Mathematics

3-2005

Computable Categoricity of Trees of Finite Height
Steffen Lempp

Charles McCoy
University of Portland, mccoy@up.edu

Russell Miller

Reed Solomon

Follow this and additional works at: http://pilotscholars.up.edu/mth_facpubs

Part of the Mathematics Commons

This Journal Article is brought to you for free and open access by the Mathematics at Pilot Scholars. It has been accepted for inclusion in Mathematics
Faculty Publications and Presentations by an authorized administrator of Pilot Scholars. For more information, please contact library@up.edu.

Citation: Pilot Scholars Version (Modified MLA Style)
Lempp, Steffen; McCoy, Charles; Miller, Russell; and Solomon, Reed, "Computable Categoricity of Trees of Finite Height" (2005).
Mathematics Faculty Publications and Presentations. 6.
http://pilotscholars.up.edu/mth_facpubs/6

http://pilotscholars.up.edu?utm_source=pilotscholars.up.edu%2Fmth_facpubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/mth_facpubs?utm_source=pilotscholars.up.edu%2Fmth_facpubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/mth?utm_source=pilotscholars.up.edu%2Fmth_facpubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/mth_facpubs?utm_source=pilotscholars.up.edu%2Fmth_facpubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=pilotscholars.up.edu%2Fmth_facpubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://pilotscholars.up.edu/mth_facpubs/6?utm_source=pilotscholars.up.edu%2Fmth_facpubs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library@up.edu

The Journal of Symbolic Logic

Volume 70. Number 1. March 2005

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT

STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

Abstract. We characterize the structure of computably categorical trees of finite height, and prove that

our criterion is both necessary and sufficient. Intuitively, the characterization is easiest to express in terms

of isomorphisms of (possibly infinite) trees, but in fact it is equivalent to a I3-condition. We show that all

trees which are not computably categorical have computable dimension co. Finally, we prove that for every
n > 1 in co. there exists a computable tree of finite height which is A?|+] -categorical but not A?n -categorical.

?1. Introduction. Computability theorists have developed powerful techniques
for studying computational properties of the natural numbers. Many of these

techniques can be applied to more general algebraic structures once they are suitably
coded into the natural numbers. In this article, we use tools from computability

theory to study computational problems for trees of finite height.
We begin writh some general definitions and background in computable model

theory. Let s? be a countable structure over a fixed computable language whose

domain \s?\ is a subset of co. The degree of s? is the Turing degree of the atomic

diagram of {s?. a)ae \st\ In particular, if the language is finite, then s? is computable
if I s? I is a computable set and the interpretations of the function and relation symbols
are all computable. Throughout this paper, we assume that all structures are coded

into the natural numbers.

In computable model theory, one frequently works in a given class of countable

algebraic structures such as abelian groups, partial orders, fields, or as in this paper,
finite height trees. Any computable structure from one of these classes is isomorphic
to infinitely many other computable structures. It may happen, however, that two

computable structures are isomorphic, yet that the only isomorphisms between

them are noncomputable (as maps from one domain to the other). If so, then these
structures lie in distinct computable isomorphism classes of the isomorphism type
of the structure. On the other hand, if there exists a computable function taking
one structure isomorphically to the other, then the two structures lie in the same

computable isomorphism class.

The computable dimension of a computable structure is the number of computable

isomorphism classes ofthat structure. The most common computable dimensions

Received April 4. 2004: accepted August 2. 2004.

The first author was partially supported by NSF grant DMS-9732526 and by the Vilas Foundation

of the University of Wisconsin. The second author was partially supported by a VIGRE grant to the

University of Wisconsin. The third author was partially supported by a VIGRE postdoc under NSF

grant number 9983660 to Cornell University. The fourth author was partially supported by an NSF

postdoctoral fellowship.

? 2005. Association for Symbolic Logic
0022-4812/05/7001-0008/S7.50

151

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1 52 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

are 1 and co. and many classes of algebraic structures are known to admit only
these computable dimensions. The following theorem is a compilation of results

due to Goncharov [10]; Goncharov. Dzgoev [13]; Goncharov. Lempp. Solomon

[14]; LaRoche [22]; Metakides. Nerode [23]; Nurtazin [27]; and Remmel [30. 29].

Theorem 1.1. Computable structures in the following classes have computable di

mension 1 or co\ algebraically closed fields, real closed fields, abelian groups, linear

orders. Boolean algebras, and ordered abelian groups.

On the other hand. Goncharov [9] proved that for each 0 < n < co. there exist

structures with computable dimension n. Since then, many classes of structures have

been discovered which admit computable dimension n for each 0 < n < co. The

following examples come from Goncharov [9]; Goncharov. Molokov, Romanovskii

[15]; Hirschfeldt, Khoussainov, Shore. Slinko [16]; and Kudinov [20].

Theorem 1.2. For each 0 < n < co. there are computable structures in the following
classes with computable dimension n: graphs, lattices, partial orders, nilpotent groups,

and integral domains.

There are many other natural computational questions that one can ask about the

members of these algebraic classes. For example, is it possible for the computable
dimension of s? to change when a single constant is named? What are the possible

degree spectra for a structure or for a relation on a structure within each class? The

degree spectrum of s? is the set of Turing degrees d for which there is an isomorphic
copy o?s? of degree d. The degree spectrum of a relation U on s? is the set of degrees
d such that there is an isomorphic computable copy of s? for which the image of U

in this copy has degree d.

Hirschfeldt, Khoussainov, Shore and Slinko [16] gave highly effective coding
methods which show that for the classes of structures from Theorem 1.2. any answer

to the above questions which can occur in a countable model, can actually occur

within these classes. More specifically, they show that for each of these classes and

for each nontrivial countable structure Jt, there is a structure s? from that class

such that

(1) the degree spectrum of Jt is equal to the degree spectrum of s?.

(2) the computable dimension of J? is the same as the computable dimension of

s?.

(3) for each x e \Ji\, there is an ?7 e \s?\ suchthat {,?. x) has the same computable
dimension as {s?. a),

(4) for each S c |^#|. there is a U c \s?\ such that the degree spectrum of the

relation S with respect to M is the same as the degree spectrum of U with

respect to s?.

These results suggest that the algebraic structure on the members of these classes

interacts in a trivial way with the computational structure in the sense that any

"pathological" computational behavior which can occur in a countable model can

actually occur within these classes of structures. For example. Slaman [32] and

Wehner [34] independently proved that there is a computable model <? whose

degree spectrum contains all degrees except 0. Therefore, by the result above, there
are graphs, lattices, and so on with this property.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 153

Because Property (2) above fails for the classes in Theorem 1.1. the interaction
between the algebraic structure on the members of these classes and their compu

tational structure is nontrivial in the sense that the algebraic structure necessarily
limits the types of computational behavior that can occur. It is therefore interesting
to ask about how the algebraic structure and the computational properties interact.

For example. Downey and Jockusch [7] showed that every low Boolean algebra has
a computable copy. Therefore, it is not possible for a Boolean algebra to have a

degree spectrum consisting of all degrees except 0. On the other hand, by Miller

[24]. there is a linear order which has copies in every A?2 degree except 0. The ques
tion of whether a linear order can have a spectrum consisting of all degrees except
0 remains open. The reader is referred to [16] for a more detailed survey of similar
results.

We would hope for a fine line separating the classes of structures which behave as

in Theorem 1.1 and those which behave as in Theorem 1.2. In the class of groups,
the fact that abelian groups fall in Theorem 1.1 and nilpotent groups fall in Theorem
1.2 gives a reasonably sharp distinction. To sharpen the difference further, we could

weaken nilpotent groups to torsion free nilpotent groups (that is. nilpotent groups
in which no element except the identity has finite order) and we could add structure
to the abelian groups by making them ordered. In both cases, the classes retain
their previous possible computable dimensions.

For ring structures and ordered structures, the story is quite different. There
is a large gap between algebraically or real closed fields (Theorem 1.1) and inte

gral domains (Theorem 1.2). The obvious open question is what are the possible
computable dimensions for computable fields. For ordered structures, there is a

gap between linear orderings and Boolean algebras (Theorem 1.1) and lattices and

partial orderings (Theorem 1.2). Trees are one obvious class of structures which
falls within this gap and therefore they are of particular interest. It is not imme

diately apparent whether one would expect trees to admit only limited coding, like
linear orders, or to admit very general coding, like partial orders, with respect to

computable dimension and the other properties mentioned above. Our main result

says that with respect to computable dimension, they have limited behavior in that

they must have computable dimension 1 or co. It would therefore be interesting to

explore the answers to the other computational questions for trees.
In addition to proving that finite height trees must have dimension 1 or w. we

give an algebraic characterization for when they have computable dimension 1.
If the computable dimension of j/ is 1. we say that stf is computably categorical.

This notion is somewhat analogous to the concept of categoricity in ordinary model

theory: a theory is categorical in a given power k if all models of the theory of power
k are isomorphic. Computable categoricity. however, is a property of structures,

not of theories: a computable structure s? is computably categorical if every other

computable structure which is isomorphic to stf is computably isomorphic to stf.
A standard example of a categorical theory is the theory of dense linear orders

without end points, which is categorical in power co. One proves this by taking two

arbitrary countable dense linear orders and building an isomorphism between them

by a back-and-forth construction. The same construction allows us to prove that the

structure Q is computably categorical. (More formally, let [co. -<) be a computable
linear order isomorphic to (Q. <). Then [co. -<) is computably categorical.)

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1 54 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

Characterizations of computable categoricity have been found for several types
of structures. The following examples comes from Goncharov. Dzgoev [13]; Gon

charov, Lempp, Solomon [14]; and Remmel [30. 29].

Theorem 1.3. The following equivalences for computable categoricity hold.

(1) A computable linear order is computably categorical if and only if it has a finite
number of pairs of adjacent elements.

(2) A computable Boolean algebra is computably categorical if and only if it has a

finite number of atoms.

(3) A computable ordered abelian group is computably categorical if and only if it

has finite rank.

There are a number of natural generalizations for computable categoricity, two

of which are important for this article. A computable structure s? is relatively

computably categorical if for every isomorphic (not necessarily computable) copy
3$, there is an isomorphism between s? and 38 which is computable from the

degree of &. It follows directly from this definition that any structure which

is relatively computably categorical is also computably categorical. For linear

orders and Boolean algebras, the notions of computable categoricity and relative

computable categoricity coincide. However, this is not always the case. In general,

computable categoricity does not imply relative computable categoricity without

addition assumptions on the structures involved.

Theorem 1.4 (Kudinov [21]). There is a computable s? for which the U?{ diagram
is decidable and which is computably categorical but not relatively so.

By the following result of Goncharov. Kudinov's example is the best possible in

terms of decidable fragments.

Theorem 1.5 (Goncharov [8]). Let s? be a computable structure for which the U?

diagram is decidable. Then, s? is relatively computably categorical if and only if it is

computably categorical.

In the present paper we consider computable trees of finite height, and develop
a structural criterion for such trees which is equivalent to both computable cate

goricity and relative computable categoricity. There are a number of definitions for

trees, but for our purposes, a tree consists of a universe T with a strict partial order

-< on T such that for every x G T, -< well-orders the set of -<<-predecessors of x in

T, and such that T contains a least element under -< called the root. We view our

trees as growing upward with the root r at the base. A tree is computable if T is a

computable set and -<; is a computable relation. Without loss of generality, we can

restrict ourselves to trees whose domain is an initial segment of co. An index for T

is then an index for the characteristic function of -<.

Because we are only concerned with trees of finite height, we can define the level

of a node x G T by

levelrU)
=

\{y e T : y ^ x}\.

A more formal definition sets the level of the root to be 0 and inductively defines

levels(x)
=

sup{levelr(j) + 1 ; y -< x}. thereby also covering the case of an

element with infinitely many predecessors. The level of a node is not generally

computable, but it can be approximated from below by the computable function

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 155

f[x,s)
?

\{ y < s : y -< x }| which is increasing in the variable s and which has the

property that for all x G T, levels[x)
= lims f[x. s). The height of T is defined by

ht(T)
=

sup(levelr(x) + 1).

A path y through T is a maximal linearly ordered subset of T. Thus, for a finite

height tree, the height of T is the greatest n such that T contains a path with n

elements. In a tree of finite height n, we say that a node is established if it lies on

a path of length n. and (for computable trees) established at stage s if it lies on a

path of length n which is contained in the approximation Ts at stage s. (If a node is

established at stage s, then at that stage we know what its level in T must be, since
no more predecessors of the node can appear at later stages.)

We define our structural criterion for computable categoricity by induction on

the height of the tree.

Definition 1.6. Let (T. -<;) be a tree of finite height, and x a node of T, with

immediate successors { x? : i G / }. Let T[x{\
=

{ y G T : xt < y }. We say that x

is of strongly finite type if it satisfies the following conditions:

(i) There are only finitely many isomorphism types in the set { T[x?] : i G / },
each of which is of strongly finite type; and

(ii) For each j and k in /, if T[xj] embeds into T[xk], then either T[xj] and T[xk\
are isomorphic, or the isomorphism type of T[xk] appears only finitely often

in {T[Xi] :i el}.
T itself is of strongly finite type if every node in T is of strongly finite type, or

equivalently, if the root node is of strongly finite type. (By part (i), it is also

equivalent to require that every minimal co-branch point in T be of strongly finite

type.)
Notice that ht(T[xz]) < ht(T) for every i G /, so that the concept is well-defined

for every tree of finite height. Also, finite trees are automatically of strongly finite

type, having no co-branch points. We also have a weaker criterion.

Definition 1.7. Using the same notation, we say that x is of finite type if it

satisfies:

(i) There are only finitely many isomorphism types in the set { T[x?] : i e I },
each of which is of finite type; and

(ii) Every isomorphism type which appears infinitely often in the set { T[x?] :

i G / } is of strongly finite type: and

(iii) For each j and k in /, if T[x?] embeds into T[xk], then either T[x?] and T[xk]
are isomorphic, or the isomorphism type of T[xj] appears only finitely often

in { T[x?] : i G / }, or the isomorphism type of T[xk] appears only finitely
often in { T[x?] : i ? I}.

T itself is of finite type if every node in T is of finite type. Again, this is equivalent
to every minimal co-branch point being of finite type.

We can now state our main theorem.

Theorem 1.8. For a computable tree (T, -<) of finite height, the following are equiv
alent:

(1) T is of finite type:
(2) T is computably categorical:

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1 56 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

(3) T has fin ite computable dimension ;

(4) T is relatively computably categorical.

The proof of Theorem 1.8 is contained in Sections 2. 3 and 4. In Section 2. we

show that finite type implies relative computable categoricity. which in turn implies

computable categoricity. In Sections 3 and 4. we show that any tree which is not

of finite type cannot be computably categorical, which in turn implies that it is not

relatively computably categorical. The proof proceeds by induction, with Section 3

containing the base case and Section 4 containing the inductive argument. This

establishes the equivalence of conditions 1. 2 and 4. We also show, in Section 4. that
if a computable tree does not have finite type, then it must have infinite computable
dimension. This establishes the equivalence of condition 3 with the other conditions.

To our knowledge, this is the first example of a structural criterion for computable

categoricity which needs to be defined by recursion. Notice, however, that this
criterion only applies to trees of finite height. The following result handles the case

of infinite height trees.

Theorem 1.9 (Miller [25]). The computable dimension of every computable tree of

infinite height is co {regardless of whether or not the tree has co-branch points).

Together. Theorems 1.8 and 1.9 show that trees, like linear orders, cannot exhibit
the behavior of the structures listed in Theorem 1.2. Chisholm [4] has some related

unpublished work for intrinsically 1-computable trees. A computable tree T is 1

computable if its l}? diagram is computable and T is intrinsically 1-computable if

every computable copy of T is 1 -computable. Chisholm proved that every intrinsi

cally 1-computable tree is computably categorical. Notice, however, that intrinsic
1 -computability is a strong assumption for trees, as Chisholm also showed that every

intrinsically 1-computable tree is intrinsically decidable. (That is. every computable
copy of the tree is decidable.)

Once we know that there are computable trees of finite height with infinite com

putable dimension, it is natural to ask exactly how difficult it is to compute an iso

morphism between arbitrary pairs of such trees. (For computable trees without the

restriction to finite height, the isomorphism problem is 1}-complete as computable
trees can be used to code arbitrary computable ordinals.) In Section 5 we begin to

answer this question for finite height trees by showing that no degree 0^ is capable
of computing an isomorphism between every pair of isomorphic computable trees

of finite height. More specifically, a computable structure s? is called Ajj -categorical
if for every computable 38 isomorphic to s?. there is a Ajj-isomorphism from s? to

38. In this notation. A'j*-categoricity is equivalent to computable categoricity. In

Section 5. we show the following theorem.

Theorem 1.10. For every n > 1 there is a computable tree of finite height which is

A? ,
^-categorical

but not
^-categorical.

Another natural question to ask is how difficult it is to express the property
"T is computably categorical". On its face, our structural criterion is an analytic
predicate of similar complexity to stating the definition of computable categoricity.
However. Ash. Knight. Mannasse and Slaman [3] showed that for any computable

language 3. a computable ?f-structure is relatively computably categorical if and

only if it has a formally J}\ Scott family. In Section 2. we show that computable
trees of finite height and finite type have formally lP{ Scott families consisting of

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 1 57

finitary formulas. (In fact, any formally 1^ Scott family can be transformed into one

consisting of finitary formulas.) It is known (see Proposition 6.10 in Ash. Knight

[2]) that the existence of such families is described by a
1^ condition. Therefore, since

computable categoricity and relative computable categoricity coincide for trees of

finite height, there is a X3 predicate which expresses "J is computably categorical".
Theories are known to exist in which the property of computable categoricity is

strictly more complex than X?; we refer the reader to [35] for details.

It is important to note that our definition of tree is based on a partial order -<. In

other papers, "tree" is sometimes defined using the infimum function A. where the

infimum x A y of x and y is the ^-maximal z such that z < x and z < y. One can

define < from A by a < b if and only if a A b = a. Therefore, the notions of tree

in terms of A and -< are classically bi-interpretable. and if {T A) is a computable
tree, then so is the corresponding {T -<). However, the computability of -< need not

imply computability of A. Therefore, by choosing a definition based on -<: rather

than A. we consider a broader class of computable trees. In Section 6. we give a

brief discussion and conjecture about criteria for computable categoricity of trees

in the language of the infimum.

By a homomorphism of trees, we mean a map which respects the partial orders, but

need not preserve infima. Similarly, an embedding is a one-to-one homomorphism
T^ T'. We will frequently use the equivalence relation =

given by

T = T' ^=> T^ T' ^ T

A tree {T'. -<') is a subtree of {T. -<) if T' ? T and the inclusion map respects the

partial orders. Thus the infimum of two elements in T may not be the same as their

infimum in T'. (This broader notion of subtree is another reason for choosing a

definition of tree based on -< rather than A.) Also, the root of T may be distinct

from the root of T'. as in the case of the subtrees T[x]. which we will consider

frequently. If x G T. then T[x]
=

{ y G T ; x -< y }. The partial order on T[x]
is the restriction to T[x] of the partial order -< on T. Therefore T[x] is a subtree

of T with root x. If x is an immediate successor of the root in T. then we refer to

T[x] as a successor tree (of the root) in T. We define the height ofT above x by

ht,(r) = ht(rM).

?2. Relatively computably categorical trees. In [8], Goncharov gave a syntactic
condition which, under some extra hypotheses, is equivalent to computable cate

goricity. In [3] Ash. Knight. Mannasse, and Slaman proved that this condition

is actually equivalent, with no extra hypotheses needed, to the stronger notion of

relative computable categoricity. In fact, they proved a more general result which

applies to relative a-categoricity for any a < co\K. In order to understand these

statements fully, one would need to know about computable infinitary formulas as

defined by Ash. However, all formulas we will need in this paper are finitary. Thus
we state the relevant definitions and results correctly and completely, but we provide
some clarifying remarks.

Definition 2.1. Let 3 be a computable language, and let ibea computable
^-structure. A formally lf? Scott family for s? is a ce. collection O of computable
Ii formulas (possibly infinitary) so that

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1 58 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

(1) there is a finite tuple cso that for any 0 (x) G O, all of the parameters appearing
in 9 are among c:

(2) for each tuple a G s? of distinct elements, there is a 0(f) e 0 so that s? \=

(3) for each 0 G 0, each tuple a G s? of distinct elements and each tuple a' G s?

of distinct elements, if s? \= 6(a) A O(a'), then (s?, a) = (s?\ a').

Note that since we talk about a ce. set of formulas, we must have some way of

assigning code numbers to the computable formulas. Note also that any finitary
existential formula is (logically equivalent to) a computable lP{ formula. Again,

throughout this paper, we will deal only with finitary formulas.

Theorem 2.2 (Ash-Knight-Mannasse-Slaman [3]). Let S? be a computable lan

guage, and let s? be a computable ^-structure. Then s? is relatively computably

categorical if and only if s? has a formally lP{ Scott family.

The forward direction of this result is difficult and requires a forcing construction.

The other direction follows from a straightforward back-and-forth argument. In

this section, we use the easy direction of Theorem 2.2 to show that a tree with finite

type is relatively computably categorical, and thus computably categorical.

Definition 2.3. Using the same notation as the introduction, we say that x

has weakly finite type if there are only finitely many isomorphism types in the set

{ T[xi] : i > 1 }, each of which has weakly finite type. T itself has weakly finite

type if every co-branch point in T has weakly finite type.

Definition 2.4. Let T be a tree of finite height with root node r, and let x G T,
x t? r. Tx is defined to be ({ z G T : z is not comparable to x } U {r}, -<T).

We need to prove a few facts about this operation.

Lemma 2.5. Let T be a tree of finite height with root noder. Let x,y G T, x, y 7^ r,
and x, y incomparable.

(1) Tx is a tree.

(2) (Tx)y
=

(Ty)X. ^
(3) IfT has weakly finite type, then so does Tx.

Proof. (1) The ordering relation on Tx is inherited from T, and the root node

of T, by definition, is in Tx.

(2) Since each tree inherits its relation from T, we need only show that the two

trees have the same underlying set. Note that r is a member of both trees. Let
z / r be a member of (Tx)y. Then z is incomparable with x, since it belongs
to Tx. (The operation never adds elements to a tree, so (Tx)v ? Tx.) And by
definition, z is incomparable with y in T, since the relation on Tx is inherited from

T. Consequently, z G (Tv)x. By symmetry, (Tx)y
=

(TY)X.
(3) We induct on the height of T. First note that the definition only applies to

trees of height > 2. If ht(T)
= 2, then x is an immediate successor of r with no

successors, so the claim is obviously true.

Let ht(T)
= n + 1. If x is an immediate successor of r, then Tx = T ?

T[x],
which has weakly finite type. If x is strictly above an immediate successor r\ of r.

then we must first understand exactly how Tx looks. Let (r\)iej be the immediate
successors of r\ in the tree (T[r\])x. (The set / might be finite or infinite.) Then the

tree Tx is as follows:

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 159

(1) T-T[rx] ? rT;and

(2) for each i ? I. the tree {{T[r\])x)[r\] is attached directly above r.

By induction. {T[r\])x has weakly finite type. Consequently, each co-branch point
of {T[r\])x has only finitely many types directly above it. Therefore, there are only

finitely many isomorphism types in the set {((r[ri])A)[r?] : i G /}. And so, if r is
an co-branch point in Tx, then it has weakly finite type. Moreover, since {T[r\])x
has weakly finite type and T has weakly finite type, all other co-branch points of Tx
have weakly finite type. Thus, Tx has weakly finite type. H

Based on part (2) of the preceding lemma, if x. y are incomparable nodes in T,
we write Tx_v for {Tx)v

=
{Tv)x. One further piece of notation we use is to denote

the isomorphism type of a tree T[x] by ot{T[x]).

Lemma 2.6. IfT has weakly finite type, then the set { ot{T[x]) : x G T } is finite.

Proof. We induct on the height of T. If ht(T)
= 1, then it's clear. Let ht{T) be

n + 1, let r be its root node and its immediate successors be members of the sequence

(r/)ze/. Whether / is finite or infinite, the set { ot(T[r/]) ; i G / } is finite, since T

has weakly finite type. Moreover, by the induction hypothesis, for each / G /, the
set { ot{T[z]) : z y n } is finite. Consequently, { ot{T[x]) : x G T } = {ot(r)} U

{ ot(r[r/]) ; i G / } U U/G/? ot(r[z]) : z y r?}is finite. (Even if I is infinite, there
are only finitely many different sets in this union by the comments above.) H

Based on Lemma 2.6, we could restate Definition 2.3 by saying the a finite

height tree T has weakly finite type if and only if it has finitely many orbits under

automorphisms of T.

Lemma 2.7. IfT has weakly finite type and T has root node r, then the set { ot(Tx) :

x ^ r } is finite.

Proof. We induct on the height of T. If ht(T)
= 2, then there is only one element

in the set { ot(Tv) : x / r }.
Let ht(r)

= n. + 1. Let the immediate successors of r be members of the sequence

(r/)/e/; and let n,_rk be the successors so that for all i G /, there is 1 < j < k

with T[r?]
=

T[rj]. By induction, we know that for each 1 < j < k, there are

Pj G N and
rj_.

rp-} y r? so that for each x y r?, there is 1 < q < pj with

{T[rj])x
=

(T[rj])r?. It is clear from the description of Tx in the proof of Lemma

2.5 that the set { ot(rr/) :l < j <k}U {Jl<J<k{ ot(7>) ; 1 < q < pj } is equal to

{ot{Tx):x^r}.

- - ./
^

The proof of the next two lemmas will use induction on the degree of co-branching,
which we define formally below. Intuitively, T has degree m co-branching if and only
if the following two conditions hold; first, there is a chain of elements in T which

contains m many elements which are co branching and second, for any chain of ele
ments in T. there are at most m many elements in the chain which are co-branching.

Definition 2.8. Let T be a finite height tree.

(1) T has degree 0 co-branching if and only if it is finite;

(2) T has degree n -f 1 co-branching if and only if

(a) T does not have degree n co-branching; and

(b) if x is a minimal co-branch point of T with immediate successors r?, i > 1,
then for each / > 1. there is m < n so that T[ri\ has degree m co-branching.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

160 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

Lemma 2.9. IfT\ and T2 have weakly finite type and T\ ^A T2. then there is a finite
subtree T[? Tx such that T[</+ T2.

Proof. We induct on the height of tree T\. If ht(Ti)
= 1. then T\ <?> T2.

Let T\ have height ? + 1. We induct on the degree of co -branching in T\. First,
if the degree is 0. then T\ is finite, so T[

= T\.
Let T\ have degree m + 1 co-branching. We induct on the height of T2. If

ht(T2)
= 1. then T\ is infinite, but T2 is finite, so the desired conclusion is clear.

Let T2 have height p + 1. We induct on the degree of co-branching in T2. If the

degree is 0. then then T\ is infinite, but T2 is finite.

Let T2 have degree q -h 1 co-branching.

Case 1. The root node r of T\ is finite branching with immediate successors

r\.rk. By induction on the height of T\. for each / G {1.k} and each
s G T2. if T\[r?] y^ T2[s]. then there is a finite subtree (T\[r?])s ? T\[r?] so that

(Ti[rz])v ?t^ T2[s]. Consequently, by Lemma 2.6. for each / G {1.k}. there

is a single finite T][r?]f ? T\[r?] so that for all s G T2. if T\[ri] y^ T2[s]. then

^lD"/]' ^ ^[s]. (We may assume that r? G T\[r?]f for each / G {1._k}.)
Define T[? T\ as follows:

(D r G T(:
(2) Ti^y ? T/ for each/ G {1.k).

We claim that T[y^ T2. Assume otherwise that f : T[
^ T2. Then / maps r.

H.r/v to some s. s\.Sk so that

(1) 5 is below all of ^i.^ :

(2) no two of s\.Sk are comparable: and

(3) T^n]' ^ T2[sj] for all 1 < / < k.

Consequently, by the way in which we defined each T\ [r,]'.

(1) s is below all of si.sk :

(2) no two of s\.Sk are comparable: and

(3) T{[n] ^ T2[s?] for all 1 < i < k.

Therefore. T\
c-^

T2. a contradiction.

Case 2. The root node r is an co -branch node with immediate successors r?.i > 1.

where r\.r2.r?, -r?<+\.r? are such that

(1) T\[r\\.T\ [rk\ are all of the direct successor trees of r whose isomorphism
types occur finitely often directly above r:

(2) Ti[r/v+j].T\[r?] are direct successor trees of r whose isomorphism types
occur infinitely often directly above r:

(3) for all j. j' with k + 1 < j < j' < I. T^rj] ^ T\[rr]\ and

(4) for all / > 1. there is j < I so that T^i] ^
Tx[rj}.

Case 2a. The root node s of T2 is an co-branch node of T2 with immediate
successors s,-. i > 1. where s?.s2.st. st+\.su have properties analogous to

those of r\.rk .rk+\.r?. Consider T3 c T\ defined as follows:

(1) r G T3:
(2) T{[r?] c T3 for each 1 < / < k.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 161

If T3 ?t^> T2, then by induction on the degree of co-branching in T\, there is a

finite subtree T[? T3 ? T\ so that T[?jA T2. So assume that T3 ^ T2.

Thus, it cannot be the case that each T\[rk+x],..., T\[r?] embeds into one of

72[^?h-i],
. , T2[su]. Otherwise, T\ c-> T2. (T2 with countably many more copies of

each of T2 [st+1],..., T2 [su] attached directly above s is a tree isomorphic to T2 itself.)
Let T\ [ra]],..., T\ [rav] be a list of all the trees among Tx[rx],..., T\ [rk] which indi

vidually do not embed into any T2[st+X],... ,T2[su]. Similarly, let T\ [r^],.... T2[r?w]
be a list of all those among T\ [rk+\],..., T\ [r?] with this property. Consider the tree

T* ? T\ defined as follows:

(1) r e 7?;
(2) Tx[ra]],...,Tx[rav]cT*;

(3) for each i G {\,... ,w}, T* contains infinitely many copies of 7i[r#] directly
above r.

This tree cannot be embedded into the subtree {s} U T2[s\] U U T2[st]; otherwise

T\ ^ T2. By induction on the degree of co-branching of T2, there is a finite number

ja and a tree fx so that

(1) ref{:
(2) Tl[ra,],...,Tl[rav]cfl^
(3) for each i G {L ..., w}, T\ contains exactly ?i copies of Tx[rp.] directly above

r; and

(4) f^WU^U-U^].
In fact, t\ ^A T2. Why? Assume otherwise that f : f\ ^ T2. None of the

roots of the copies of T\[ra]],..., Tx[rav], Ti[r^J,..., T2[r?w]
can be mapped to a

point in T2[s?] with i > t + 1. Thus, f:f\^{s}\J T2[s\] U U T2[^], a direct

contradiction. And so, by induction on the degree of co -branching of T\, there is a

finite subtree T[? f i c T\ such that T[>A T2.

Case 2b. The root node s of T2 has finitely many immediate successors. We

proceed by induction on the number of immediate successors s has. First assume

that s has only one immediate successor s\. Since the root node r of T\ has infinitely
many immediate successors, we know, by induction on the height of T2, that there

is a finite tree T[C T\ so that

(1) re T[;
(2) r has at least two immediate successors in T[\ and

(3) T[^T2 -{.,}(= T2[Sx\).
Of course, this implies that T[>A T2; if/: T[

^ T2, then /(r) G T2[s\] or

5i ^ range(/), since s\ is the sole immediate successor of s, and r has at least two.

Assume that s has ? + 1 immediate successors s\,..., st+\ in T2. Of course, for

each j G {1,..., t + 1}, T\ y^ T2- T2[sj]. Therefore, by induction on the number

of immediate successors of the root node s, for each j G {1,..., t -f 1}, there is a

tree (T\)J c T\ and a finite number /?7 so that

(1) rt(Tx)J',

(2) for each/ G {1,...,/:}, ^[r/] C (TX)J ;

(3) for each i G {A: + 1 ..., /}, (Ti)7 contains exactly juj many copies of T\[r{\

directly above r; and

(4) (ri)> ̂ r2 - r2[i,-].

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

162 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

Let ju =
max{ jllj^ ; j G {1..... t + 1} }. Define T* as follows;

(1) r G 7?;
(2) for each/ G {l.....k}. Ti[ri] C T{:
(3) for each i G {k + 1 /}, T* contains exactly ju many copies of T\ [r?] directly

above r.

Assume, without loss of generality, that the immediate successors of r in T? can be

listed as r\,..., rw. If for some v\,... ,vw G T2, / ; T* ^->
T2 and f{r?)

= v? for

1 < / < w. then the following must be true;

(a) for each 1 < j < t + 1, there is 1 < / < w so that v? >z s?: and

(b) {T\
-

T\) U {r} y^ {T2)Vu....Vw (where {T2)V{.Vw is defined in Definition 2.5).

Otherwise, {T\)J ^ T2
-

T2[sj] for some j or T\ ^ T2.
Notice that if v\,... ,vw satisfy (a) above, then ht{{T2)V].vw) < ht(T2). And

so, by induction on the height of tree T2, it must be the case that for each tuple

v=v\,...,vw G T2 which satisfy (a) and (b) above, there is a finite number k^ and

a subtree Tl7 ? (7j
-

T{) U {r} so that

(1) r G T*\
(2) for each / G {k + 1,..., /}, Tv contains exactly Ky many copies of T\[r?]

directly above r; and

(3) T^{T2)V].Vw.

Therefore, by Lemma 2.7, there is a single number n and a single tree T ?

{Tx
-

7y)u{r} so that

(1) ret:
(2) for each i G {k -f-1,...,/}, T contains exactly k many copies of T\ [r,] directly

above r; and

(3) for each list of incomparable elements v\,... ,vw which satisfy (a) and (b)

above, f ^ {T2)Vl....,vw

Finally, define f\ ? T\ as follows:

(1) r G fi;
(2) for each/ G {l,...,/c}, ^[r,] C f{;

(3) for each i G {/c + 1,..., /}, T\ contains exactly ?i + k many copies of ^[r,]

directly above r.

A straightforward argument similar to ones previously given shows that f\^T2.
Therefore, by induction on the degree of co-branching in T\ it must be the case that

there is a finite T{ ? f i C T\ so that T[^ T2. H

Lemma 2.10. If T\ and T2 have strongly finite type, and T\ c-> T2 ^ T\, then

Tx
=

T2.

This lemma need not hold if either T\ or T2 is only of finite type. For instance,

let Tx be the tree co<3, with x ^ y if and only if x is an initial segment of y, and

delete { (0, n) : n G co } from Ti to get T2 (or let T2 be any other tree of height 3 in

which Tx embeds). Recall that the equivalence relation = on all trees is defined by

T = T' ^=^ 7 ^ T' ^ T

So the lemma says that for trees of strongly finite type, = and = are identical.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 163

Proof. We induct on the height of T\. If ht(Ti)
= 1, then the result is obvious.

Let ht(Ti)
= n + 1. We induct on the degree of co-branching of T\. If the degree

is 0, then T\ is finite. Therefore, if T\ ^-? T2 ̂ Tx, then both trees are finite of the
same size, so any embedding must be an isomorphism.

Let the T\ have degree q + 1 co-branching. Let r be the root node of T\ and s be
the root of T2. It is clear that ht(7i)

=
ht^), and that in any embedding of one

into the other, the root node must be mapped to the root node.

Case 1. r has finitely many immediate successors. First, we argue that s must
have the same number of immediate successors, Let r have immediate successors

n,... ,4rm. Let p be the number of trees among T\[r\],..., T\[rm] which have

height equal to n. Since T\ ^ T2 ̂ Tx, the number of such immediate successors
of s must also be p, and in the embeddings, a successor at the base of a tree of

height n must be mapped to a successor at the base of a tree of height n.

If r has no more immediate successors, then s cannot either, because T2 ̂ T\.
Otherwise, let h\ be the greatest number < n so that r has an immediate successor

r? with ht(7"i[r/])
= h\, and let p\ be the number of such rz's. First, notice that

s cannot have a successor s? with h\ < ht(72[.?/]) < n, since T2 ̂ T\, and all of
the successors r? of r with ht(7'i[rl-]) > h\ are images of successors s? of s with

ht(72[57])
= n. Moreover, s must have exactly p\ immediate successors s? with

ht(r2[^])
= h\, since T\ *-> T2 ^-> Tx. Continuing in this fashion we complete the

argument that r and s must have exactly the same number of immediate successors.
We complete this case by arguing by induction on the number of immediate

successors of r, s. First, if r has only one immediate successor n, and s has

only one immediate successor s\, then obviously, T\[r\] ^ To^i] c-> 7^[n]. By
induction on the height on the trees, T\[r\]

=
T^i], so T\ = T2.

Assume that r has immediate successors r\,..., rm+\ and s has immediate succes

sors sx,..., sm+x By induction on the height of the trees, there must be a successor

Yi of r so that

(1) Tx \vi] has height n ; and
(2) Tx[r?] is maximal among Ti[ri],.... 7i[rw+i] with respect to embedding; i.e.,

if j + i and Tx[n] ^
Tx[rj], then Ty[n] =

Tx[rj].

Assume, without loss of generality, that it is r\.
Now consider f \ Tx c-^ T2 and g : T2 ̂ Tx. Since T\ [r{\ has height n, there are

1 < j, k < m + 1 such that / ; T{[rx] ^
T2[sj] and f \ T\

-
Tx[rx] ̂ T2

-
T2[s?];

and g : T2[s?]
^ T\ [rk] and g: T2- T2[sj]

^ T\
-

Tx [rk]. However, then T\ [r{\ <->

Tx[rk], so by our choice of Tifn], we know that T\[r{\
=

Tx[rk]. Consequently, by
induction on the height of trees, T\[r\] =

T2[sj]; and by induction on the number
of immediate successors the root node has, T\

-
T\[r\] = T2

-
T2[sj]. Therefore,

TX
*

T2.

Case 2. r is an co-branch node with immediate successors rit i > 1, and s is an

co-branch node with immediate successors s?, i > 1. First, consider the subtree

T[? Tx which is defined as follows;

(1) r e T{:
(2) Tx [r?] ? T{ if and only if T\ [rt] has height n.

Define T{ similarly. Of course T[
^->

T{
-

T[.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

164 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

Next, consider the subtree T[' ? T[defined as follows:

(1) r G T[';
(2) T\[rt] ? T" if and only if Tx[r?] ? T[and the isomorphism type of Tx[r?]

occurs only finitely often directly above r.

Define T2" similarly. We claim that T['
^

T2"
^

T['. To see this, let Tx[rj] c T['.
Of course, it must be the case that Tx[rj]

<-? T2[sk] for some T2[sk] C T2. If

T2[sk] (?L T2 , then the isomorphism type of T2[sk] occurs infinitely often directly
above s. Since ht(T2[^])

= n, it must be the case that T2[sk] ?-> Tx[r?], where the

isomorphism type of T\[r?] occurs infinitely often directly above r0. However, then

T\[rj]
?~* Tx[r?], a contradiction to the fact that T\ has strongly finite type. And

so, T2[sk] c T". Consequently, T['
c->

T2
. A symmetric argument shows that

T2
^-?

T['. By induction on the degree of co-branching of Tx, T['
=

T2
.

Next, let Tx[rj] c T[
-

T['. Of course, it must be the case that Tx[rj]
^ T2[sk]

for some T2[sk] c T'2
-

T2". Similarly, T2[sk] ^ T2[r{\ for some T\[n] C T[
-

T['.
But then T\[yj\

^-> Tx[r?], so Ti[r7]
= Tx[r?], since Ti has strongly finite type. By

induction on the height of the trees, Tx[r?]
= Tx[sk]. Similarly, let T2[sp] c T2

?
T2.

Then T2[^]
=

Tx[rt] for some Ti[r,] c T[
-

T['. Therefore, {r} U (T{
-

T[')
9*

{^} U (T2;
-

T2n). Consequently, T[
^

T2;.
Finally, we claim that if/ : Tx ̂ T2, then f:{r}u(Tx- T[)

^
{s}u(T2- T2).

Let T\[r?] <? T[, and let / : Tx[rj]
^ T2[sk]. It cannot be the case that T2[sk] ?

T2, because, as we have seen, the number of immediate successors y of s with

T2[y] ? T2 is exactly the same as the number of immediate successors x of r

with Ti[x] ? T[', and each such x must be sent to such an y. Also, it cannot be

the case that T2[sk] ? T2
-

T2; otherwise, as we have seen, it would be the case

that T2[sk] = T\[r?] where Tx[r?] occurs infinitely often immediately above r; but

Tx[r?] ^A Tx[ri], since Tx has strongly finite type. Thus / : T\[rj]
^ Tx[sk], where

T[[sk] ? T\
-

T[. Therefore, / : {r} U (Tx
-

T{)
^

{s} U (T2
-

T2'). A symmetric

argument shows that {s} U (T2
-

T2)
c-^

{r} U (Tx
-

T[). Therefore, by induction
on the height of the trees, {r} U (Tx

-
T[)

^ {s} U (T2
-

T2'). And so, ^ ^ T2.
H

Lemma 2.11. If T has strongly finite type, then T has a formally 2^ Scott family of

finitary formulas with no parameters.

Proof. First, note that if T is a tree and T' is a finite tree, then we can say that

T' can be embedded in T[x] with a finitary existential formula y/(x).
We induct on the height of tree T. Let r be the root node of T. If ht(T)

= 1,
then T =

{r}, so {x
=

x} is the desired Scott family.
Let ht(T)

= n + 1. Let r have immediate successors (n)/G/. First, let n,..., rk,

rk+x,..., r? be such that

(1) Ti[n],..., Tx[rk] are all of the direct successor trees of r whose isomorphism

types occur finitely often directly above r ;

(2) Ti[r^+i],..., Tx[r?] are direct successor trees of r whose isomorphism types
occur infinitely often directly above r (this list is empty if I is finite);

(3) for all / f with k + l<j<j'<l, Tx[rj] ̂ Tx[rr]\ and

(4) for all / G /, there is j < I so that Ti[n] ^
Tx[rj].

Next, for each j G {1,...,/}, let
Tj

be such that

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 165

(1) T; ? T[rj]:
(2) Tj

is finite; and

(3) for all / G I, if T[rj] ̂ T[n], then T] y^ T[r?].
Finally, for each 1 < j < /, let ?_,- be the Turing machine which enumerates the

formally 1^ Scott family for T[rj].
Given a tuple of variables x =

x\,..., xt of length t, we consider all 7-tuples

pt
?

{a, j, s, P, o, t,s'), where

(1) a G {0,1} and 1 < j < t: if a = 0, then no member of x is going to

"represent" r;if a = 1, then Xj is going to "represent" the root node r.

(2) s < max{|/|,? -a}, P is a partition of {1,..., t} ({l,...,i}
-

{j} if a =
1)

into s pieces; for the part of x remaining, we divide it into subtuples y\,..., ys
according to P.

(3) a ?
(z"i,..., is) is an s-tuple so that

(a) for each 1 < ?i < s, ip G {1,..., /} ;

(b) for each 1 < ju < s, \yM\
<

\T[r?M]\; and

(c) for each l<ju<v<s,ifiM
= iv, then ip G {k + 1,..., /}.

(4) r is an s-tuple of natural numbers; for each 1 < ?i < s, z{ju) tells us which
formula to use from the formally lPx Scott family for T[r?].

(5) s' is a natural number.

Now we form the formula yPt {x)\

(1) If in (1) above, a = 1, then yPt includes a conjunct which says that xj is at the
bottom of a chain of length n + 1 ; otherwise, yPt includes a conjunct which

says that there is vo so that vo -< x.

(2) For each tuple yp and each tree T[riM] from (2) and (3) above, yPt includes

conjuncts yM(yM) so that

(a) if j\,...,jW/i is a complete list of the elements of {\,...,k} so that

T[%]
^

T[rh],..., T[rjWft],
but T[rilt] ? T[rM],..., T[rJw^} (and thus

Lemma 2.10 implies 7[r7l],..., T[rIw] y^ T[rifi]), then yp{yp) includes

the conjunct which says 3^o^i. ^+i [^o is at the bottom of a chain of

length n +
\\v\,...,vWli, vw^+x

are incomparable; for each 1 < p <
w^,

Tjy
*->

T[vp], and vp is at the bottom of a chain of length ht{T[r?p])',
yM h vWm+x, and

7^
^

T[vW/l+i]]\

(b) if both of the following are true about ̂
;

(i) ̂ halts on input z(jll) (a natural number) in less than sf steps and

outputs a formula ?(z); and

(ii) \yM\ is the number of free variables actually appearing in S (z),
then y^tiyju) includes the conjunct <5(j^). Otherwise, it includes the con

junct _L (falsity).
(3) For each 1 < ju < v < s so that iM ̂ iv, but T[rif?\

=
T[riv], yPl{x) includes a

conjunct which says 3vxv2 [v\ and v2 are incomparable; each is at the bottom
of a chain of length ht(r[rz-J); yp >z vx and yv >z v2].

Let 0 =
{ yPt (x) : t G co, x is a ?-tuple, and x, pt are as above }. We claim that 0

is a formally lP{ Scott family of the desired form. First, since we explicitly describe
how to form the formulas yPt, 0 is certainly ce. Next, if a is a /-tuple of distinct
elements of T, then it is obvious to see that there is going to be some yPt(x) which

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

166 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

it satisfies. Finally, assume that a ?
ax_. at and b ?

bx.... .bt are two tuples of

distinct elements so that T |= yPt (a) A yPt (b). We must show that (T,a)
= (Tb).

First, it must be the case that a contains the root node r if and only if b does, and

that cij
= r if and only if bj

= r. Next, since T |= yPt (a), a (perhaps without af)
is sorted into ax.a2...., as (according to the substitution of ap for the subtuple of

variables yp for each 1 < ?i < s) so that for each 1 < ?i < s the following things are

determined:

(1) all elements in a single tuple aM are contained in the same direct successor tree

of r;

(2) dju belongs to a direct successor tree of r of order type that of T[rz-];

(3) for all v with 1 < v < s and v ̂ ju, some element of ap and some element of
a y are not contained in the same direct successor tree of r; and

(4) ap satisfies the formula S(z). obtained from the formally lP{ Scott family for

To see (2). notice that clause a. in the formation of y^ guarantees that ap is con

tained in a direct successor tree of r which embeds T/, and hence T\r? 1. Therefore,

we know that ap is either contained in a direct successor tree of order type T[r,J
or

one of the finitely many non-isomorphic direct successor trees which embed T[r?J.
But the rest of clause (a) rules out all other possibilities.

To see (3), assume that in (2) we have determined that the type of the direct
successor tree to which aM belongs is the same as the type of the direct successor tree

to which av belongs. Then yp(a) contains a conjunct which says that 3vxv2[vx and

v2 are incomparable: each of vx, v2 is at the bottom of a chain of length ht(T[r/J);
and vx ^ ap\ and v2 <

av].

Of course, the tuple b is sorted by yPt in exactly the same way. Therefore, by the

definition of a Scott family, r has immediate successor trees TX....,TS, T[...., T's
so that for all 1 < p ^ q < s the following are true:

(1) TPi Tq. and
Tp^T>:

(2) ap G Tp\bp G
T'p,

and

(3) (Tp,?p)^(T'p.bp).

And so. (Ta) ^ (Tb). H

Our next result shows that finite type implies relative computable categoricity in

Theorem 1.8.

Theorem 2.12. IfT has finite type, then T has a formally Y?\ Scott family of finitary

formulas.

Proof. We induct on the height of T. If ht(T)
= 1, then T is finite, so T has

strongly finite type, and the previous result applies. Let ht(T)
= n + 1, and let r be

the root node of T.

Case 1. r has only finitely many immediate successors rx,..., rm. Then T[rx].

T[r2]...., T[rm] all have finite type, and hence all have formally lP{ Scott families

by induction. For each 1 < / < m, let Ci be the parameters of T[r?] which appear
in the Scott family for T[r?]. Let the tuple of parameters of our formally Sj Scott

family ht c ?
r.rx.... ,rm. cx,... .cm.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 167

Let a be a tuple of distinct elements in T, and let x be a corresponding tuple of
variables. We construct the formula y?{x) as follows;

(1) if any a? G a is equal to an element c of our parameter set, then we include
the conjunct x?

= c\

(2) let a' be the tuple a with such elements removed, and let x' be the correspond
ing tuple of variables; we include a conjunct which says that x' n c = 0;

(3) we divide the tuple a' into subtuples c?i,.... Sm so that a? G 7"[r/] (some sub

tuples might be empty); we divide the tuple of variables x' into x\,..., xm ac

cordingly; for each 1 < / < m, we include the conjunct which says that x? >z f/
'

(4) for each tuple S\. we search until we find the first formula S? from the formally

l!? Scott family for 7[r7] which at satisfies; we include the conjunct o?{x?).
Let 0 =

{ y?{x) : a G 7 is a tuple of distinct variables }. It is clear that 0 is a

formally Zj Scott family of finitary formulas.

Case 2. r has infinitely many immediate successors rt, i > 1. As usual, let
r x,..., rk,..., r? be such that

(1) Tx [rx],..., T\ [rk] are all of the direct successor trees of r whose isomorphism
types occur finitely often directly above r;

(2) Tx[rk+x], , T\[r?] are direct successor trees of r whose isomorphism types
occur infinitely often directly above r;

(3) for all j, j' with k + \<j<j'<l, Tx[rj] ^ Tx[rr\, and

(4) for all / > 1, there is j < I so that Tx[r?] 9*
7i[r7].

By induction, each of the trees T[rx]...., T[rk] has a formally Z^ Scott family of

finitary formulas. For each 1 < / < k, let Cj be the parameters of T[r}] which appear
in the Scott family for T[r?]. Furthermore, notice that that the tree T -

Uk/<a T[rf]
has strongly finite type. Therefore, by the previous lemma, this tree has a formally

5^ Scott family of finitary formulas with no parameters. Let the tuple of parameters
of our formally Z^

Scott family be r, rx,..., rk, ex...., ck.

Let a be a tuple of distinct elements in T, and let x be a corresponding tuple of
variables. We construct the formula y?{x) as follows;

(1) if any a? G a is equal to an element c of our tuple of parameters, then we

include the conjunct x?
?

c,

(2) let a' be the tuple a with such elements removed, and let xf be the correspond
ing tuple of variables; we include a conjunct which says that x' n c = 0;

(3) we divide the tuple a' into subtuples a\,.... ak. ak+] so that a? G T[r,-] for
1 < / < k and ak+x G T ?

Ui</<fc T[fi] (some subtuples might be empty);
we divide the tuple of variables x' into xi,..., xk, xk+x accordingly; for each

1 < i < k, we include the conjunct which says that x? y r,; for each element
a of ak+x, we include a conjunct which says that the corresponding variable x

is incomparable to r\,..., rk;

(4) for each 1 < / < k, we search until we find the first formula o? from the formally

lP{ Scott family for T[rt] which Si satisfies; we include the conjunct ?/(xz-):
(5) we search until we find a formula ?k+x from the formally lP{ Scott family for

T ?
UKKfc T[r?] which Sk+x satisfies; we include the conjunct Sk+x {xk+x).

Let 0 =
{ ycj{x) ; S G T is a tuple of distinct variables}. It is clear that 0 is a

formally Z^ Scott family of finitary formulas. H

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

168 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

?3. Computably non-categorical trees. To prepare for the induction that estab
lishes Theorem 1.8, we will prove the following:

Proposition 3.1. Let T be a computable tree of finite height with root r. If r is
not of finite type but every other node in T is of finite type, then T is not computably
categorical. Indeed, T has computable dimension co.

Our proof of Proposition 3.1 requires several distinct finite-injury constructions
for the different possible cases. In each construction we build a computable tree T'

isomorphic to T satisfying the requirements

9Ze : ipe one-one and total =>
[(3we G T) T[we] ^ T'[(pe(we)]].

We guarantee that T' is isomorphic to T by building a A2 function /' : T ?> T''. f
will either be an isomorphism from T onto T' or it will be an isomorphism from
T onto range(/). In the latter case, T' \ range(/) will consist of successor trees

of the root in T' each of which will have the same isomorphism type as a successor
tree of the root in T which occurs infinitely often in T. Therefore, despite the extra
successor trees, T and T' will be isomorphic. Goncharov [11] proved that if two

computable structures are not computably isomorphic but are A2 isomorphic, then
their computable dimension is co. So, in the case where / is an isomorphism, we get
the infinite dimension part of the theorem for free. We make a separate argument
at the end of the section for the case when / does not map onto T'.

The node we will be called the witness node for requirement 91 e, and will be

approximated by nodes we^s at each stage s. At certain stages we will need to find

embeddings of Ts[we,s] into other branches of T, in order to satisfy ?%e, and we

may redefine / on the nodes in Ts[we,s]. (We assume that we work with a fixed

approximation Ts of T by finite subtrees.) To ensure that lim., fs(x) exists for each
x G T, we impose the negative requirements:

J\fx : lim f s{x) converges. s

In addition, for any y G T7, we need to insure that either lim5 f~l(y) exists or y is

permanently placed into one of the auxiliary subtrees of T1 which are not in the range

of/ but which occur infinitely often as successor trees of the root in T. In the cases

when we use such auxiliary trees, this property will be easy to verify. In the other

cases, we explicitly insure this property by meeting the requirements for all u G T':

Jtu: \m\f~l(u) converges. s

Clearly, satisfying all these requirements will prove the theorem.

By definition, a successor tree in T above an co-branch point x of T is a tree T[y],
where y is an immediate successor of x. We use / to stand for an isomorphism
type, and say that / appears finitely often (resp. infinitely often) among the successor

trees {T[y]} above x if there are only finitely many (resp. infinitely many) immediate
successors y of x such that T[y] = I. In general, when we speak of an isomorphism
type / occurring in a tree T, we mean that there is a node a G T such that T[a] = I.

The domain of T is always assumed to be co, and we have a computable approxi
mation to T by:

Ts
=

{0,\,...,s-l}U{r},

where r is the root of T. We restate Lemma 2.10 because it will be used repeatedly.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 169

Lemma 2.10. Suppose T and T' are two trees of finite height and strongly finite
type. If each ofT and T' embeds into the other, then they are isomorphic.

Lemma 3.2. Suppose that T is a tree of finite height which is of finite type but not

of strongly finite type. Then there exists an co-branch point yo G T such that all
successor trees above yo are of strongly finite type, and such that some successor tree

which appears only finitely often above yo embeds into some successor tree appearing

infinitely often above yo.

Proof. Let yo be maximal in T among nodes which are not of strongly finite

type. (This set is non-empty, since it must include the root of T.) Then y o must

be co-branching, and every successor tree above yo is of strongly finite type. The

only way yo can fail to be of strongly finite type is for there to be distinct successor

trees Tj
^ Tk above yo such that infinitely many other successor trees above yo are

isomorphic to Tk. Since yo is of finite type, however, the isomorphism type of T?
must appear only finitely often above y o. H

Lemma 3.3. Let {Tx,.. .Tn} be any collection of trees of weakly finite type. Then
there exist finite trees Sx,..., Sn such that for all i and j:

Si <-+
Tj

^ Tt <-*
Tj.

Proof. To build Si, consider the set A? =
{ j < n : T? y^ Tj}. For each j G Ai,

there is a finite subtree S?j ? Ti such that Sij ^-> Tj, by Lemma 2.9. Let Si be the
union of all these subtrees, for all j G Ai. (If A? is empty, take Si to be a single
node.) H

We will need a version of Kruskal's Theorem for trees of weakly finite type. In

order to prove this theorem, we use labeled finite trees. For our purposes, a labeled

finite tree is a finite tree S together with a function / ; S ?>
{0,1, co}. The elements

of the set {0,1, co} are called labels and the function / is called the labeling function.
Let Si and S2 be labeled trees with labeling functions l\ and l2. An embedding
/ ; Si c-> S2 respects the labels if for every x G Si, l\{x) < l2{f{x)). A proof of
the following version of Kruskal's Theorem can be found in either [19] or [31]. (In
fact, for our purposes, we can assume that there is a uniform finite bound n on the

heights of the trees S/. This assumption leads to a far simpler proof.)

Theorem 3.4 (Kruskal). Let { S? ; / G co} be an infinite collection of finite trees,
each with a labeling U. Then there exist i < j in co and an embedding f ; S/ ^->

Sj
{preserving the infimum function) such that for every x G S/, h{x) <

lj{f{x)).
Lemma 3.5 (Kruskal's Theorem for weakly finite type). Fix n G co, and let { T :

i G co } bean infinite collection of trees of weakly finite type, with ht(7?) < nfor all i.

Then there exist i < j in co such that T? can be embedded in Tj.
Corollary 3.6. Let {7/ ; / G 00} be an infinite collection of trees of weakly finite

type, with ht(7"z) < nfor all i. Then there exists m G co such that for every i > m, T?
can be embedded in some Tj with j > i, and some Tk with k < i can be embedded in

Tt.

Proof. By Lemma 3.5 both {/ G co : V/ > / (Tt </+ Tj)} and {/ G co : VA: < i

{Tk y^ Ti)} must be finite. H

Proof of Lemma 3.5. We claim that given the collection {Ti}, we can build a

corresponding collection {Sz} of labeled finite trees such that if / < j and there is

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

170 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

an embedding of Si into S? which respects the labels, then T, also embeds into Tj.
To prove this claim, we induct on n. The case n = 1 is easy, since there is only one

possible tree, containing a single node; we take Si = T? for each /. labeling the node

of each Si with 1.

Now assume the claim for n. For each tree T? given by the lemma, let r? be the

root of Ti, and let IiX,..., Iijnj be the (finitely many) distinct isomorphism types of

successor trees above r?. Then the inductive hypothesis applies to the set

{Ii? : i G co, 1 < k < mi},

yielding a set {S^} of corresponding labeled finite trees. Define S? inductively as

follows:

Si has a root Si, labeled with 1 ;

Si has a chain u?.x -< Ui_2 -< -< uiM. each labeled with 0, and with w,-.i an

immediate successor of Si

For each isomorphism type TLk which appears only finitely often?say p

times?among the successor trees above rz in T/. add p copies of the cor

responding S ik as successor trees above s? in Si, with the root of each of these
successor trees labeled with a 1 ; and

For each isomorphism type I?? which appears infinitely often among the

successor trees above rz in T, add a copy of the corresponding S?? as a

successor tree above s i in Si, but labeling its root with co, rather than 1.

We have changed the labels on the roots of certain finite successor trees S?\k. but

only by changing the label of the root from 1 to co, so we have not introduced any
new embeddings among the S/^'s.

Now if / is an embedding of Si into Sj (j > i) which preserves infima and

respects labels, then / must map the root Si to sj, since both trees have height
n. (This was the purpose of the chains {ui-k} and {ujjc}.) Hence each successor

tree in Si maps into a distinct successor tree in Sj, since / preserves infima. It

follows that each isomorphism type among the successor trees in Tz maps into some

successor tree in T?. Because of the labeling with 0. 1 and co on S?, we know that
no Sij< maps into the chain above Uj\\, and that each infinite-appearing successor

tree in T/ maps into an infinite-appearing successor tree in T? (or possibly into an

infinite-appearing subtree of a finite-appearing successor tree in Tj). Finally, each

finite-appearing successor tree in T? appeared just as many times in Si. and hence

there must be sufficiently many successor trees in Tj for each copy of the type to

map to.

Applying Theorem 3.4 to our set {Si}, we get an / with precisely the properties

required by the claim. Hence some T/ embeds into some Tj with j > i. H

We will be interested in the minimal elements (under embedding) of various sets of

trees of weakly finite type. Let y be a set of trees of weakly finite type for which there

is a finite bound on the height of the trees appearing in ET. Lemma 3.5 says that ET

together with the embeddability relation forms a well-quasi-order. Therefore, ^

satisfies both the descending chain condition that any strictly descending chain in 3~

under embeddability is finite and the incomparable chain condition that any anti

chain under the embeddability relation is finite. (See [19] for more details on these

properties. We are using the fact that a quasi-order is a well-quasi-order if and only

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 171

if it satisfies both of these conditions.) In this context, the appropriate definition of

"minimal" is based on equivalence classes under = rather than under =.

Definition 3.7. T e ^ is minimal in ET if for every T' G ST such that T' ^ T,
we have T

=
T'.

For trees of strongly finite type, this is equivalent to the standard definition of

minimal under =. by Lemma 2.10. However, trees of weakly finite type do not

necessarily satisfy this lemma; they form only a quasi-order under ^->, not a partial
order. (The notion of a quasi-order plays no explicit role in the paper after the next

corollary.)

Corollary 3.8. Let EF be an infinite collection of trees of weakly finite type, with

ht(7) < nfor all T G J. Then there exists a finite set M ? S of minimal elements

of ET {under the embedding relation) such that for every T G & there exists T' G M

with T' ^T.

Proof. Let S be the set of all minimal elements of 5r, and let Jt contain exactly
one representative from each ^-equivalence class in S. Then the incomparable
chain condition implies that M must be finite, and the descending chain condition

implies that every 7 G ET contains a subtree from Jt. H

This corollary will frequently be applied with ET being either the set { T :

T ^ To} (for some fixed 70) or the set { T : 70 <-> 7 & T0 ? T }. We will

need one last general fact about embeddings between finite height trees of finite

type.

Lemma 3.9. Let To and Tx be finite height trees of finite type and let Si be the finite
set of isomorphism types of successor trees which occur infinitely often immediately
above the root in T? .IfTo

= T\, then So
=

S\.

Proof. We will write T?[x] G S? to indicate that the tree T?[x] is a successor tree

of the root in 7Z and that its isomorphism type occurs in Si.
Consider any Tq[x] G So and suppose that 70[x] embeds in some Tx[y] G S\.

Further, suppose that T\[y] embeds in some Tq[z] g So- Composing these two

embeddings gives that T0[x] c-> 70[z]. But, because T0 has finite type and both

To[x] and 70[z] occur infinitely often, it must be that T0[x] = 70[z]. Furthermore,

To[x], T\[y] and To[z] all have strongly finite type since they occur infinitely often.

The two embeddings T0[x] --> T\\y] --> T0[z) ^ T0[x] show that T0[x] ^ Tx[y] by
Lemma 2.10.

The argument in the previous paragraph establishes the lemma except in the case

when there is a type / G Si which does not embed in any type J G S\-?. Without

loss of generality, assume that there is a type I G So which does not embed in any

type in S\. In this case we will derive a contradiction to the fact that 7o and 7i
have finite height.

For any c G T?, we say that c occurs in the finite part of Tj if c G Tj[a] for some

a at level 1 of Tj for which T?[a] is one of the finitely occurring isomorphism types
at level 1. Otherwise, we say that c occurs in the infinite part of Tj.

We define a notion of rank for our fixed isomorphism type 7. A node a G Tj
has rank rk(?) > 0 if I embeds in T?[a]. A node a has rank rk{a) > n + 1 if there

are infinitely many nodes c for which a < c and rk(c) > n. There are a number of

simple facts that follow from this definition.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

172 STEFFEN LEMPP, CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

Fact 1. If rk{a) > n, then ht(Tj[a])
> ht(7) + n. This fact follows by an

induction on n.

Fact 2. If c lies above the root in Tx and rk(c) > 0, then c is in the finite part of

Tx. This fact follows since I ̂ > Tx[c] and J7X contains no isomorphism types into

which / embeds.

Fact 3. If c lies above the root in To and rk(c) > 1, then c occurs in the finite

part of To. For a contradiction, assume that c occurs in the infinite part of To. Then
c must occur in some successor tree To[a] of the root whose isomorphism type is in

JV However, by Fact 1, ht(T0[tf]) > ht(7), so T0[a] ^ /. This means / ̂ T0[a]
is an embedding relation between distinct infinitely occurring isomorphism types at

level 1 of To, which contradicts the fact that To has finite type.

Fact 4. For any k, n > 1, if ax,..., ak G Tj satisfy rk(<z?) > n, then there are

b\,... ,bk G T\-j which satisfy vk(bi) > n. To establish this fact, fix any embedding

/ : Tj;
<->

T\-j and let bt =
/(?/). The result follows by induction on n.

By Fact 1, to derive a contradiction with the fact that Tx has finite height, it

suffices to show that for each n > 1, Tx must have a node a with vk(a) > n. We

establish this by induction on n. Fix embeddings / : To ?-> T\ and g : T\ c-^ To.
For the case of n = 1, we claim that the fact that / does not embed into any

element of Sx implies that there is an a G Tx for which rk(a) > 1. To prove this

claim, consider the embedding /: To ̂ T\. Each copy To[d] of I in the infinite

part of To must map into the finite part of T\ under /. Therefore, there must be
a node a at level 1 of T\ (in the finite part) for which infinitely many copies of /

embed into Tx[a]. For this a, rk(a) > 1.

Assume by induction that the fact that / does not embed into any element of S\

implies that there is an a G T\ with rk(a) > n.

Fix a\ G Tx such that rk(c/i) > n. We claim that there is an element a2 G T\ with

a2 ^ ax and rk(a2) > n. To prove this claim, notice that by Fact 4, we know that

g(a\)
= bx G T0 satisfies rk(b\) > n. Furthermore, setting cx =

f(bx), we have

that rk(ci) > n.

We split into two cases depending on whether ax = cx or ax ^ cx. If ax ^ cx,
then we let a2 = cx and we are done with the claim. Otherwise, if ax = cx, then

f(b\)
= ax and g(ax)

= b\. Therefore / maps To[?>i] into Ti[<2i] and g maps

Ti[<2i] into To[bx], and moreover, restricting / to To \ T0[bx] and restricting g to

T\ \ Tx[ax] shows that (To \ To[bx])
=

(Tx \ Tx[ax]). By the induction hypothesis
(which applies since we have only removed a portion of the finite parts of To and

Tx by Facts 2 and 3 and therefore not changed the infinite part of either tree), there

is an element a2 G Tx\ Tx[a\] for which rk(a2) > n. This establishes the claim.
More generally, for any k > 1, if ax,..., ak G T\ have xk(al) > n, then we can fix

g(ax)
= bx,... ,g(ak)

= bk e To with rk(bi) > n. Setting c? =
f(bi) and splitting

into cases as above, we get the existence of ak+x G Tx withrk(a^+i) > n. Therefore,
there must be infinitely many nodes in the finite part of Tx which have rank > n.

We can fix a node a at level 1 of T\ (and in the finite part) for which infinitely many
of these nodes occur in Tx[a]. Then, rk(a) > n + 1 as required. H

We now begin the constructions which will ultimately prove Proposition 3.1.

Suppose T has finite height, but is not of finite type. In this section we consider

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 173

the case when the root r is the only node of T which fails to be of finite type. Then

T must be co-branching at r, and we write xq,x\,.. . for the immediate successors

of r in T. We present several constructions concerning various ways in which T

could fail to have finite type and we prove in each case that T is not computably

categorical. After these constructions, we prove Proposition 3.1 by showing that
we have considered all possible cases. We present the first proof in the most detail

since many of the later arguments will have similar features.

Lemma 3.10. Let T be a tree of finite height with root r, and suppose that each

node above r in T is of finite type. Suppose there is an isomorphism type 7o which is

not of strongly finite type and appears infinitely often as a successor tree above r. If

only finitely many other isomorphism types I' appearing above r satisfy I' ^-? 7o, then

T is not computably categorical.

Proof. First, we establish that there is a A? procedure which identifies the imme

diate successors x of r such that T[x]
=

Iq. Let & be the set of all isomorphism

types 7 appearing as successor trees above r such that 7 y^ 7o. Let {7i,..., Im} be

a set of minimal elements (under ^->) of & as given by Corollary 3.8, so that every
7 G & is a supertree of some 7?. By Lemma 3.3, each 7/ (/ > 0) contains a finite

subtree S/ such that Sz y^ 7o. Therefore, a node x at level 1 in T satisfies T[x] <-? 7o
if and only if \/s V/ < m (S/ y^ Ts[x]).

Consider the finite number of isomorphism types I' ^ 7o. For each such V for

which 70 y^ I', there is a finite subtree Q' oflo such that Q' y^ V. Taking the union

of these finite trees Q' gives a finite tree Q such that Q ^-> 7o and for all V as above,

Q ̂ V. Therefore, an immediate successor x of r satisfies T[x]
=

7o if and only if

V? Vi < m {Si ̂ Ts[x]) A3s{Q^ Ts[x]).
Since we can clearly identify the immediate successors of r in a A!? manner, this

definition shows that we can identify the immediate successors x of r which satisfy

T[x]
=

7o with a A2 procedure.

During the construction, we try to identify trees T[x] for which x is an immediate
successor of r and T[x] = Iq. We say that we believe T[x] = 70 at stage s if x is
an immediate successor of r in Ts, Q ^ Ts[x] and S? y^ Ts[x] for all i < m.

Without loss of generality, we assume that the finite tree Q has the same height as

7o. Therefore, if we believe 7"[x]
=

7o at stage s, then any embedding of Ts[x] into

7o must send x to the root node of 7o.
Since it is of finite type and not of strongly finite type, 7o must contain an

co-branching node yo satisfying Lemma 3.2. Fix such a node yo and let J denote

the isomorphism type of Io[yo]. By Lemma 3.2, there exist successor isomorphism
types Jo ̂ Jx of J with Jq occurring only finitely often above yo and 7i occurring

infinitely often above yo. Moreover, Lemma 3.2 ensures that both Jo and Jx are of

strongly finite type, so Lemma 2.10 guarantees that Jx </-> Jo.
We will build a tree T' and an embedding f \ T ?> T' such that T' is equal to

the range of / together with infinitely many copies of 70 which are attached to the
root of T'. Our strategy to diagonalize against <pe : T ?> T' being an isomorphism

will roughly be to identify subtrees T[z] which satisfy T[z]
=

Jo. Once we find

such a subtree, we make sure that /1 embeds into our subtree T'[<pe(z)]. Because

7i y^ Jo, it cannot be that T'[ipe{z)]
=

T[z]. (In fact, it cannot even be that

T'[<pe(z)]^T[z].)

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

174 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

Consider the finite number of isomorphism types / which occur as successor

trees in T and which satisfy / =
To- By Lemma 2.6. each such / contains only

finitely many isomorphism types of the form I [a] for a e I. Therefore, we can list

the types of all such I [a] where / is as above and a G / as Kx,.... Kn. (This list

includes the types of trees I [a] of any level, not just the types of the successor trees

of the root of /.) As above, we can use finite trees to distinguish these types up to

^-equivalence. That is, for Kx there are finitely many types K{ 7A Kx. List these

trees as Kix,..., Ki{. For each k < I, there is a finite subtree
S?k of Kik such that

S[k ^A Kx. Similarly, there are finitely many Kj such that Kx >A Kj. For each such

Kj, there is a finite subtree
S'j

of Kx such that S'- >A Kj. Taking the union of these

trees yields a finite subtree S" of Kx such that S" >A Kj for any such j. Therefore,
if T[x] = Jo and x -< u, then T[u] = Kx if and only if

Vs\/k <l
(S'ik >A Ts[u]) A 3s (S" ̂ Ts[u]).

At stage s, we believe that Ts[u]
=

Kx if and only if the following conditions are

satisfied: there is a node x -< u in Ts such that we believe Ts[x]
=

I$\ S" c-^ Ts[u\,
and for all k <

l,S[k >A Ts[u].
We can perform similar calculations for the other types K?. During the construc

tion, if x is an immediate successor of r with x -< u for some u and we believe

T[x]
=

Iq, then we can determine using finite trees which Kj we believe satisfies

T[u]
=

Kj (if any). From the nature of the conditions, it is clear that if we believe

infinitely often that T[x]
=

Iq and T[u]
=

Kj, then in fact these equivalences hold.

Notice that the isomorphism types J, Jo, and J\ occur among the types Kx, ...,

Kn. Furthermore, by Lemma 3.9, for any node y such that T[y]
= J, T[y] must

have infinitely many successor trees which are isomorphic to Jx.
We begin to describe the construction. Assume that T is approximated in finite

stages by Ts. Without loss of generality, we assume that we know the root of T. We

build T's and a sequence of embeddings fs : Ts ??
T's. T's will consist of the range

of fs (which is a finite tree isomorphic to Ts by fs) together with finitely many
subtrees which are isomorphic to Iq and which are attached to the root of T's.

We say that a tuple (x, y, z) is special in T if x is an immediate successor of the

root, T[x] = Iq, x -< y, T[y] = J, z is an immediate successor of y, and T[z]
=

Jo.
We say that (x, y, z) is special at stage s + 1 if x, y, z G Ts and we believe all of these

conditions at stage s. Because we have A2 approximations to these conditions, we

know that (x, y,z) is special in T if and only if there is a stage s such that for all

t > s, (x, y, z) is special at stage t.

Recall that we have requirements 91 e, which attempts to diagonalize against (pe

being an isomorphism, and JVU, which attempts to make the limit of f s(u) defined

so that / is A2. The basic strategy for 9e is to define a witness tuple (x,y.z)
which we believe is special and wait for ipe{x)

= xr. (pe(y)
=

y', and ipe(z)
= z'

to converge. We next want to determine if we believe that (x'', y', z') is going to be

special in T'. This amounts to letting f~x(x')
= a, f~l(y')

= b and f~l(z/)
= c,

and asking whether we currently believe (a, b, c) is special in T. If the answer is no,
then it appears that 9e is not an isomorphism and we do not need to diagonalize.
If the answer is yes, then we want to actively diagonalize.

Assume that not only do we believe that (x, y, z) and (a. b. c) are special in T

at stage s of the construction, but they really are special in T. Then, there is an

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 175

embedding of Ts[a] ?-> 7o which maps c to the base of a tree of type Jx. (We prove
the existence of such an embedding below when we do the formal construction.)

Therefore, we can diagonalize by using the embedding of Ts[a] into 7o to turn

T's[x'] into a copy of 7o for which T's[z'] becomes a tree into which Jx embeds. We
now know Jx ^-> T'\z'\ and T[z] ^-> Jo. Therefore, if <pe is an isomorphism, then

T'[z'} ^ T[z] and hence Jx ̂ Jo, which contradicts our choice of Jo.
We also need to redefine f s+\ on Ts[a] since we have turned T's[x'] into 7o and we

do not know that Ts[a] has isomorphism type 7o. Therefore, we add new elements
to Tfs+l and define the map fs+x to send the tree 7^ [a] to these new elements. Notice
that once an element y' G T' has left the range of /, it will never return to the

range of/. Therefore, we have that for all y' G T\ either f~l{yf) converges or y'
is permanently part of an auxiliary copy of 7o. Hence we do not need to explicitly

discuss the requirements Jtu in this construction.
This action of changing the map so that fs{a) ^ fs+\(a) conflicts with the

requirements of the form JVU for u G Ts[a]. To fix this problem, we give 9?e e + 1

many witness tuples with distinct first components and we do not allow 9le to use
the tuple (x,y, z) to diagonalize if f~l{ipe{x)) -< u for any u < e. That is, we give

Jiu higher priority than 91 e if u < e. Since each JVU can stop 91 e from using at most
one node at level one with which to diagonalize, assigning e + 1 tuples to 9le is

enough to guarantee that either 91 e will be allowed to diagonalize with one of these

tuples or 9e will be satisfied in a trivial way, such as (pe not being one-to-one or not

respecting the ordering.
There is a second possible worry for the basic strategy for 91 e. Assume that

(x,y,z) is a witness tuple for 9e and {x',y',z') is as above. Since T's consists of
the range of fs together with additional copies of 7o, it is possible that the elements
of (x', y!, z') sit in one of the copies of 7o. In this case, it makes no sense to look at

f~l on the values x', y' and z' since these elements are not in the range of fs. Of

course, if it is not the case that x' -< y' -< z' in T's, then we have beaten (pe trivially.
Otherwise, 9e can check if x' is the root of the copy of 7o, y' is the root of a tree
which is = J and z' is the root of a tree which is = Jo. (We will assume that when
we add a copy of 70 to T', we add a "nice" copy in which we know the isomorphism
type of each subtree of the form Tf[a] for a in this copy of 70. This is possible since

7o contains only finitely many such isomorphism types.) If not, then 9e has already
won. If so, then 9e can win by turning T'[z'] into a copy of Jx (which is possible
because Jo ̂ Jx) and adding a new copy of the old T'\z'\ above T'[y']. Because

T'[y'] bounds infinitely many copies of Jx, adding an extra copy does not change
its isomorphism type. So, we still have T'[y'] = J and T'[x']

= Iq. This action
wins 9e as above, since Jx ̂ T'[z'\ and T[z] <-* Jo.

However, notice that if we performed this action infinitely often with the same

copy of 7o, then we might move the same subtree of this copy of 7o infinitely often
and not have a copy of 7o in the limit. Therefore, we need to restrict this action
from happening infinitely often. When a requirement 92e creates a copy of 7o, it

marks it with the same priority as 91 e. We only allow requirements 91 i with / < e
to diagonalize using this copy of 70 as described above. This causes only finitely
additions to the tree after it is defined, so it really does have type 70 in the limit.

Because 9le is not allowed to use a witness tuple (x. y, z) when <pe{x) converges
to the root of a copy of 7o which is marked by a requirement of higher priority, we

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

176 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

have to allow 9e extra witness tuples. Each time 9ti with / < e marks a new copy
of Iq, 91 e is given an extra witness tuple. This action will only occur finitely often,
so in the end, 9e has e + n + \ many witness tuples, where n is the number of copies
of To marked by requirements of higher priority. We cannot fix the number n at the

beginning of the construction since finitely often a requirement of higher priority

may create a copy of Iq thinking that it is diagonalizing against a particular witness

tuple only to discover later that this witness tuple was not actually special.
We turn to a more formal description of the construction. At each stage s, we

define a finite list of tuples which are special at that stage and which have distinct

first components. More formally, let (xq, yo,zo) be the <N-least tuple (under a fixed

coding of N3) that is special at stage s. Let (x?+x,yi+x, zi+x) be the <N-least tuple

greater than (x/, yt, zt) which is special at stage s and such that xi+\ is not equal to

Xj for any j < i. List these tuples at stage s by

(xq,s , yo.s, zo.s), >
(xPs ,s, yPs ,s, zPs .s).

At stage s, we assign e + n + 1 many of these tuples to the requirement 91 e, where n

is the number of copies of Iq created by requirements of higher priority by stage s. If

there are not enough tuples for 9e to get its full set of tuples, then it is not assigned

any tuples. 9e may be later declared to be satisfied by one of the tuples it has been

assigned. If that tuple ever changes, then 9e is said to be injured and it is no longer
satisfied.

Because there are infinitely many copies of Iq attached to the root of T, there is

an infinite set of special tuples in T which have pairwise distinct first components.

Therefore, each tuple of the form (xm_s,yw_s,zm^s) is eventually defined and reaches

a limit (xm,ym,zm), which is a special tuple in T. So, each requirement 91 e is

eventually assigned a complete set of special tuples.
At stage s + 1 we extend the isomorphism fs to fs+x : Ts+X ?>

T'+1 by adding
fresh elements to T'+1, unless there exists an 91 e requirement with e < s which

requires attention. If some 9e requires attention, we let the highest priority such

requirement act. Below we define when 9$e requires attention and what action 91 e

takes when it is allowed to act.

Assume that 9le is assigned the tuple (x, y, z) during the construction. Me waits

for <pe{x), (fe(y) and ipe{z) to converge to some x', y', and z' respectively. Once

these computations converge (say at stage s + 1), 9e checks for two possible easy
wins. First, if any of the elements is not in T's, then 9te wins by making sure that

these elements are all placed in T'+1 and they do not satisfy x' -< y' -< z'. Second,
if either (pe is not one-to-one or x' is equal to the root in T' or it is not the case that

x' -< y' -< z', then <pe cannot be an isomorphism and 9e wins without performing

any action.

Assume that 9e does not win trivially and that it has not been declared satisfied

by one of its tuples. The action for 91 e splits into two cases. Either x', y' and z' are

all in the range of fs or else one of these elements falls outside the range of fs. We

first consider the case when all the elements are in the range of fs. In this case, 9e
checks if (f~l(x'),fs~x(y'),fs~x(z')) is special. If not, then 9e does not require
attention. If this tuple is special, then 9e checks if there is an element u G T with

u < e and f~l{x') -< u. If so, then the requirement J\fu takes precedence over 9te
and prevents 91 e from acting. Otherwise, 91 e requires attention.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 177

When 91 e is allowed to act, it begins a concurrent search for one of the following;

(1) an embedding T's\x'\
c-^ 7o which sends x' to the root of 7o and sends z' to the

base of a tree into which the isomorphism type J\ embeds; or

(2) a stage t > s at which we no longer believe (f~l{x,),f~l{y,),f~l{z/)) is

special.

One comment is necessary to explain condition (1). Because 70 has finite type and
is computable, we can assume that we have a nice copy of 7o in which we know
the isomorphism type of each subtree Io[a]. Therefore, we know which subtrees Jx
embeds into, so we can search for an embedding as in (1) in an effective manner.
In the sublemmas verifying this construction, we show that this search procedure

must terminate.

If we see (2) happen first, then we no longer think that 91 e requires attention with
this tuple. We extend our tree to T'+l

as if no requirement had required attention
and go to the next stage. If we see (1) happen first, then we perform the following
actions;

turn T's [xf] into a copy of 7o with x' as the root and z' as the root of a tree
into which Jx embeds; and

add extra elements to T' to be the new images of the elements above f~x {x')
in T under fs+\\ and

leave fs+\
=

fs on all other elements from T; and

add new elements to T' to correspond to the elements in Ts+x \ Ts and define

fs+x in the obvious way;
declare 9e satisfied with this tuple.

In this case, we say that 9e acts at this stage. Notice that the elements in the new

copy of 7o in T' are outside of the range of fs+\. Also, as in the comments explaining
the search in (1) above, we know exactly how this copy of 7o is constructed in the
sense that we know the isomorphism type of each subtree. Furthermore, if 9e is
never injured after this stage, then {x,y,z) is one of the final tuples assigned to 9e.
In this case, T[z] = Jo but 7i ^+ 7/[z/]. Since (pe(z)

= z' and Jx y^ Jo, Ve cannot
be an isomorphism.

We still need to see what action to take if one of the elements xf, y' or z' is not
in the range of f s. Because we did not get an easy win for 9e, it must be the case

that x' -< y' -< z' all sit in some successor tree of the root in T's. Since one of
these elements is not in the range of fs, this successor tree must be one of the trees
of type 7o added to T's. If this copy of 70 was created by a requirement of higher
priority than 9e, then 9t\ does not act at this stage and it ignores this particular
witness tuple in future calculations (since it already knows that it is not allowed to

diagonalize with this tuple). Otherwise, because we know how such a copy of 7o
was constructed, we can check whether x' is the root of this copy of 7o, whether y'
has infinitely many successor trees of type Jx, whether z' is an immediate successor
of y', and whether z' is the base of a subtree which is =

JQ. If any of these conditions

fail, then we say that 91 e is satisfied by this tuple since ipe does not appear to be an

isomorphism. If all of these conditions hold, then we add a new subtree above y' of
the same type as the subtree above z' and we add elements to the subtree above z' to
turn it into a copy of Jx. (In this case, we say that 9t\ acts at this stage.) Because y'

must bound infinitely many copies of Jx, we still have a tree of type 7o and now we

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

178 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

have diagonalized against ipe being an isomorphism. We declare 9e satisfied by this

tuple.

This completes the description of the construction. We verify that it succeeds in

the following sublemmas.

Sublemma 3.11. In the case when x', y' andz' are in the range of f s, the concurrent

search procedure between (1) and (2) terminates.

Proof. Assume that (2) does not occur. Then, f~x(x') is an immediate suc

cessor of r in T, f~x(z') is an immediate successor of f~x(yf), T[f~x(x')]
=

Iq,

T[frl(y')]
= J- and T]f-l{z')]

=
J0. Because T[f~x(xf)]

=
Iq, we can fix an

embedding y/ : T[f~x(xf)] ^ Iq. We have already observed that y/(f~x(x')) is

the root of Iq. Because T[f~x (yf)] = J, we know that f~l (yf) has infinitely many
successor trees of type Jx. Since T[f~x(z')]

=
Jq, we know that T[f~x(z')]

^ J\.
Consider the restriction of y/ to the finite tree Ts[f~x(x/)]. Let a be a node at

level 1 in T[f~x(yf)] which has type Jx and is not in Ts[f~l(y')]. Fix an embedding
? of Ts[f-X(z')] into T[a] which sends f~x(z') to a and let y/(a)

= b G /. Notice
that Jx ̂ I[b] and y? maps Ts[f-X(z')} into I[b] with yj(^(f-x(z')))

= b. Define

y/' on Ts[f~x(x/)] by making it equal to y/ for all nodes that are not in Ts[f~x(z')]
and equal to y/? on all nodes in Ts[f~x(z/)]. Because fs is an isomorphism between
the finite trees T's[x'] and Ts[f~l(x')], we can abuse notation and view y/f as an

embedding from T's[x'] into Iq. Notice that y/' has exactly the properties required
for condition (1). H

Sublemma 3.12. Each 9e requirement only acts finitely often.

Proof. Let s be a stage after which all R, for i < e do not act. In particular,
they do not create new copies of Iq, so the number of witness tuples required by

91 e is fixed at this stage. Let t > s be a stage at which 9e has a full set of witness

tuples and each such tuple is actually special in T. Suppose 91 e acts with the tuple

(x, y, z) after stage t. Then 91 e declares itself satisfied with this tuple and remains

satisfied forever since (x, y, z) is never taken away. Therefore, 91 e acts at most once

after stage ?. H

Sublemma 3.13. For each u G T, f s(u) reaches a limit as s ?* oo.

Proof. The value of fs (u) can only change if some requirement 9e diagonalizes

using a witness x such that /71 (<?<?(*)) ~< u- However, only requirements 9e with
e < u can act in this way. Therefore, once these requirements have stopped acting,
the value of fs (u) cannot change. H

Sublemma 3.14. Each requirement 91 e is eventually satisfied.

Proof. Let n be the number of copies of Iq created during the construction by

requirements of higher priority. Let s be a stage at which 91 e has been assigned its

final set of tuples, (x7-, v,, z}) for / < e + n +1, and all requirements of higher priority
have stopped acting. For a contradiction, assume that <pe is an isomorphism from
T to T'. Let t > s be a stage at which ipe has converged on all entries in the tuples

assigned to 91 e. Let (x[, y?. z?) denote these image tuples. Since 91 e did not get an

easy win. we can assume that the values in these image tuples are either in the range
of ft or in a copy of To constructed by stage t.

For any tuple (x?. y i, zz) which is mapped by ipe into a copy of To, the image tuple

(x?, y\, z[) is special in T' since <pe is an isomorphism. Also, since the witness tuples

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 179

for 9le have distinct first components, if two witness tuples are mapped to copies
of 7o, then these copies are distinct (or else we win trivially). Therefore, if at least
n + I many tuples are mapped to copies of 7o. then at least one of these copies of

7o was not created by a requirement of higher priority. In this case, we immediately

diagonalize with such a tuple and 9e is won permanently.
Otherwise, there are at least e + 1 many witness tuples whose images lie in the

range of ft. It is possible that some requirements of lower priority will act in a

manner which causes some of these witness tuples (x?, y[,z[) to be contained in a

copy of 7o in T' at a later stage. If ever we reach a point where n + 1 of the witness

tuples are in copies of 7o, then 91 e wins as in the previous paragraph.
If this does not happen, then for at least e + 1 many tuples the values of f~l

on each entry in (x-, j^z/} is not changed by any requirement of lower priority.
Each of these tuples sits in a distinct cone immediately above the root of T'. Since

the requirements JVU fov u < e can only protect e many of these cones, there
must be an unprotected image tuple with which 9e enters the concurrent search of

conditions (1) and (2). Because (pe is an isomorphism, by the A!} approximation to

special tuples, 9te must eventually see that (ft~l{x?),fTl{y?),ft~l(zi)) *s special.
From here, 9e will begin the concurrent search procedure and must discover an

embedding as in condition (1). At this point, 9e diagonalizes, contradicting the

fact that (fe is an isomorphism. This finishes the proof of Lemma 3.10. H

Lemma 3.15. Let T be a tree of finite height, co-branching at its root r, such that

all nodes above r are of finite type. Let xq,x\,. .. be the immediate successors of r

in T.Iflo is an isomorphism type such that infinitely many i satisfy T[x?] ^-> 7o and

infinitely many j satisfy both Iq c-^
T[x?] and T[xj] y^ 7o, then T is not computably

categorical.

Proof. Let S be the set of all isomorphism types of successor trees above r in

7, let S c ET be the set of types which do not embed into 70 and let W contain

those types in S into which 70 embeds. By Corollary 3.8, W and S - W each has
a finite set of minimal elements, which we denote by Wo and So, with every element

of W lying above an element of Wo (in the embeddability order), and every element

ofEF ? W lying above an element of So. (Notice that no element of W can lie below
an element of S ?

W, but it is possible for an element of S - W to lie below an

element of W.) Lemma 3.3 yields a finite collection of finite subtrees, one S/ in each

Ji G So and one R? in each Kt G Wo. such that no S/ embeds into any other Sj or

into Iq, and no R? embeds into any other Rj, S? or 7o. The important facts about

these relations are that for all 7 G S,

I e S ^=> 3Si {Si ̂ I) or 3Ri {Rt --> 7)

3Ri {Ri <-* 7) 4=^ 7 G W.

At each stage s, we define the witness elements wq.s < < wp^s at that stage to

be those nodes x G Ts which we currently think are at the base of a successor tree

of the root in T whose isomorphism type is not in S. More specifically, we look

for x satisfying;
x is an immediate successor of r in Ts ; and
no Si <->

Ts[x]; and

no Ri ^ Ts[x].

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

180 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

Then for each e, we
=

lirn9 we.s exists, since infinitely many successor trees embed

into To. We assign e +1 many witnesses to the requirement 9e. (If there are not e +1

many witnesses available for 9e, then it is not assigned any witnesses.) Because the

limit of we.s exists for each e, each requirement will eventually be assigned a full set

of witnesses which never change. We need e + 1 many witnesses since at most one

witness may be forbidden by each of the requirements Jiu for u < e.

We build T' in stages as T's, and we build a A2-isomorphism / : T ?> T'by finite

approximations fs : Ts ?> T's. At stage s + 1, we extend fs to f s+x by adding fresh

elements to T's+l, unless the following conditions hold for some requirement 9e and

one of its witnesses we,s. (Here we abuse notation slightly by letting we,s stand for
an arbitrary witness node for 9e at stage s. This conflicts with our indexing of the

witness nodes above, but it makes the connection between we.s and the requirement
9e clearer.)

<Pe.s{we,s)i e T^and

<Pe?we,s) is an immediate successor of fs(r) in T's; and
no Si ^

Ts[(peAwe,s)]\ and
no Ri ^

T's[ipe,s{we.s)\\ and

it is not the case that f~x(ipe^s(we_s)) ~< u for any u G T with u < e (this

represents the restraint placed on 9e by JVU foxu < e).

If these conditions hold for some e < s, then let e be the highest priority requirement
for which these conditions hold. We attempt to diagonalize to meet 9le by searching
for a stage t > s such that either

(1) fs~x((fe(weA) is not an immediate successor of r in Tt; or

(2) some 5/ ^ Tt[f-l{<pe{we,s))]; or

(3) some/?/ ^ Tt[f-l{<pe(we,s))];or
(4) there is an immediate successor x of r in Tt such that Tt[x] n Ts = 0 and

T^[(fe(we_s)]
^ Tt[x] and also some Ri ^ Tt[x].

If any of the first three conditions hold, then we define fs+x and Tv;+1 as if no

requirement needed attention. In this case, it appears that tpe is not an isomorphism
since either (pe(we_s) is not the base of a successor tree in T' or ipe(we,s) is the base

of a successor tree which does not embed into To. However, if we
=

we^s, then we is

the base of a successor tree in T which does embed into To.
If the fourth condition holds, then we add Tt[x] to our current copy of T, and

define fs+x to map Tt[x] onto T's[ipe(weA\ adding fresh elements to T' above

<Pe{we,s) to form a copy of Tt[x]. We also add more fresh elements to T' to be the
new image of Ts[f~l(<pe(we))] under fs+x. Thus fs+x is still an isomorphism, but

hereafter Tf[(pe(we.s)] will grow as a copy of some successor tree containing R?. By
definition of R?, this successor tree cannot be embedded into To. On the other hand,
if we = we.s, then T[we] can be embedded into To. Hence 9e will be satisfied.

If none of conditions (l)-(3) hold for any t, then T[f~x((pe(we,s))] d?es not

lie above any minimal element of SF, so it must embed into To. Since infinitely
many successor trees above r are supertrees of To and do not embed into Iq, we see

that condition 4 must then apply for some t > s. Therefore, this search procedure
terminates.

If at some later stage s' we have we,s>+\ ^ wey, then 9e and all lower priority

requirements are injured at that stage. This happens \fwey is no longer an immediate

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 181

successor of r, or if some Rj or S, embeds into Tsf[we^]. However, such injuries
can only happen finitely often for each e, since we_s converges. Therefore, each

requirement 9e only acts finitely often.

Since 9e has e + 1 many witnesses and the requirements Jiu for u < e protect at

most e many successor trees of the root in T from having the value of fs changed
on them, 9e must have some witness for which it is allowed to redefine fs if it

needs to in order to diagonalize. (As in the previous construction, if ipe is not

one-to-one or does not respect the ordering, then we win trivially and we cease

trying to diagonalize.) Therefore, every requirement of the form 9e is eventually
satisfied. Finally, notice that f~x{y) only changes if y G T's[(pe^s{we^)] and 9le acts

at stage s. In this case, some R? c->
T's+X[(pe_s{we_s)]

and therefore no 9k strategy

ever redefines f?~1 for t > s on this subtree in an attempt to diagonalize again.
Therefore, f~l{y) reaches a limit for each y e T'.

The tree T' built by this process is computable, and isomorphic to 7, since at

each stage we have a homomorphism fs from Ts into T's, with fs{r)
= r, whose

range is all of T's. Our construction makes clear that /
= lim5 fs exists, since each

91 e requirement must respect the Jiu requirements for u < e. This finishes the proof
of Lemma 3.15. H

Lemma 3.16. Let T be a tree of finite height with root r, such that all nodes above
r are of finite type. Suppose there exist distinct isomorphism types Io,h, .. and I

appearing as successor trees above r. Suppose further that for every i, I? ̂ Iw, and

that I appears infinitely often as a successor tree above r. Then T is not computably

categorical.

Notice that we do not require that 7o, 7i,..., I be the only isomorphism types

appearing as successor trees above r.

Proof. First we apply Corollary 3.8 to the set of successor trees above r which

do not embed into I , and use Lemma 3.3 to choose finite subtrees Rx,..., Rm of

the minimal elements of this set, such that no Rj embeds into I .

Case 1. If there are only finitely many / such that 7Z ̂ I y^ 7?, then we will

appeal to Lemma 3.19. Since there are finitely many such 7/, there is a finite subtree

S ? I such that S y^ 7? for any such 7Z. Hence the immediate successors x of r

such that T[x]
= I are precisely those x satisfying;

(\/s) (V/) Rj y^ Ts[x]; and

{3s)S^Ts[x].

This set is A?} and infinite, and for all xo and x\ in the set we have 7[xo] <^-> I <?>

T[xx], so indeed Lemma 3.19 will apply. (Also, the proof of Lemma 3.19 will not

depend on Lemma 3.16 at all.)

Case 2. Now suppose that there are infinitely many / such that 7/ ̂ I y^ 7Z.
In this case, we build T' and an embedding /' : T ?> T' such that T' is equal to

the range of / plus extra copies of I added as immediate successors of the root.

Because I occurs infinitely often as a successor tree of the root in T, we have that
T and T' are isomorphic. As before, we build T' and / in stages such that at each

stage s, T's is equal to the range of fs plus finitely many copies of I .

We pick one immediate successor yo of r in 7 such that T[yo] = I , and use

this finite information to identify our witness nodes. Our goal is to identify witness

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

182 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

nodes x G 7 such that T[x] ^ IOJ y^ T[x] and then to diagonalize by making

T'[(pe(x)]
= I . Because T[x] <?> Ico if and only if for each Ri, Ri y^ T[x], we can

measure that x is an immediate successor of the root such that T[x] ^ I in a A!)

way. To measure whether I y^ 7[x]. at stage s. for each x which is an immediate

successor of r in 7,, we define

t{x. s)=fjLt[t>x8i Tt[yo\ +> 7,[x]].

Then we choose the witness nodes wo.s,..., wPs.s to be those x which are successors

of the root in Ts (and hence for which t{x. s) is defined) and no Rj embeds into

7,[x]. We index these witnesses so that

t{w0.s,s)
< t{wx.s,s)

< <
t{wPs_s,s)

with we_s <n u)e+\.s for any e such that t{we_s, s)
=

t{we+x.s,s).

Clearly, if x appears as a witness node at infinitely many stages s, then x must be

an immediate successor of r and 7[x] ^ I . Moreover, for an immediate successor

x such that Ico ^-> 7[x]. we must have lim, t{x,s)
= oo. On the other hand, if

T[x] is of one of the infinitely many types 7/ for which I y-> It, then I y^ T[x],
and there is some / and some finite tree Sz such that S/ ? Tt[yo] and S/ y^ 7[x].
Therefore, lim, t{x, s)[< t. Hence for each of these latter values of x. there must

be an e with lim, we.sl
= x. We write we for this x, and note that since there are

infinitely many such x, the limit we must exist for all e. This gives us our witness

nodes. We assign e + 1 many witnesses to the requirement 9te. (As before, we abuse

notation when we describe the action of requirement 9e at stage s by denoting its

witness by we,s.)

At stage s + 1 of the construction, we extend our previous map fs to Ts+x. We

do this by adding fresh elements to the image T's+l, unless some requirement 9te

requires attention. We say that 9e requires attention if there exists a witness we,s
for 92e such that (pe.s{we.s)l (say ipe,s{we,s)

=
j), >> is an immediate successor of the

root in T's. y is in the range of/,, and it is not the case that f~l (y) -< u for some

u < e. Notice that if 9te does not require attention because y is not an immediate
successor of the root in T', then we win 9e trivially as long as we,s

=
we. If y is a

successor of the root of T's but 9e does not require attention because y is not in the

range of/,, then y is the root of a tree of type I in T'. Again, if we^s = we, then
we have won 91 e trivially. And ify<u for some u < e, then we do not allow 9e to

act on this witness we_s since the action could damage the negative requirement J\fu.

\f9te is the highest priority requirement needing attention, then we check if some

Rj embeds into T's[y]. If so. then we know T's[y] y^ I . Assuming we.s turns out to

be a true witness, T[we_s] ^ T'[y] and we have won 9e. If no Rj embeds in T's[y],
then we attempt to diagonalize. Search concurrently until we find

1. some Rj
c-^

Tt[f~l{y)] for t > s; or

2. some witness wo.t..... weJ changes; or

3. an embedding of T's[y] into I appears.

By the definition of Rj. we know that this search procedure must terminate.

If the search in (1) or (2) is successful, then we do not need to do anything for

9te. Either we do not really believe that we_s is the correct witness, or we believe

that when we get to stage t we will win 9e easily because Rj
^ T[\y\.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 183

If the search in (3) is successful, then we add fresh elements to Ts'+1 above y
to make T?+1|j;]

= T0J. (Notice that since IOJ is of finite type, we can execute
this step all at once, using a nice copy of I constructed from only finitely much

information.) Also, add more fresh elements to T's+X to be the new image of

Ts[f~x(y)] under /,+i- Thus, we have redefined / on Ts[f~l(y)], but as in the

previous arguments, because 9e must respect JVU for u < e. this can
happen only

finitely often. Moreover, if we = we.s- then T[we] will not be isomorphic to IOJ.
hence not isomorphic to T[(pe(we)], satisfying requirement 9e. Finally, notice
that for y G T'. we only change f~x(y) when we remove y from the range of /.

However, when this happens, y permanently becomes part of an auxiliary copy
of/a,.

"

H

The next lemma is not a separate case of our overall proof of Proposition 3.1. but
it will be used later in the proof of Lemma 3.18.

Lemma 3.17. Let T be a tree of finite height with root r. Let xq,xx, ... be the
immediate successors of r in T, and assume that every x? is of finite type. Moreover,
assume that there exists an infinite A2 set G ? { xz- : / G co } such that

(1) if Xi G G and T[x?]
=

T[xj], then Xj G G,

(2) every T[x{\ with x? G G embeds into infinitely many T[x?] with Xj G G, and

(3) for each x? G G, { x? : T[x?]
= T[x,] } is a finite subset of G.

Then T is not computably categorical.

Proof. We construct a computable tree T' isomorphic to T, such that for every
e, if ipe were an isomorphism from T to T', then one of the ^-classes described in
the lemma would be infinite. Let Gs be a computable approximation to G, with

every Gs finite. At each stage s we define a finite subtree T), c T with Ds ? Ds+X
and an isomorphism fs : Ds

?
T's, such that f s converges to a A2-isomorphism

/ : T ?? T''. We will choose infinitely many witness elements w\ for each (total
one-to-one) function (p?.

We begin by motivating our strategy for a single 9e requirement. For simplicity
of notation, we assume that G is computable, as adding the A2 approximation to G

is straightforward. 9le begins with a single witness w? G G and waits for a stage
s such that (pe(w?) converges. If (pe(w^) G T's and f~{((pe(w?)) fi G, then 9e is
satisfied and we do not perform any action. (Notice that by condition (1) on G, if
some x G G we have f~x (ipe(x)) ? G, then ipe cannot be an isomorphism from T
to T'.) Otherwise, if either (pe(w^) fi T's ox f~x(ipe(w^)) G G, we begin our action

fox9e.

Search for a t > s and an x G T such that x G G, T^[(pe(w^)]
c-^ Tt[x], and

Tt[x] is disjoint from Ds. If f~l ((pe(w?)) is in G, then we must find such an x since

T[f^l(tpe(we))] embeds into T[y] for infinitely many y G G. (If (pe(w?) ̂ T^then
the embedding condition is trivial and we merely look for Tt [x] which is disjoint from

Ds.) We now define the map f s+x by changing the map fs on Ts[f~l(ipe(w?))].
Use the embedding of T^[(pe(w^)] into Tt[x] and add extra elements to T'+1 to

make f s+\ map Tt[x] onto
T?,+l[(pe(w?)]. Add more new elements to

T^+1
to serve

as the new image of Ts[f~x((pe(w?))] under fs+\. For all other points in Ds. let

fs+\
=

fs. We now have defined fs+\ on Ds+\, which is equal to Ds plus Tt[x].

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

184 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

Finally, we define w]
= x. (Notice that we can speed up the approximation of T to

assume that Ds+\ ? Ts+\.)

Repeat the above procedure, but working with w] instead of w?. Notice that if we

keep extending our map fs+x to copy the successor trees it is currently defined on,
we will get that / is an isomorphism between T'[(pe{w^)] and T[w]]. Therefore, if

(pe is an isomorphism.

T[w?e]*?T'[<pe(w?e)X^T[wl].

By repeating this process (and assuming that (pe continues to converge on all of our

witnesses wne and is well behaved
-

see below), we get a sequence of witnesses wne

such that if (pe is an isomorphism, then T[w"]
=

T[w"+]] for all ft. This contradicts

the fact that the isomorphism types given by nodes in G occur finitely often. Notice

that we change the map / as we go from /, to /,+i on Ts[f~l(ipe{w"))] and we

also change the map from f~[to
f~^x

on T's[ipe{w")]. Since we are not turning

T's[<pe{w")] into an auxiliary tree, we will need to explicitly address the requirements
Jtu for the first time.

By well behaved, we mean that (pe is one-to-one, that it maps the root to the root,
that it maps comparable nodes to comparable nodes, and that it maps incomparable
nodes to incomparable nodes. If we ever see any of these conditions violated, then
we know ipe is not an isomorphism and we can stop working on 9e. In all of the

work below, we assume that we stop work on 9e if we get an easy win because it is

not well behaved in this sense.

Combining the basic strategy for 92e with the J\fi strategies is a little more subtle

than in previous constructions because one 9e requirement can cause infinitely
many changes in the map /,. Before redefining fs on Ts[f~l((pe {w"))], we check if

f~l{(pe{w")) -< m for any m from 0,..., (e, n) in T. If not, then we act as above. If

it is below any such m, then we cannot redefine /, on this subtree. We also employ
a similar strategy to deal with the Mi strategies. That is, if ̂ e{w") < (e, n), then

9e cannot use wne as a witness since this would involve redefining f~l{(pe(w")). In

either case, 9e must repick its witness wne. If n > 0, we declare that w" is undefined.

This forces us to repeat the cycle above for wne~x and gives us a new (large) witness

w". Assuming that cpe is well behaved, this new witness gives us a different value

for f~l{(pe{w")) (which we assume is in G). Since each point in G is an immediate
successor of the root in T, we will have to repeat this process at most 2(e,n) + 1

many times before we are guaranteed to be allowed to redefine /,. If n = 0, then
we need to choose a new initial witness w?. To do this, we declare that the old w?

is disallowed for 92 e and we let the new w? be the least element of G which has
not been disallowed for 91 e. If <pe is well behaved, then we will have to redefine
our initial witness in this fashion at most 2(e, 0) + 1 many times. Therefore, we

eventually get our infinite sequence of witnesses and win.

We also need to see how different 9 strategies work together. Each 92 e will have
some finite (possibly empty) list of witnesses w?,..., w" at stage s. We say that

wlj
has higher priority than w$ if (/, j) < (p, q). Consider an 92 e strategy working

with other 9 strategies. If 9e has a largest witness wne and (pe{w") converges with

f~l {(pe{w")) G G, then in addition to checking whether f~l {ipe{w")) is below any
of the numbers 0,..., (e, n) in 7, 9e also checks whether f~l{(pe{w")) is equal
to any other w . If so, then changing fs on Ts[f~l{ipe{w"))] could damage the

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 185

requirement 9i. Therefore, 9le checks if the node w has higher priority than

wne. If so, then 91 e cannot change the map on this cone, so it acts as when it was

restricted by an J? or M requirement. If not, then it causes all w of lower priority
to become undefined and goes ahead with its action as above.

Notice that this action may allow 9) to injure 9e even though e < i. However,

only finitely many witnesses w can injure a given wne, and therefore, w" will

eventually reach a limit which 9le can use.

We now present the full construction, which is nothing more than the above

description with the A2 guessing for elements of G. We start by setting Dq =
{r}

and T?
-

{0}, with /0(r)
= 0.

At stage s + 1, we make a preliminary definition of our witnesses by induction

on / from 0 < / < s. If wfs G Gs, then let w?s+l
=

wfs and wJis+l
=

w[s for all

j > 0 such that w[s is defined. If wfs ? Gs or wfs is not defined, then wfs+l and

all lower priority witnesses w"s+l are undefined (even if some of these were defined

earlier in the induction). Next, we check if some new initial witness
w%s+l

can be

defined. If there is a k < s and an element x G Gs such that w^.s+l is undefined,

x ^ { wJis+l
: (/, j) < (k, 0) }, and x is not disallowed for w%, then we let

w?s+l
be

the least such x. Make all lower priority witnesses undefined.

We then find the least pair (i,j) such that ip^s is well behaved, wJis+l is de

fined, wj^
is not defined, (pu(w[s+{)i,

and either
f~l(<pu(wJLs+l)) G Gs or

Vi?Wis+i) & T's. (Ifthereisnosuchpair, we end the stage, let Ds+X
=

DsL){s} and

fs+x
=

fs plus add one fresh element fs+x(s) to T's+l if needed.) If
(pi,s(w?s+l) G

T's, then check the following two conditions for compatibility with the appropriate
JV and 9 requirements. (In the case when <pu{w-js+l) ? T's, we can skip these

checks.)

First, check for compatibility with the JV and J? requirements. If
(pi(wJis+l)

>

(i,j) and there is no k < (ij) such that
f~x((pi(wJis+l))

-< k in Ts, then go to the

check in the next paragraph. Otherwise, if j > 0, declare
wJis+l undefined and begin

the next stage. If j
= 0, then declare wfs+l disallowed for wf, make wfs+l undefined

and go to the next stage. (In both of these cases, we extend Ds to D^+i
= Ds U {s},

add an extra element to T's+l, and define fs+x on this new element if necessary.)
Second, check for compatibility with the 9 requirements. If there is no higher

priority w"s+l such that (pi(w[s+l)
=

fs(w"s+l), then go to the next paragraph.

Otherwise, if there is such a w"s+l and j > 0, declare wjs+l undefined and begin the

next stage. If y
= 0, then declare wfs+l disallowed for wf, make wfs+l undefined

and go to the next stage. (Handle Ds+\, T,/+1 and fs+\ as in the previous paragraph.)
If both of these checks are successful, search for the least stage t > s + 1 such

that either

3x G Gt [Tt[x] H Av = 0 & T^i(w[s+l)]
^ Tt[x]): or

tpiAwL+i) e T; and frl(wAwL+i)) i Gt.

In the latter case we repeat the above process for the next pair (i,j) < s which

appears to need attention. In the former case, we set
wj^

= x, add elements to

T's+X above (and possibly including) the node tpi(wJis+])
to make a copy of Tt[x],

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

186 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

and define fs+\ to map Tt[x] onto these elements, according to the embedding we

found. If this requires redefining f s+\ on elements of Ds which had mapped into

Ts[ifi(wJis+l)] under /,, we add fresh elements to T's+X to be their images. For all

other elements of Ds. f s+x takes the same value as /,. We add the elements of

Tt[x] to Ds+\ and we enumerate s into Ds+\, adding a fresh element as its image in

r'+1 if necessary. Thus 7'+1 is the bijective image of 7>,+i under fs+\.

We claim that the search for stage t must eventually terminate. If f~x (<pi (wjs+l))

? G, this is clear. If f~x{(fi{wjs+l))
G G. then there are infinitely many other

nodes x G G such that T[f~]((p?(wjs+l))]
^ T[x]. Eventually we find a node x

(in Gt but not necessarily in G) with such an embedding, such that 7[x] D Ds = 0.

and we use it. Finally, if ipi{wjs+l) ? T's, then Tj,[(fi?{wj s+l)] is considered to be

empty, hence embeds trivially into Tt[x] for the first x ^ Ds to appear in any later

TtnGt.

The verification that the construction succeeds is essentially as described in the

informal setting. The witness w? s can only be changed if it leaves Gs or if (po(wQS)

converges either to 0 or such that f~x{(po{^o J) ^ 0 in 7. Therefore, this witness

is only injured finitely often due to the Aij nature of G and is injured at most once

by each of the requirements JVo and Mo. Since no other requirement can injure

Wq s , this witness eventually reaches its final value. Similarly, for each wjs. once the

higher priority witnesses have reached their final values (which may include never

being defined again), this witness suffers finite injury due to the fact that G is A?,
finite injury due to the restraints of J? and M, and finite injury due to the restraints

of the higher priority witnesses for 9 requirements. Therefore, for every witness

wjs, there is a stage t such that either wjs has stabilized by stage t or wj s is never

defined after stage t.

Since each witness stabilizes, 92i only changes /, finitely many times for each

potential witness wjs. Therefore, because of the restraint imposed by the JV re

quirements, /(x)
= lim, /,(x) exists for all x G 7 and because of the restraint of

the Jt requirements, f~x{y)
= lim, f~x{y) exists for all y G T'. Thus / gives a

A\-isomorphism from 7 to T'.

If ifi is indeed well behaved and total, then we define a growing sequence of nodes

wfs,..., wjs which eventually settle down to wf,..., wj. If f~x (ipi(wj)) ? G. then

<Pi cannot be an isomorphism, since the lemma assumes that if 7[x]
= T[y]. then

(x G G <^=> y G G). If f~x{(pi{w?)) G G, then eventually the second clause in

the search for stage t will never again apply, and we will find a t and an x which we

define to be wj+
.

Once w?+ has converged, we define fs{w-+)
?

(pi(w?). This action may be

injured finitely many times, but eventually it settles on a final w?+ with / {w?+)
=

(fi {wj). We know that / is an isomorphism from 7 to T'. If <??/ were an isomorphism
as well, then we would have

T\wj]^Tf&l{wj)]^Tlwj+x]

for every / the first isomorphism being (/?/ and the second being f~x. But wf G G

(since we check this immediately at every stage), and w1- ^ wj for all k ^ j. since

each new w* is always chosen as a node in 7 not yet in the domain Ds of /,.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 187

This contradicts the assumptions of the lemma, so T and T' cannot be computably

isomorphic. H

Lemma 3.18. Let T be a tree of finite height, such that the root r has infinitely
many immediate successors xq,xx, Assume that all nodes above r are of finite

type, and that there are infinitely many isomorphism types in the set { T[x/]}. Suppose
that only finitely many of these isomorphism types appear infinitely often as successor

trees above r, and that for each such type I. only finitely many other types appearing
above r embed into I. Then T is not computably categorical.

Proof. Let 3~ be the set of isomorphism types of successor trees in T and let S

be the set of types in !T which embed in any of the infinite-occurring types (including
the infinitely-occurring types themselves). By assumption S is finite. We let {Si}
be a finite collection of finite trees such that no S i embeds into any element of J*",

yet every T[x?] ? S has some Si as a subtree. (Here we use Corollary 3.8 and

Lemma 2.9.) The elements of S are precisely those types into which no Si embeds.

Therefore, there is a A2 guessing process to identify all successor trees above r whose

type is in S.

Notice further that by Corollary 3.6, we infer that of the elements of ST - S, all

but finitely many embed into infinitely many other elements of ST - S. Let

U =
{ Xi : T[x?] G F - S & (3m) (Vy > m) T[xt] ̂ T[xj] }

be this finite set. We will concern ourselves with the set F of immediate successors

x of r in T such that T[x] G ST ? S and T[x] embeds into infinitely many other

elements of ET - S. We have a A2-approximation Fs for F, and we may assume

that each Fs n U = 0.

Case 1. Suppose there are only finitely many equivalence classes Wq, ...,
Wp under

= among { T[x] : x G F }. At least one must be infinite, so assume that Wq, ...
,Wq

are the infinite classes andWq+X,... ,WP
are the finite ones. Since each isomorphism

type occurs only finitely often in each W?, we have that the set

X =
{x eF : T[x] eWq+xU---UWp}

is finite. Let G = F ? X. Since F is A2 and X is finite, G is A2. G is exactly the

kind of set to which we can apply Lemma 3.17. Therefore, T is not computably

categorical.

Case 2. Suppose there are infinitely many equivalence classes under = among

{ T[x] : x G F }. We will write ?f7
^ ^ to indicate that some (hence all) elements

of &j embed into some (hence all) elements of Wk. For each class Wk, pick one

representative T[xik], and apply Corollary 3.6 to { T[xik] : k G co}. (We do not

need this procedure of picking elements to be computable since we only use it to

obtain a finite amount of information detailed below.) This gives us a K such that

for all k > K. there are infinitely many j > k such that Wk ̂
Wj.

Consider the equivalence classes Wq, ... ,WK-\. Divide these classes and renumber

them so that Wq, ...
.Wq are the finite ones. Then, just as above in Case 1, the set

X =
{x eF : T[x] eWo?--UWq}

is finite. Therefore. G = F - X is a A2 set to which we can apply Lemma 3.17.

Therefore. T is not computably categorical. H

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

188 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

Oddly, the remaining case turns out to be the hardest. This is the situation in

which we have infinitely many isomorphism types appearing above r, all of finite

type, with every such isomorphism type embedding into every other one. One would

think that with so many embeddings at hand the proof would be easy. Alternatively,
Lemma 2.10 shows that infinitely many of these types must fail to be of strongly
finite type, hence must have embeddings available within them to satisfy all the

requirements. Curiously, the presence of so many types and embeddings interferes

with the availability of non-strongly-finite types, and vice versa, so that in the end
we must use a completely different approach. The following lemma will not be used

directly in the proof of Proposition 3.1, but it is necessary to finish the proof of Case

1 in Lemma 3.16.

Lemma 3.19. Let T be a tree of finite height with root r, such that every successor

tree above r is of finite type. Suppose there is an infinite set X =
{xo, xx,... } of

immediate successors ofr satisfying:

(1) XisA?2;and
(2) For all Xi, Xj G X, T[xz]

=
T[x7]; and

(3) {T[xz]} includes infinitely many distinct isomorphism types.

Then T is not computably categorical.

Proof. To simplify the proof, we will assume that X contains every immediate
successor of r in T. The finite-injury construction we present can readily be adapted
to the more general case, using A2-approximations to X. We begin by presenting
the particular case in which ht(T)

= 4. As no tree of height < 4 satisfies the

hypotheses of the lemma, this will serve as the base case for an induction on the

height of T. Suppose ht(T)
? 4 and every successor tree above r embeds into

every other such successor tree, and there are infinitely many isomorphism types

occurring among these successor trees and they are all of finite type. Each time a

node becomes established at level 1 in T, we know that it is the root of a successor

tree, so we define it to be the next xz. Since the successor trees all embed into each

other, they must all have the same height?namely 3, since ht(T)
= 4?so every

node at level 1 of T eventually is identified as xz for some /. Also, it is not hard to

see that since each T[xz] has finite type, each T[xz] must be ^-branching at its root

for the conditions of the lemma to hold.

If y is an immediate successor of any xz, then the isomorphism type of T[y] is

determined by the number of immediate successors y has. By Lemma 3.9, since

T[xi]
=

T[xj] are finite type trees, they have exactly the same infinitely occurring
successor trees. Therefore, there is a finite list nx < ni < < nk such that nj < co

for each 1 < j < k, and for every /, the successor trees in T[xz] which occur

infinitely often are the n}-branching trees of height 2 for 1 < j < k. We next show

that k = 1. Suppose that k > 1. Under this assumption, T[xz] has an infinitely

occurring successor tree which embeds into a nonisomorphic infinitely occurring
successor tree. Since this violates the definition of finite type, we must have k = 1.

Let y = nx be such that the unique infinitely occurring successor tree in every T[xz]
is y -branching.

Furthermore, we claim that for any m such that y < m < co, each T[xz] has

exactly the same number of ra-branching successor trees. To see this fact, first

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 1 89

suppose y < co, T[x?] has ut many co-branching trees, T[xj] has u? many co

branching trees and ut < Uj. We know T[xj]
^ T[x?], so each co-branching

successor tree in 7[x7] must map into an co-branching successor tree in T[x?],
and because of the heights of the trees, two different co-branching successor trees in

T[xj] cannot map into the same co-branching successor tree in 7[x/]. Therefore, we
have an immediate contradiction. Second, fix the maximal m < co such that y < m
and T[x?] has v? many m-branching successor trees for some Vi > 0. (Because
T[x?] has finite type, it has only finitely many different isomorphism types among
its successor trees. Therefore, either there is no m with y < m < co such that T[xi]

has an m-branching successor tree, in which case we have established our claim,
or there is a maximal such m.) Each of these trees must map into a successor tree
in T[xj] which is at least m-branching (but not co-branching since those successor
trees are already mapped to by the co-branching successor trees in T[xi]) and no
two such m-branching successor tree in T[x?] can map into the same successor tree
in T[xj]. Therefore, T[Xj] must have at least v? many successor trees which are at
least m-branching but not co-branching. However, if T[xj] has a successor tree that
is more than m-branching but less than co-branching, then it has no place to map to

under T[xj]
c-> T[x?]. Therefore, T[xj] has at least Vi many successor trees which

are exactly m-branching. By switching the roles of T[x?] and T[xj], we see that

T[xj] must have exactly Vi many successor trees which are m-branching. We can

obviously continue this process with the next largest number which is less than m,

greater than y and such that 7[xz] has at least one successor tree with that number
of branches.

We now know that any 7[x/] and T[xj] must look identical with respect to their
successor trees which are more than y -branching. However, there must be infinitely

many different isomorphism types among the T[x?] trees. These differences in

isomorphism type must be due to the successor trees which are less than y-branching.
Therefore, infinitely many T[x?] contain a node w at level 1 in 7[xz] which has fewer
than y immediate successors. We will use as our witness nodes those nodes w with

< y immediate successors, with at most one witness node in each successor tree.

When necessary to diagonalize, we add more successors to ipe(w) in T' so that it
has exactly y successors.

We identify the witness nodes as follows. At any given stage, the witness node in

T[x?] should be that node x G T[x?] with < y successors which has level7; {x)
= 2

and which has gone the longest without acquiring any new successors. That is, for
each x at level 1 in 7[xz], let

tx =
{jut > x) [all

successors of x in Ts are in
Tt],

and choose as the witness node in T[x?] at stage s the smallest x such that tx is
minimal.

However, it is possible that 7[x,] contains no nodes with < y successors, so we
must search among different successor trees. At first, we choose wo.s to be the
witness node in r[xo]. If this witness node changes at some subsequent stage sx,
then we choose wo.S]+\ to be the witness node in T[x\]. If at a subsequent stage
^2 the witness node in T[x\] changes, then we change wo.S2+x back to the (current)

witness node in 7[xo], then 7[xi] again, then 7[x2], then back to 7[xo], and so
on. In general, let sk be the next stage (if any) after sk^x at which wq,s changes,

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

190 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

and choose ic>o.i+^ to be the witness node in T[xz] at stage 1 + Sk where k =
(ij).

The properties proved above guarantee that there must be infinitely many T[xz]

containing nodes x such that x is an immediate successor of xz and such that x

has < y successors, so eventually wq.s converges to some wq. At the same time,

we do the same for the witness node wx_s for 9X, looking only at witness nodes

in successor trees T[x7] in which wo_s has never yet been located, and so on by a

standard finite-injury process.

Sublemma 3.20. For every e,we
?

lmis we_s exists and has < y successors in T.

Proof. Assume by induction that the lemma holds for all i < e. Then each of

wq, ... ,we-\ lies above one of xo,..., x^, for some k. By our assumptions about

T, there must be a node y in some T[x7] with j > k such that levels(y)
? 2 and

y has < y successors. Assume that this y is chosen to have minimal ty among all

such nodes in T[x7]. (Hence y acquires no new successors after stage ty. If there is
more than one y with minimal tv, we take y to be the smallest of them.)

Pick a stage s0 by which xq,...Xj are all established, so that T[x7] will be available

to us when we define we^s at all s > sq. (Hence we,s will never be undefined after

so.) If we,s fails to converge to a limit, then it must be in T[x7] at infinitely many

stages s, according to our instructions for choosing we,s. Since tv is minimal, we

must have we.s ?
y at cofinitely many of the stages such that wetS ? F[x7]. Hence

We,s
=

y at some stage s > ty. But then we,s
=

y for all subsequent stages s as well,

proving the sublemma. (Possibly we.s converged to some other limit in some other

T[xk] instead of converging to y, of course.) However, in any case, the construction

guarantees that the limit must have < y successors in T. H

We build T' by copying T at each stage s, with the following provision. Find

eache < s such that we,s is defined and <pe.Awe.s)i (say y =
<peAweA) and/,-1^)

lies at level 2 in Ts and has fewer than y successors in Ts. If there is no such e,

simply extend fs to fs+x by adding new elements to T^+1. If there is, then for

the least such e, add new elements to T' so that y has exactly y successors in Tr.

We also add new elements to T' to be the image of Ts[f~x(y)] under fs+\. The

elements of TA\[y] will not lie in the image of the limit /, but T and T1 will still

be isomorphic, since every xz has infinitely many immediate successors with exactly

y successors of their own. Notice that as in previous constructions with auxiliary
trees, if a node y G T' is removed from the range of f, then it permanently becomes

part of an auxiliary y-branching subtree of T'. We have simply added one more

such node above /(xz) in T' during this redefinition off. The only injuries to 9e
occur when wis+\ ^ w^s for some / < e. Thus we have ensured that y

--
(pe.s (we,s)

has y successors in T', while we.s has < y successors in Ts. Ifwe_s
=

we, then we,s

acquired no new successors in T after stage s, leaving 91 e satisfied.

Two minor modifications to this strategy are required for 91 and J? strategies to

work together. First, as we have done before, we assign e + 1 many witnesses to

9e and we check whether f~x(y) ~< u for u < e before allowing 9e to act. This

modification insures that /
= lmi? fs exists and that T = T'. Second, since there

are parts of T's which are not in the range of fs, it is possible that y lies at level 2 in

T's but it is not in the range of fs. In this case, y already has y successors because

of the action of some 9 requirement. Therefore, ifwe.s = we. then 9e has already
won without needing to act.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 191

We now assume by induction that for all trees T with ht(7) < n satisfying the

hypotheses of the lemma, we have a construction of a tree T' which is isomorphic
to 7 but not computably isomorphic to it. Let ht(T)

= n, and suppose that every
successor tree above r embeds into every other such successor tree, and that there

are infinitely many isomorphism types occurring among these successor trees and

that they are all of finite type. Each time a node becomes established at level 1

in 7, we know that it is the root of a successor tree, so we define it to be the next

Xi. Since the successor trees all embed into each other, they must all have the same

height?namely n ?
\, since hi{T)

= n?so every node at level 1 of T eventually is

identified as x/ for some /.

Notice that for x? and x7 at level 1 in T, we have that T[x?] =
T[xj] and that both

of these trees are of finite type. Therefore, by Lemma 3.9, the set of isomorphism

types which occur infinitely often among the successor trees of xz in 7"[x/] is exactly
the same as the set of isomorphism types which occur infinitely often among the
successor trees of xy in 7"[x7]. Let these types be 7i,..., Ip. We will consider two

cases.

Case 1. Suppose there are infinitely many i such that some finite-appearing suc

cessor tree in T[x?] embeds into one ofIx,...,Ip. Then (without loss of generality)
there must be infinitely many i such that some finite-appearing successor tree in

T[x?] embeds into 7i. The construction in this case will be much the same as the

construction in the case where ht (7)
= 4. The witness nodes will be roots of finite

appearing successor trees in various T[xt], and we will embed those finite-appearing
trees into successor trees in T[x?] isomorphic to 7i when necessary to satisfy the

requirements. In this general case, however, it is more difficult to locate the witness

nodes.

Since 7i has strongly finite type, we can use finitely much information to construct
a nice copy of 7i. By a nice copy, we mean both that we know the isomorphism
type of every subtree of the form L[a] and also that x -< y implies that x < y. We
use this copy of 7i, along with the notion of a basic embedding, to pick out witness

nodes in T.

Definition 3.21. Two nodes x and y in a tree S are siblings if they have the same

immediate predecessor in S. (This includes the case x =
y.)

Definition 3.22. An embedding y/ : S ^-? T is basic if it maps the root of S to

the root of T and for every pair of siblings yo < yx in T, if T[yo] =
T[y\] and

y\ G range(^), then also y o G range(^) and y/~x{yo) < ys~l{y\)- (Here, of course,
< refers to the standard ordering on co, not to the tree structure of 7 or S.)

The intuition for building a (not necessarily computable) basic embedding is that,

having mapped x to y/{x),
we consider the immediate successors xo, x\,... of x in

numerical order (so xz < x/+i for all /). Having defined y/ on xo,..., x7, we choose

an isomorphism type above y/{x) into which to map S[x/+i], and let y/(xi+\) be

the least root y of a successor tree ofthat isomorphism type above y/{x) such that

y is not already in the range of y/. The only problem with this algorithm is that

several successor trees from S may have to map into the same finitely occurring
successor tree in 7. We show how to handle this problem below. Notice that for
our nice copy of 7i, it is computable for finite trees S, uniformly in S, whether a

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

192 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

basic embedding of S into Ix exists, and also whether any specific map y/\ S -* I\
is a basic embedding or not.

We prove the following sublemmas about basic embeddings. Although they apply
to any trees of strongly finite type, we will apply them to our nice copy of Ix.

Sublemma 3.23. Let S be a tree with finite type and U be a tree with strongly finite

type. If there is an embedding f : S ^-> U, then there is a basic embedding g: S ^-> U.

Proof. We proceed by induction on the height of U. If U has height 1, then S

must have height 1 and they both consist only of a root. The basic embedding g
sends the root of S to the root of U. Assume U has height greater than 1 and that

we know the theorem by induction for all trees of lower heights.
Fix the embedding / and define g to send the root of S to the root of U. We

describe how g behaves on all successor trees S[x] of the root in S by splitting into

two cases. Let yo,yx,... be all the nodes at level 1 in U numbered so that / < j

implies y i < y?. Assume that the successor trees U[v?] for / < n are exactly the
successor trees whose isomorphism types occur only finitely often in U. (The proof
below does not depend on the fact that the finitely occurring successor trees have

roots which are less than the roots of the infinitely occurring successor trees. It

does, however, simplify the notation.) We first consider those successor trees of S

that / embeds into some U[yi] for i > n and second we consider those successor

trees of S which / embeds into some y i for i < n.

Let xZo < xZl < be the nodes at level 1 in S such that / embeds S[xik] into
one of the infinitely occurring isomorphism types of successor trees in U. Fix jk to

be the index of the node yjk at level 1 in U such that / : S[xik]
*->

U[yjk]. Define g
on the trees S[xik] by recursion on k. Let g(xik)

= y where y is the <N-least node

at level 1 in U such that U[y] =
U[y?k] and y is not in the range of g yet. Since

S[Xik]
^ U[y], by induction there is a basic embedding of these trees. Let g be

defined on S[xik] to be such an embedding.
Next, consider the successor trees S[x] in S such that / maps S[x] into one of

the finitely occurring isomorphism types of successor trees in U. Notice that if/

maps two successor trees S[xx] and S[x2] into the same successor tree U[y], then

y is not in the range of /. We consider each of the finitely occurring isomorphism

types separately. Fix one of these types and assume without loss of generality
that t/[yo],. , ?/[ym] are the successor trees with this isomorphism type and that

yo < - < ym- For i < m, let 7Z be the set of nodes x at level 1 in S such that /
maps S[x] into S[yi]. We consider first the sets Y? which have size 1 and then the

sets which have size at least 2. (Of course, it is possible that some Fz are empty and
we ignore these sets.)

For each 7Z with size 1, fix the unique successor tree in S which maps into U[yi].
Let xZo < < Xik be the root nodes of these successor trees. Define

g(xi?)
=

y?

for / < k. Since we know S[xZ/]
<-* U[yi],WQ can extend our definition of g (by the

induction hypothesis) to be a basic embedding between these subtrees.

We consider the remaining Fz with size at least 2 individually. Fix such a 7Z and

let xo, x\, G Y i be the nodes of level 1 in S such that / embeds S[xk] into U[yi].

(This list may be either finite or infinite.) Consider an auxiliary tree Si formed by

taking a root node and attaching the trees S[xk] immediately above the root. Let

u < m be the least index such that we have not defined g mapping into U[yu] yet.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 193

By our assumptions, we know that S; embeds in U[yu]. (Notice that this is where
we use the fact that Fz has size at least 2. In this case, the node y? was not in the

image of / because / mapped more than one successor tree into C/[y/].) By the

induction hypothesis, there is a basic embedding of Sz- into ?/[yM]. Let g be the

restriction of such a basic embedding to all nodes in S? except the root node. This

definition of g maps all of the S[xk] trees into U in a basic way. (That is, any
violation of the requirement on the images of siblings in the restricted version of g
would have been a violation of the restriction on the basicness of the embedding of

Si.) Performing the action of the last two paragraphs for each isomorphism type
of a finitely occurring successor tree in U completes the description of g. 3

Sublemma 3.24. Let U be a finite height tree of strongly finite type and let f : U ̂

U. Then for all x at level 1, we have that f{x) is at level 1 and U[x] =
U[f(x)].

{We are not claiming that f is an isomorphism, which it need not be, but only that

these successor trees are isomorphic.)

Proof. Fix a node x at level 1 in U such that /(x) ^ x. We split into the cases

when U[x] is a finitely occurring isomorphism type and when U[x] is an infinitely

occurring isomorphism type.

Suppose U[x] is a finitely occurring isomorphism type and there is some m < n

such that fm{x)
=

fn{x). Now/, being an embedding, has a one-to-one inverse g,
with dom(g)

=
range(/). So fn~m{x)

=
gm{fn{x))

=
gm{fm{x))

= x, forcing

U[x] ̂ U[f{x)] ^ UWn-m(x)] = U[x].
Since these are strongly finite trees, U[x]

=
U[f{x)] by Lemma 2.10, and moreover,

1 < level(/(x)) < level(/"-m(x))
= 1.

Now suppose U[x] is a finitely occurring isomorphism type but there is no

m < n such that fn{x)
=

fm{x). We first show that there must be a n\ such that

level(/"'(x)) > 1. Because U[x] is a finitely occurring isomorphism type and U

has strongly finite type, if U[x] ^ U[y] and level(^)
= 1, then U[y] is a finitely

occurring successor tree. Fix y such that level(j)
= 1 and/embeds ?/[x]into U[y].

There are two possibilities, either y -< f{x) (in which case level(/(x)) > 1 and
we are done) or y =

/(x) (in which case level(/(x))
=

1). If/(x)
= y, then we

repeat the above process to gain information about/2(x). Since U [y]
=

U[f{x)]is
a finitely occurring successor tree, / must embed U[f{x)] into a finitely occurring
successor tree U[z] with level(z)

= 1. Again, either we have z -< f2{x) (in which
case we are done) or z ?

f2{x). In the latter case, we repeat the process again.

Each time we repeat this process, we either find that level(/w(x)) > 1 (and we are

finished) or fn{x) is the root of another finitely occurring successor tree. Since

fn{x) t^ fm{x) for all n ^ m, we can never repeat the root of a particular finitely

occurring successor tree during this process. Because there are only finitely many

finitely occurring successor trees, this process must stop at some value n\ with

level(/"'(x)) > 1.

Let x\ be the node at level 1 such that x\ -< fn] (x). We next show that it is not the
case that fk{xx)

= x\ for some k. For a contradiction, assume that fk{xx)
= x\

for some k. Then, because fp+k{xx)
=

fp{xx) for all p, there must be a node y\
such that fn]{yx)

= x\. However, then we have fni{yx)
= x\ < fni{x), so yx ^x

which implies that yx is the root. Since / must take the root to the root, this gives
the desired contradiction.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

194 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

Repeating the argument above for xx, there must be an ni such that

level(/^Ui)) > 1.

Therefore,

level CT1+%x)) > level(/"2Ui)) > 1

and hence level(f"l+n2(x)) > 2. If we now let xj be the node of level 1 such

that x-2 -< fni(xx),
we can repeat the argument to show there is an ?3 such that

level(/77l+/72+"3(x)) > 3. Repeating this process contradicts the fact that U has

finite height. Therefore, it cannot be the case that fk(x) ^ x for all k. We

have now shown that / must permute the successor trees U[x] which have finitely

occurring isomorphism types.
It remains to consider x such that U[x] has an infinitely occurring isomorphism

type. By the argument above, / cannot map U[x] into a finitely occurring isomor

phism type because it must permute those types. Therefore, / must embed U[x]
into some U[z] which has an infinitely occurring isomorphism type. However, this

means that U[x] = U[z] since U has strongly finite type and hence we must have

f(x)
= z. H

Sublemma 3.25. IfT\ = T2 have strongly finite type and f : Tx c-^ T2, then for all

x at level 1 in Tx, f(x) is at level 1 in T2 and Tx[x]
=

T2[/(x)].

Proof. Let g be any isomorphism from T2 to Tx. This sublemma follows from

Sublemma 3.24 by considering gf : Tx ^ Tx. Notice that as in the proof of

Sublemma 3.24, if Tx[x] has finitely occurring isomorphism type, then T2[f(x)]
has finitely occurring isomorphism type. Furthermore, if y is at level 1 in T2 and

Ti[y] has finitely occurring isomorphism type, then y is in the range of/. H

Sublemma 3.26. Let U be a finite height tree of strongly finite type, f : U <?> U,
and k < ht(U). For all nodes x at level k, f(x) has level k and U[x] is isomorphic
to U[f(x)].

Proof. This follows by induction on k using Sublemma 3.24. H

Sublemma 3.27. Let T\ = T2 be finite height trees of strongly finite type. There is

exactly one basic embedding f : Tx ̂ T2 and f is an isomorphism.

Proof. We proceed by induction on the height of Tx. The case for height 1 is

trivial. Assume the sublemma holds for all trees of height less than the height of

T\. By Sublemma 3.23, we know that there is a basic embedding / : Tx ̂ T2. We

need to show that / is onto (and therefore is an isomorphism) and is unique.
We know that / sends the root of T\ to the root of T2. Consider any node x at

level 1 in T2. We have already seen that if x has an infinitely occurring isomorphism

type then x cannot be equal to f(y) where Tx[y] has finitely occurring type. Also,
if x is not in the range of /, then we have an immediate contradiction since some

z > x with T2[z]
= T2[x] must be in the range of f because T\ has infinitely many

nodes u at level 1 with Tx[u] = T2[x]. This contradicts the fact that / is basic.

Therefore, x must be in the range of/. Furthermore, if x is the k-th node at level

1 in T2 with its isomorphism type (where we measure k-th using the <N-ordering),
it must be the case that f(u)

= x where u is the k-th node in Tx with this type.
Therefore, for nodes at level 1 in Tx with infinitely occurring isomorphism types,

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 195

the map / is uniquely determined. By induction, the values of f above these nodes
are uniquely determined and give an isomorphism between the successor trees.

If 72[x] is a finitely occurring type, then we already know that x =
f{y) for some

y G Tx. By an argument similar to the one above, the value of y is uniquely deter

mined, and by the induction hypothesis, / is a uniquely determined isomorphism
from Tx[y] to T2[x]. 3

Sublemma 3.28. For each basic embedding y/\ S c-> 7i, the restriction of y/ to

S n {r, 0,... s} is also a basic embedding. {Here r is the root of'S.)

This is clear from the definition of basic embedding.

Sublemma 3.29. Let S and Ix be finite height trees such that S is of finite type
and Ix is of strongly finite type. Suppose every basic embedding S <-* Ix includes

the node y of Ix in its image. Then there is an s such that every basic embedding of
S n {r, 0,1,... ,s} into Ix includes y in its image.

It then follows from Sublemma 3.28 that every basic embedding of every S D

{0.1,..., t} into Ix with t > s includes y in its image.

Proof. Our argument is purely classical and we do not claim (or need) any
effectiveness in this sublemma. We proceed by induction on the height of 7i. The

case when Ix has height 1 (and hence consists of only the root) is trivial. Assume

that the height of Ix is greater than 1 and that the sublemma holds for all trees of

shorter height. We split the argument into two cases: when y is contained in one

of the finitely occurring successor trees in 7i and when y is contained in one of the

infinitely occurring successor trees in 7i. It suffices to show that if y is contained in

the range of all basic embeddings, then there is a finite subtree U of S for which all

basic embeddings of U into 7i hit y.

First, consider the case when y is contained in one of the finitely occurring
successor trees of 7i. Let Si be the subtree of S consisting of the root plus all the

successor trees which do not embed into any infinitely occurring successor tree in Ix.
Let Jx be the subtree of 7i containing the root and all the finitely occurring successor

trees in 7i. We denote the successor trees in Jx by 7i[zoL - ,J\[z?]. Notice that not

only does Si ^ Jx, but there is a basic embedding S ^-> 7i such that S\Si is mapped
into 7i \ Jx. This basic embedding can be obtained by fixing a basic embedding

Si ^ Jx and then mapping each successor tree S[x] not in Si (by induction on x)

by a basic embedding into 7i [z] where z is the oleast node at level 1 in 7i \ Jx which

has not yet been mapped into.

We denote the finitely occurring successor trees in Si by Si[xo],.... Si [x^] with

the assumption that xq < < xk. For simplicity of notation, we assume that there

is only one isomorphism type for an infinitely occurring successor tree in Si (the

general case when there are finitely many such isomorphism types will be clear from

the argument below) and we denote these successor trees Si [y0], Sx [vi].... with the

assumption that yo < yx < We make no assumptions about the oordering

between elements xz and y7.

We claim that for any z G Jx at level 1, either infinitely many copies of Si [yo]
can be embedded into J\[z] or else there is a finite upper bound m- on the number

of copies of Si[yo] that can be embedded into 7i[z]. To see this fact, consider an

auxiliary tree U formed by taking a root with infinitely many copies of Si [yo] as

successor trees. (Notice that since Si [yo] has finite type, so does U.) Because U has

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

196 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

finite type, we know that it embeds into Jx [z] if and only if all of its finite subtrees
embed into Jx[z]. Therefore, if U y-> J\[z], then we obtain a finite bound mz as

above. Since there are only finitely many successor trees in Jx, we let m' be a finite
number such that for all z G Jx at level 1, if m' copies of Si[yo] embed into Jx[z],
then infinitely many copies of S\ [yo] embed into Jx [z]. Finally, since there are / + 1

many successor trees in Jx, then we let m =
m'(I + 1). The point of m is that

we know that if m many copies of Sx[yo\ are embedded into Jx, then at least m'

many must have been embedded into some J\\zf\ and hence infinitely many copies
of Sx [yo] could have been embedded into that successor tree.

We next define a finite tree S[c Sx whose basic embeddings into Jx will encode

(in a way made precise below) the possible successor trees Jx [v] that a successor tree

S\ [u] could be sent to by a basic embedding of S into Ix. S[consists of the root

plus successor trees S[[x?] c S\[xi] for / < k and SjLyoL > S?Ly]- Each of the

S[[yi] trees are isomorphic with S^fjo] c SiLvo]- We pick these finite trees to have
the following embedding properties, where z ranges over all nodes at level 1 in Jx.

(1) S[[Xi] y^ I\[v] for any v G I\ \ Jx (and the same for ̂ [y/]).
(2) S[[Xi] ̂ J\[z] if and only if S\[xi] ̂ Jx[z] (and similarly for ̂ ([j/]).
(3) If S\[x?] c^ J\[z] only by sending xz to z, then the same property holds for

S[[xi] (and similarly for ?([;>/]).
(4) Consider all possible choices of nonrepeating sequences uq, ..., uq with each

ua equal either to some xz (with / < k) or some yj (with j < m). Let U

denote the tree formed by taking a root and successor trees Sx [uq], ..., Sx [uq]
and let U' denote the finite tree formed by taking a root and successor trees

S[[u0],..., S[[uq]. Then, U ̂ Jx[z] if and only if U' ^ Jx[z].

The fact that we can pick finite subtrees with properties (1), (2) and (4) is clear from
Lemma 2.9. To see that we can get property (3), suppose that all finite subtrees
of Sx[x?] containing xz can be embedded into J\[z] without sending xz to z. Then

for one of the finitely many isomorphism types of the successor trees in Jx[z],
arbitrarily large subtrees of Sx[x?] can be embedded into this type. But, then Sx[x?]
can be embedded into a successor tree of Jx[z] with this type, and hence there is an

embedding of 5i[xz] into Jx[z] which does not send xz to z.

Property (1) says that any embedding S[
c-^ Ix must actually send S[into Jx.

Properties (2) and (4) together say that any embedding S[
^-> Jx can be extended

to an embedding Sx ^ Jx and hence to an embedding S ^-> I\. Property (3) says
that if this extension requires that a node at level 1 in Sx map to a node at level 1 in

Jx, then this requirement was already present for the embedding of S[.
For any basic embeddings f,g:S[

^ Jx, we say /
~

g if and only if the

following two conditions hold.

V/ < fc Vy < / ((/(xz) G Jx[zj] <-> g(xz) G Jx[zj}) A (/(xz) - Zj ? g(Xi) =
zj))

V/ <mMj<l {(f(yi) G Jx[zj] <- g(yi) G Jx[zj]) A (f(yi) = Zj ? g(yt) =
z;)).

It is clear that ~ is an equivalence relation and that up to ~
equivalence, there are

only finitely many basic embeddings S[
^^ Jx. Let fo,...,fq be a list containing

one element from each equivalence class. For a basic embedding g : S c-> Ix, we

say that g ~
/z if the restriction of g to S[is equivalent to //.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 197

Our definition of m and the properties (l)-(4) above insure that for every basic

embedding g : S ̂ 7i, there is an /,- such that g ~
f{ and that for each /,-, there

is a basic embedding g : S ^-? 7i such that g ~
/,. It is in this sense that the

embeddings fo,...,fq encode information about the possible basic embeddings of

S into 7i when restricted to Si.
We use the // embeddings to prove the sublemma in the case when y is a node in

Ji. First, by the properties of the previous paragraph, a node z7 at level 1 in J\ is in

the range of all basic embeddings S <L-> 7i if and only if z7 is in the range of /z for

all / < q. Therefore, the finite tree S[is large enough to determine if the roots of

the finitely occurring successor trees in 7i are in the range of all basic embeddings.
Second, suppose that y G J\[zj], but y ^ Zj. For each / < g, we define a tree

Ui corresponding to //. Fix / and consider all u G {xo,..., xk, yo,..., ym} such

that // maps S[[u] into 7i[z7]. We split the definition of Ui into two cases. If //

maps less than m' copies of trees of the form S[[ya] into J\[zj], then let U? consist

of a root plus the successor trees S\[u] for which ft maps S[[u] into J\[zj]. If /z

maps at least m' many S[[ya] trees into J\[zj], then let Ui consist of a root plus
the successor trees S\[xb] for which // maps S|[x?] into J\[zj] plus infinitely many
successor trees isomorphic to Si [yo]. In either case, we know that Ui embeds into

J\[zj]
=

I\[zj]. Since the height of 7i[z7] is strictly less that the height of 7i, we

can apply the induction hypothesis on height from the beginning of the sublemma.

There is a finite subtree U[such that every basic embedding of U[into 7i[z7] has y
in its range. We expand each finite tree S[[u] to include the finite tree U{ C\ S\[u].

Once we have expanded S[by performing this action for each / < q, we have that

each basic embedding S[
*-> 7i must include y in its range.

We now consider the case when y is an element of one of the infinitely occurring
successor trees in Ix. We begin by establishing facts about about when an infinitely

occurring successor tree 7i[x] is not in the range of every basic embedding S c-^ Ix.

(Think of x as the node at level 1 in 7i such that y G 7i[x].) First, if there is a

basic embedding which sends two successor trees of S into 7i [x], then x is obviously
not in the range of this embedding. Second, if there is some basic embedding /
such that x is not in the range of /, then there is a basic embedding g such that

range(g) n 7i[x]
= 0. To see this second fact, let x = xo < x\ < be the nodes

at level 1 in Ix with x? > x and 7\[x] = 7i[xz]. Since / is basic and x ^ range(/),
we know that for all /, xz- ^ range(/). Fix isomorphisms hi : I\[x?] ?> 7i[xz+i]
which are also basic embeddings. (Such maps exist by Sublemma 3.27.) Define

g{u) as follows. If f{u) ? I\[xi] for any /, then g{u)
=

f{u). If f(u) G7i[xz],then
let g{u)

=
hi{f{u)). Thus, g shifts the image of f on I\[x?] to 7i[xz+i]. Because

Xi ? range(/), g is a basic embedding.
From the previous paragraph, we see that if x is the node at level 1 in 7i such

that y G I\[x], then x must be in the range of all basic embeddings and each basic

embedding maps a single successor tree S[u] into 7i[x]. We next show there is a

bound on how big u can be. For a contradiction, assume that there is no such

bound. Let 7i,..., Jm be the isomorphism types of successor trees in S that can be

embedded into Ix[x] by a basic embedding. Assume that Jx,... ,Ji are types which

occur finitely often as successor trees in S and 7/+i,..., Jm are types which occur

infinitely often. Because there is no bound on the u such that S[u] is embedded

into Ix[x] by a basic embedding, there must be basic embeddings which map all

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

198 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

occurrences of the types Jx,....// in S as well as arbitrarily many copies of each of

the types J[+x_.Jm into the successor trees Ix [v] with v < x. However, as we saw

above, if arbitrarily many finite copies of some // can be embedded into some Ix [v],
then infinitely many copies can be embedded into Ix[v]. Therefore, there must be

a basic embedding which sends all copies of the types Jx,... ,Jm from S into the

successor trees Ix[v] for v < x. This means that there is a basic embedding which

does not map into Ti[x] at all, contradicting our assumption that y is in the range
of all basic embeddings.

We conclude that if Ti[x]flrange(/) ^ 0 for all basic / (and hence x G range(/)).
then there is a bound on the elements u at level 1 such that S[u] is mapped into

I\[x] by a basic embedding. We can therefore limit the "level 1 width" of S which

we need to consider when looking at how much of S is required to force the basic

embeddings to intersect Ix[x], This bound means that by an argument similar to

the one when y was assumed to be from a finitely occurring successor tree in Ix,
we isolate a finite tree U c S such that every basic embedding U ^ Ix must hit

x. From here, we again consider the finitely many successor trees in S which could

map into I\[x] by a basic embedding and apply the inductive hypothesis on the

height to handle the nodes y G Ix [x] with y ^ x. H

We now begin our description of the construction for Case 1 of Lemma 3.19.

The witness node in T[xz] at stage s will be a node z at level 1 in Ts[xz] such that

Ts[z] c-^ Ix but for which we believe T[z] ^ Ix. The first condition is easy to check,

using our canonical copy of Ix. To satisfy the second condition, we want there to

be a basic embedding of T[z] into Ix which is not surjective. Since Ix is of strongly
finite type. Sublemma 3.27 will then ensure that T[z] ^ Ix, and we will use this fact

to diagonalize.
At stage s, we define the witness node in Tv[xz] by finding the least pair (z,y)

such that z is at level 1 in Tv[x7] and there is a basic embedding of Ts[z] into Ix
whose image does not contain y. We set vis =

(z, y), since it appears at this stage
that T[z] is the successor tree we want in T[xz], and define this z to be the witness

node in T[x?] at stage s.

Sublemma 3.30. liniv Vj\s converges if and only if there exists z at level 1 in T[xz]
such that T[z] embeds into Ix but is not isomorphic to Ix.

Proof. Assume lirnv vu = v? =
(z. y). Then T[z] must embed into I\, by Lemma

2.9. On the other hand, there must be a basic embedding of T[z] into Ix which omits

j/ from its image, by Sublemmas 3.23 and 3.29, and then Sublemma 3.27 ensures

thatT[z]^Ti.

Conversely, suppose that for some z with levelr[X/](z)
= 1 we have T[z] ^ Ix but

T[z] ^ I\. By Sublemma 3.23, there is a basic embedding of T[z] into Ix, which

cannot be surjective because T[z] ^ Ix. Thus there must be a least pair (z, y) such

that some basic embedding of T[z] into I\ omits y. By Sublemma 3.28, we will have

vls < (z^y) for all sufficiently large 5. Consider any pair {z',y') < (z,y). By our

choice of (z, v). no basic embedding of T[z'] into Ix omits y', so Sublemma 3.29

ensures that viA / (zf, y') for sufficiently large t. Thus limiV vu =
(z. y). H

However, it is possible that T[xz] does not contain any finite-appearing successor

tree which embeds into Ix, so we must search among different successor trees. At

first, we choose wq.q to be the witness node in T[xo]. If vq.Si ^ vo.o at some

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 199

subsequent stage sx, then we choose wo.S] to be the witness node in 7[xi] at stage
5"i. If at a subsequent stage s2 we have vx.S2 ^ vx.S], then we change wo.S2 back to the

witness node in T[xq] at stage s2, then T[x\] again, then 7[x2], then back to T[xo],
and so on, just as in the construction for trees of height 4. By the assumption of

Case 1 (which began on page 191), liniy v^s converges for infinitely many /, so wo,s
must eventually converge to some wo. At the same time, we do the same for the

witness node wx.s for 92x. looking only at witness nodes in successor trees 7[x7] in

which wo.s has never yet been located, and so on by a standard finite-injury process.
The following sublemma is now clear:

Sublemma 3.31. For every e, we
?

lim5 we_s exists and T[we]
^-> 7i andT[we] ^ 1\.

We build T' by copying T at each stage, with the following provision. Find each
e < s such that we.s is defined and <pe.s{we.s)i (saY y =

Ve?We.s)) and f~'x{y)
lies at level 2 in Ts. If there is no such e, simply extend fs to fs+\ by adding new

elements to T^+l. If there is such an e, then for each such e, we check whether there

exists a basic embedding of Ts[f~l(y)] into 7i (recall that this is a computable
condition using our nice copy of 7i). If no such embedding exists, then we are

assured that T[f~x{y)] y^ 7j, so if we.s = we, then 92e will be satisfied. If such
an embedding does exist, then we add elements to T's+l [y] to make it a copy of Ix,
and add more new elements to T's+X to be the new image of Ts[f~x{y)] under fs+\.

Hence Tf[(pe{we,s)]
= 7i, so if we^s = we. we have satisfied 92e. Notice that f s+\

is no longer onto Tj+l since we have added a copy of 7i. However, we know that

Ix occurs infinitely often as a successor tree above x, in T, so T and T' are still

isomorphic. Mi is injured if we.s+\ i=- We.s f?r some e < i.

As with the case for trees of height 4, there are two minor modifications necessary
for this strategy. First, we give 2e + 1 many witnesses to each 92e strategy and

force this requirement to respect JVU and Jtu foxu < e. That is, 92 e is forbidden

to use We.s if u < f~x{(pe_s{we.s)) for some u < e or if ipe_s{we_s) < e. The reason

for explicitly adding the Mu requirements will become clear below when we discuss

the general case where our set of nodes X from the statement of Lemma 3.19 is A?

rather than computable. Second, it is possible that (pe(we.s)
?

y lies in a copy of 7i
in Tx. In this case, ifwe

?
we_s, then 92e is satisfied without any further action.

We end this case with some comments on how to combine the A!> approximation
for the Xi elements with the strategy just described. Suppose we have an element x

which we think is an x? element and we diagonalize at stage s using a successor of
x. This means that we want to create a copy of I\ as a successor tree of T'[f s (x)].
The worry is that if we put 7i down all at once, it may turn out that x is not one

of the Xi elements, and even worse, that x has no successor tree of type I\. Such
an outcome could destroy our isomorphism. Therefore, we fix an approximation
Ix.s to 7i by finite subtrees. Instead of putting down all of 7i at once as a successor

tree of T'[f s{x)]. we build up Ix by putting down I\A at stage t > s. Furthermore,
before putting down 7i.r, we check for either

(1) evidence that x is not an x/ element; or

(2) a successor y of x such that y is bigger than any number seen so far in the

construction and Ix,t embeds into T[y].

This search procedure must terminate since if x is an x, element, then x has infinitely
many successor trees of type 7j. The reason for including clause (2) in the search is

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

200 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

that if we find evidence that x is not an xz element at stage t + I, then we can use

the successor tree T[y] found at stage t to map to the copy of I\A currently sitting
as a successor tree of T/[/r(x)]. Since we can correct any mistakes caused by the

A?2 approximation, it is straightforward to add it in as a formal part of the above

construction. Finally, notice that when we take into account this A?j approximation

procedure, we can have elements y G T' which leave the range of / and later

return to the range of /. This is the reason why we need to explicitly add the Jtu

requirements into this construction.

Case 2. If Case 1 (which began on page 191) does not apply, then there are only

finitely many T[xz] in which some finite-appearing successor tree embeds into any of

Ix,... ,Ip. We assume finitely much information, namely the roots of those finitely
many successor trees, and ignore them in our construction, defining the elements xz

to be those nodes at level 1 in T which are not roots of these finitely many successor

trees.

Consider any embedding T[xz] ^
T[x7] among these nodes at level 1 in T.

Since no successor tree which occurs finitely often in T[xz] can embed into any of

Ix,... ,IP,WQ know that they must embed into the successor trees which occur finitely
often in T[x7]. Of course, the same relation holds for embeddings T[x7]

^-> T[xz].
Therefore, if we let T7 (respectively Tj) be the tree formed by taking a root and

adjoining all of the finitely occurring successor trees in T[xz] (in T[x?] respectively),
then we have Tz

=
T7.

Sublemma 3.32. Fix f: Tz ̂
Tjandg: Tj

^ Tz. Then for any u G Ti at level \,
there is av G Tj at level 1 such that Ti[u] =

T?[v], and vice versa.

Proof. Fix any ux G Tz at level 1 and let vx G T7 be such that vx is at level 1 and /
maps Ti[u\] ^

Tj[v{\. If g maps T?[v\\
?-> Ti[u\], then we are done, so assume this

does not happen. Let U2 / u\ be at level 1 in Tz such that g maps T?[v\]
^-> Ti[ui].

Fix V2 G Tj at level 1 such that / maps Tz[w2] ̂
Tj[v2\. We claim that v2^ vx.

For a contradiction, suppose that V2 = vx. Then / maps Ti[u2] ^
Tj[v2]

=
Tj[vx]

and g maps Tj[vx]
^ Ti[wi\. Therefore, Tz[t/2] =

Tyfyi] which means /(t/2)
=

V2 = v\. But, / also maps Ti[ux] c->
Tj[vx], so vx -< f(ux). Together, these

statements imply that /(1/2) -< f(u\), which contradicts the fact that ux and U2 are

incomparable nodes at level 1 in Tz.
We now check whether g maps T7 [^2] ̂ Ti[u\]. If so, then we have

Tj[u\] -->
Tj[vx]

^ Ti[u2] ^
Tj[v2]

^ Ti[ux].

In this case, Ti[u\] = Tz[w2] =
Tj[vx]

=
Tj[v2] with f(ux)

= vx, /(1/2)
= V2,

g(vx)
= U2 and g(v2)

= ux, which means we are done. Otherwise, fix us G Tz at

level 1 such that U3 ̂ ux and g maps Tj[v2]
c-^ Ti[u^].

We claim that W3 ̂ U2. For a contradiction, suppose that U3 = U2. Then g maps

Tj[v2]
^ Ti[ui]

=
Ti[u{\ and / maps Ti[u{\ <-?

Tj[v2?. Therefore, Tj[v2]
= T/fe]

and so g(v2)
= W2- But, g also maps Tj[vx]

<-^ Tz[w2] which means ?2 -< g(v\).
Therefore. g(v2) < g(vx). This contradicts the fact that vx and V2 are incomparable
nodes at level 1 in T7.

We next let ^3 be a node at level 1 in Tj such that / maps Tz[t/3] <^-?
Tj[v^\.

We claim that V3 is not equal to either vx or V2. For a contradiction, suppose
v3 = v\. Then / maps Tz[w3] ̂

Tj[vi]
=

T?[v\] and the composition gfg maps

Tj[v\]
^-> Tz[w3]. Therefore, Tz[w3] =

Tj[vx] and /(1/3)
= ^3 = vx. But, we

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 201

also know that / maps Ti[u\] <->
Tj[v\] which implies v\ -< f{u\). Together,

these statements say that f{u^) -< f[u\) which contradicts the fact that u\ and

1/3 are incomparable nodes at level 1 in T?. The argument that V3 / v2 is simi
lar.

We continue by induction. Suppose ux,...,un are pairwise distinct nodes at

level 1 in Ti and v\,..., vn are pairwise distinct nodes at level 1 in 77 such that /
maps Ti[uk] ^

Tj[vk] (for k < n) and g maps Tj[vk]
c-> Ti[uk+x] (for k < n). We

check if g maps T?[vn]
^ T[ux]. If so, then

T[ux]
= =

Ti[u?]
=

Tj[vx]
= =

Tj[vn]

and f{uk)
= vk (for k < n), g{vk)

= uk+l (for k < n) andg{vn)
= u\. In this case,

we are done.

Otherwise, we fix un+\ 7^ u\ at level 1 in Tz such that g maps T?[vn]
c-^ T?[un+x]

We argue as above that un+\ / uk for all k < n. We let vn+\ be a node at level 1 in

Tj such that / maps Ti[un+\] ^->
Tj[vn+\]. We argue as above that v?+\ 7^ vk for

all k < n. We are now in position to continue the induction.
Since there are only finitely many nodes at level 1 in T? and Tj, this process must

come to an end. Therefore, we get our result in the end. Notice that this proof
shows that the number of nodes at level 1 in T is less that or equal to the number
of nodes at level 1 in Tj. If we switch the roles of T, and Tj, we get that for any
u G Tj at level 1, there is a v G T at level 1 such that T?[u]

=
T?[v]. Therefore T?

and Tj have the same number of nodes at level 1. H

This sublemma tells us that each T[x,] has the same number of finitely occurring
successor trees. Let yx,..., yq be the roots of the finitely occurring successor trees

in r[xo]. We define an equivalence relation by y i ~
y? if T[yt]

=
r[y7-]. The

embedding relation ^ between these classes is well defined. Furthermore, we know

by Sublemma 3.32 that the classes defined in a similar way for the finitely occurring
successor trees of any other T[x?] are exactly the same and each equivalence class
has exactly the same size.

For each yn, fix a finite tree Sn C T[yn] such that Sn does not embed into any of
the infinite types Ix,..., Ip. Furthermore, for each m < q such that T[yn] y^ T[ym],

we extend Sn to a finite tree such that Sn ^-> T[ym]. Of course, these finite trees Sn
have the same properties relative to the finitely occurring successor trees above any
other T[x,]. Therefore, we can use these trees to identify the finitely many finitely
occurring successor trees above each node xz. That is, for each x, we look for the

appropriate number of successors y such that T[y] contains one of these finite trees.

Furthermore, given a A2 procedure to identify the nodes x7, there is a A^ procedure
to identify the successors y of xz for which T[y] is a finitely occurring successor tree
and to determine which equivalence class T[y] belongs to.

There are infinitely many different isomorphism types among the trees { 7[x/] :
/ G co}. Since they all have the same infinite-occurring isomorphism types, we may

fix an equivalence class g7 such that {T[y] : y e T A y e & } contains infinitely
many different isomorphism types. (Here we are interpreting & as a class including

successor nodes from each of the trees T[xi]. By the comments above, we have a

A2 procedure to identify y G W.) Moreover, every T[y] with y G W is of height at
most n ?

2, since levels(y)
= 2. Our construction of T' therefore uses induction

on height, for which we regard the height 4 case given above as the base case. We

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

202 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

identify elements of % above the various xz and do the same construction on them

that we did for a tree T with ht(7) <n ? \.

To be more specific, suppose that % =
{z{ : / G co}. We begin the proof of

Lemma 3.19 again, using the zz elements in place of the xz elements. The only

change in the hypothesis of the lemma is that each zz is at level 2 rather than at

level 1. However, this change does not affect the argument at all. That is. the

fact that 7[zz] =
T[zj] implies that each 7[zz] has the same infinitely occurring

successor trees. We denote the isomorphism types of these trees by Jx,... ,Jb. If

there are infinitely many / for which 7[zz] has a finitely occurring successor tree

which embeds in one of 7i.... ,Jb, then we may assume without loss of generality
that there are infinitely many / which work with Jx. We run exactly the same

argument as in Case 1, looking for appropriate successors of the z7 with which to

diagonalize. Otherwise, if there are not infinitely many such /, we are back in Case 2

and we repeat this process over again with nodes at level 3. Since 7 has finite

height, this process must stop. This completes the case of a height n tree, and also

completes the proof of Lemma 3.19. H

Proof of Proposition 3.1. Let 7 be as in the statement of Proposition 3.1. Let
r be the root of 7, and let xo, x\,... be the immediate successors of r in T. Then

every node above r in T is of finite type. Since r is not of finite type, there must

be infinitely many of these successor trees. We consider the three ways in which r

could fail to be of finite type as in Definition 1.7.

First, suppose there is an isomorphism type 7 which occurs infinitely often as

a successor tree of r and which does not have strongly finite type. We split into

two cases. If there are only finitely many isomorphism types of successor trees of r

which embed into 7, then Lemma 3.10 shows that 7 is not computably categorical.
If there are infinitely many isomorphism types of successor trees of r which embed

into I, then Lemma 3.16 implies that 7 is not computably categorical. Therefore,
we can assume that any isomorphism type which occurs infinitely as a successor tree

of r has strongly finite type.
Second, suppose there exist distinct isomorphism types 7o and 7i such that each

occurs infinitely often as a successor tree to r and 7o
^

7i. Since we can assume To

and Ix have strongly finite type and they are not isomorphic, we must have Ix ̂ Io

by Lemma2.10. We can now apply Lemma 3.15. Let the indices / be those for which

T[x?] = Io and let the indices j be those for which 7[x7]
= 7i. There are infinitely

many such indices / and j, 7[xz] ^-> 7o, Io ̂
T[xj] and T[xj] </-> Io. Therefore,

Lemma 3.15 proves that 7 is not computably categorical. We can now assume that

there is no embedding between isomorphism types which occur infinitely often as

successor trees of r. By Lemma 3.5, we know that there can only be finitely many

isomorphism types which occur infinitely often as successor trees of r.

Finally, let & be the set of isomorphism types which occur among the successor

trees of r. It could be that ^ is infinite. We split into two cases. If there is
an infinitely occurring isomorphism type I for which I' ^ I for infinitely many
I' G ,9r, then we can apply Lemma 3.16. Otherwise, the finitely many isomorphism
types which occur infinitely often each have only finitely many isomorphism types
from 3~ which embed into them. This situation is exactly the hypothesis for Lemma

3.18. Thus we have proved Proposition 3.1. H

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 203

In the cases above in which we constructed a A2 isomorphism / between T and

T', the computable dimension of T must be co by Goncharov [11]. However, we

can see this more directly (and prove it in the remaining cases) simply be rewriting
the positive requirements:

?%(e.i)
'

Pe one-one and total =>
[(3we G Tz) T?[we] ^ T'[(pe{we)]].

Here {Tz} is assumed to be a finite sequence of computable trees isomorphic to T,
and the T' which we construct to satisfy these requirements will be of a different

computable isomorphism class from each of them. In the original construction,
T actually served a dual purpose, as both the template for T' and the computable

isomorphism type to be avoided. Here we always use To as the template, but

diagonalize simultaneously against all the Tz.

?4. Induction. In this section, we prove the second half of Theorem 1.8, that trees

which are not of finite type cannot be computably categorical, and indeed must have

computable dimension co. Section 2 established the converse of this statement, and

Section 3 enables us to use induction to prove the following proposition.

Proposition 4.1. Let T be a tree of finite height but not of finite type. Then T is

not computably categorical.

Proof. The proof uses induction on the height n of T. The base case n ? 2 is

trivial, since every tree of height < 2 is of finite type. Let r be the root of T, with

immediate successors xq,xx,_If every node xz is of finite type, then Proposition
3.1 shows that T has infinite computable dimension. So we may suppose that
some isomorphism type To appearing above r is not of finite type. (Without loss of

generality wre assume that T[xq] = Iq.) By the inductive hypothesis, To must not

be computably categorical, so there is a computable tree U which is isomorphic to

T[xq] but not computably isomorphic to it, and we may take the domain of U to be

the computable set T[x0]. Let V be identical to T, only with U in place of T[xq].
Then V is computable and isomorphic to T.

Now we assume for a contradiction that T is computably categorical. Then there

must exist a computable isomorphism (p from V to T, which must map U to some

other successor tree T[x7] computably isomorphic to U. (Hence j ^ 0.) Moreover,

tp would then have to map T[xy] (which is also a successor tree in V) to yet another

successor tree T[xk] computably isomorphic to U, and so on. Therefore, the

isomorphism type To must appear infinitely often above r in T.

Moreover, since To appears infinitely often above r, we can build another com

putable tree isomorphic to T, simply by adding any computable copy of To as a new

successor tree above r. Since this copy can be of any computable isomorphism type
for To, the same argument as above shows that every computable isomorphism type
of To must appear infinitely often as a successor tree above r. Indeed, under the

assumption that T is computably categorical, we see that for each such computable

isomorphism type this process would yield an infinite ce. set of roots of successor

trees of that computable isomorphism type.
Since To is not computably categorical, we have at least two of these ce. sets, say Cx

and C2. The idea is to use elements of Cx =
{wq. wx ,... } as witness elements when

we build T'. We wait until pe,s (we) converges, and then redefine the A^-isomorphism
/: T ?> T' so that from stage s on. T'[<pe(we)] is built computably isomorphic

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

204 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

to T[ye], where C2 =
{yo,y\,...}. (Namely, define fs+\(f~l(ipe{we)))

=
ye.)

The difficulty is that at the stage s at which (fe{we) converges, we do not know
if T's[ipe{we)] embeds into 7o or not, since f~l{<pe{we)) may or may not lie in a
successor tree in T isomorphic to 7o. To handle this difficulty, we appeal to a

corollary of Kruskal's Theorem.

Corollary 4.2. Let { Sz : / G co} be an infinite set of finite trees. Then there
exists m G co such that for every j there is an i < m such that Sz ^->

Sj.
Proof. If the set { Sj : (V/ < j) [Sz y^ Sj]} were infinite, it would contradict

Kruskal's Theorem. Hence we may take m to be the greatest index in this set. The

corollary follows by an easy induction on the indices > m. H

Let J be the set of all finite trees S which do not embed into 70. Then Corollary
4.2 yields a finite subset S ? J such that for every S G J there is some Sf G S such
that S' ^-> S. Moreover, no S' G S embeds into 70.

The witness elements for our construction will be the nodes we described above.
Since the set C\ is infinite and computably enumerable, we need not use A2 guessing,
either for them or for the corresponding nodes ye G C2. (Technically, we will use

A^-guessing, but with a simple method of renaming the elements of C\ and C2.)
A requirement 9%e requires attention at stage s if s is the least stage such that

<Pe,s{we) converges to some w'e G T's. At each stage s, we simply extend fs to f s+\

mapping Ts+x to
7'+1 by adding fresh elements to T's+l as needed, except on those

successor trees Ts[we] such that 92e requires attention. For those e, we search for
the least t > s such that one of the following holds:

(1) levelr/(/71(^))^l;or
(2) some S' G S embeds into Tt[fJx{w'e)]; or

(3) T's[we] embeds into Tt[ye].

If either (1) or (2) holds, then again we simply extend fs to f s+\ on Ts+\[we] by
adding fresh elements to T's+l, without redefining fs+x on any nodes. However, if

(3) holds, then we may need to redefine /.
The idea of the redefinition off is as follows. Let a =

f~x{w'e). Currently, using
fs, T'[w'e] is being built by copying T[a] and T'[fs{ye)] is being built by copying
T[ye]. We use the embedding in (3) to define fs+x so that T'[w'e] begins copying
T[ye] and T'[f's{ye)] begins copying T[a]. This successfully diagonalizes because

T[we] and T[ye] are not computably isomorphic. Before performing this switch,
we need to check that no higher priority requirements will be injured. We ask first
whether w'e lies in the set

Pe.s =
{fs{yo),.. fs(ye-i)} U { w? : i < e & (fu{Wi)l

=
w? }.

If it does, then we cannot redefine / without possibly injuring some 92 i of higher pri
ority, so instead we eliminate we from our enumeration of Q and pick ws+x to be the

witness node for 9%e. (At future stages, we will refer to this node as we.) However, if
this elimination has already happened 2e times for different values of we at previous
stages, and the elements ofPes have not changed since those stages, then we need not

perform the elimination again (nor redefine / at all), since in this case <pe must map
all 2e + 1 of those different values of we into Pes and hence cannot be one-to-one.

If w'e ? Pes, then we may proceed without injuring any higher-priority require
ment. {Ifwfe

=
fu{yj) for some j > e at some later stage u, we will simply ignore

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

computable categoricity of trees of FINITE HEIGHT 205

that yj and renumber C2 with the element j7+i as yj instead, thereby possibly

injuring a lower-priority requirement once.) Let g be the embedding of T'[w'e] into

^LVe]- (We may assume g(w'e)
?

ye.) Define f s+x(x)
?

g~x(x) for all x in the

image of g, and add fresh elements to T's+X to be the range of all of T[ye] under

fs+x. For all sufficiently large elements x G T[ye], we may take fs+x (x)
= x. Thus

fs+\ now maps T[ye] to T'[wfe].
We also must redefine fs+x on the set A =

fil(T^[w'e]). Now since fs is an

isomorphism from Ts to T's, A =
T's[w'e] must embed into To via a lifting of the

same g, so we may find an embedding h of A into T[je]. We add enough ele

ments of T[ye] to T,+i so that A ^ Tv+i^], then combine this embedding with

fs Ts[ye] "-*
T's[fs(ye)]i adding fresh elements to Ts+X as needed, to define fs+\

on A. Thus/5+i maps T[f~x(w'e)]to T'[fs(ye)]- This completes the construction.

With the redefinition, we see that now T[ye] is not only isomorphic to T'[w'e], but

actually computably isomorphic to it via /, since / is the identity map on cofinitely
much of T[ye]. If pe were an isomorphism from T to T', then f~x o <pe would

be a computable isomorphism from T[we] onto T[ye], which is impossible, by our

choice of we and ye. Hence 9e is satisfied.

Moreover, if either (1) or (2) holds for w'e, then 9le must again be satisfied. This

is clear for (1), since levelr(^)
= 1. If (2) holds, then some S e S embeds into

T'[w'e], but not into T[we] (by our choice ofS). Hence clearly 9?e is satisfied.

We must show that when we search for a stage t in the construction, we do

eventually find one. Suppose levelT'(w'e)
? 1, and suppose that no S G S embeds

into T[f~x(w'e)]. By our choice of S, this guarantees that every finite subtree of

T[f~x(w'e)] embeds into To. But T's[wfe] is isomorphic to Ts[f~x(w'e)], hence must

embed into To. Since T[ye] = To, we will eventually find a stage t and an embedding

satisfying (3).
The redefinition process does no injury to any other 9e. The only possibility for

injury among the requirements occurs when elements of Cx or C2 must be ignored
or renamed, as described above, and when this happens each requirement respects
the higher-priority requirements, so ultimately each 9e is satisfied.

Moreover, redefinition of/ can only occur finitely often on any T[x], and redef

inition of/-1 can only occur finitely often on any T'[xf], since each requirement
is injured only finitely often. (Our care in making fs{we) ? Pe.s ensured this for

f~l.) Hence / is a bijection between T and T'. Since our redefinitions always

respected the partial order we were building on Tf, T' is computable and / is an

isomorphism. But since each 9e holds, there is no computable isomorphism from

T to T', contradicting our assumption that T was computably categorical. H

Corollary 4.3. Every computable tree T of finite height but not of finite type must

have infinite computable dimension.

Proof. Because we proved Proposition 4.1 by contradiction, we do not know if

there are two computable copies of T which are Ix\-isomorphic but not computably

isomorphic. Therefore, we cannot apply Goncharov's result that a pair of com

putable structures which are A?J-isomorphic but not computably isomorphic must

have computable dimension co. Instead, the proof proceeds by induction on the

height of T. Assume T is a tree of finite height which does not have finite type. If

every successor tree in T has finite type, then we are done by the results in Section 3.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

206 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

Otherwise, we fix y G T at level 1 such that T[y] does not have finite type. By the

induction hypothesis, T[y] must have infinite computable dimension.

For a contradiction, assume that 7 has finite computable dimension m. Fix

representatives T?,..., Tm~x of the computable isomorphism classes of T and fix

nodes y1 G Tl at level 1 such that T[y] = Tl[y1]. To run a diagonalization argument
as above, we need to find appropriate ce. sets Cl in Tl and C in 7. We define these

sets and specify their exact properties below.

First, we define Cl for a fixed / < m. Let x\ denote the nodes at level 1 in Tl and
assume that y1

=
x?. Let Uo,..., Um-\ be computable copies of 7'[x?] defined on

the same numbers as Tl [x?] which are pairwise not computably isomorphic and are

not computably isomorphic to T1[xq]. Let
Tj (for j < m) be the computable tree

formed by taking T1 and replacing Tz[x?] by Uj. Since the computable dimension

of Tl ism, one of the
Tj

trees must be computably isomorphic to Tl. Without loss

of generality, assume it is T? and fix an isomorphism f : T?
?> T1. f must send

Uo to some successor tree
Tl[xjo]

with xl-o ^ x?. Thus, Tl[xjo]
is a successor tree

in 7q and / must send this tree to some
Tl[xjx]. Repeating this process, we get a

ce. set of nodes
xljk

for successor trees in Tl which are computably isomorphic to

Uo. We denote these nodes by wle and we let Cl be the ce. set of these nodes.

Second, we define C. Let xe, for e G co, denote the nodes at level 1 in 7 and
assume that y

? xq. Let Vq, ..., Vm-\ be computable copies of T[xo] which are not

computably isomorphic to any of the trees Uo,..., Um-\ used in the definition of

Cl for any /. (It does not matter if we reuse computable isomorphism types when

defining Cl and CJ for / / j, but we need to have different computable isomorphism

types when we define C. There are enough computable isomorphism types to

accomplish these requirements because 7[xo] has infinite computable dimension.)
Let Tj (for j < m) be the computable tree formed by taking 7 and replacing T[xo]

by Vj. By the same argument as in the last paragraph, we obtain a ce. set C of

nodes ue at level 1 in T such that T[ue] is computably isomorphic to (without loss

of generality) Vo. We can sum up the important properties of these ce. sets by:

7Z'[^]
= T[y] fore eco and i < m:

T[ue] 9? T[y] fore G co;

T[uk] = Tl [w[] for e,k G co and / < m. but not by a computable isomorphism.

We build T' = 7 which is not computably isomorphic to any Tl by an argument
very similar to the one given above. We build T' in stages together with a A?2
isomorphism f \ T ?* T'. We index the witnesses in C as u^ with e G co and

/ < m and we use the nodes wle to diagonalize against (pe being an isomorphism from

Tl to T'. The strategy to defeat ipe and Tl is to wait for ipe{wle) to converge to some

v[G T' at stage s. Let a =
f~x{v[e). We have that f5 maps Ts[a] to T's[vle] and

maps Ts[u(ej)] to
T^[fs{u^ej))].

As above, we either find evidence that we have an

easy win or else we find an embedding of Tj[v!e] into T[u^e.i)]- In the latter case, we

use this embedding to define fs+\ so that it swaps the action of fs on the successor

trees, by making T'[vle] start to copy T[u^ei\] and making T'[fs{u^j\)]
start to

copy T[a]. As above, this successfully diagonalizes since we know that Tl[wle] is
not computably isomorphic to T[u^ei)]. The formal details of this argument are

essentially as above. H

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 207

We note that for trees T in which nodes at levels > 1 are not of finite type, these

proofs only establish the existence of infinitely many computable isomorphism
classes of copies of T. without giving us any actual idea how to construct copies in

such classes. To construct copies in new classes would require a direct proof in the

style of the Lemmas of Section 3, instead of the less-edifying proofs by contradiction
in Proposition 4.1 and Corollary 4.3.

?5. A^-categoricity. The goal of this section is to prove the following theorem.

Theorem 5.1. For each n > 1, there is a computable finite height tree T such that
T is

??n+l-categoricalbut
not

^-categorical.

We actually prove a slightly stronger statement by considering a more restrictive

definition of trees. In this section, we define a tree to be a set T ? co<CD which is closed

under initial segments. Such trees are obviously trees in the earlier sense, but they
have the additional feature that the successor relation is computable. Therefore,
we really establish Theorem 5.1 for computable finite height trees which have a

computable successor relation.

Proof. The strategy for this proof is to show by induction on n > 1 that for

any infinite and coinfinite E^ (if n is odd) or n?? (if n is even) relation P(x), there
are computable trees TP and Sp such that TP and Sp are

A?n+l -isomorphic but

any isomorphism between them computes P(x). For the purposes of presenting a

general outline, suppose n is odd, so Tp needs to code a ?? relation P(x).
TP will be co-branching at the root, with the property that for any node z at level 1,

Tp[x] has one of two distinct isomorphism types. Trees of one type are called coded

lPn trees and trees of the other type are called uncoded S?| trees. There will be a

computable sequence of nodes zx G TP such that each zx is at level 1 and

P(x) <=> TP[zx] is a coded Z^ tree.

We will be able to say exactly what the isomorphism type of TP is. It co-branches
at the root and has infinitely many nodes z at level 1 for which Tp[z] is a coded

I?? tree and infinitely many nodes at level 1 for which Tp[z] is an uncoded X?? tree.

This description of the isomorphism type of TP will allow us to build a computable
tree Sp which is isomorphic to TP, but for which we know exactly which nodes at

level 1 correspond to coded Z?j trees and which do not. Therefore, we will be able
to compute P(x) from any isomorphism between Sp and Tp.

To fill in the details of this outline, we first show how to code a lP{ relation. Next,
we show how to pass from the coding of a 1^ relation to a coding for a

YI^ relation,
and how to pass from the coding of a n^ relation to the coding of a ?3 relation.

Finally, we outline the general procedure for coding a
I^+1 relation from the coding

of a YI?n relation, and the procedure for coding a
H?n+X relation from the coding of a

1% relation.

First, we show how to code an infinite and coinfinite I? relation P(x). Assume

that

Vx (P(x) 4=^ 3d R(x,d))
where R is computable. Let TP ? co< be the computable set given by the closure
of the following conditions under initial segments.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

208 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

(1) For all n, m, (n, m) G Tp.

(2) For all n, m, (n,m,0) G Tp if and only if m is the least number such that

R(n,m) holds.

Tp has height 4 and is co-branching at the root. If P(n) holds, then TP[(n)] is a tree

of height 3 which co-branches at the root and has a unique node at level 2 (in the

restricted tree). We refer to any tree with this isomorphism type as a coded E^ tree.

If P(n) does not hold, then Tp[(n)] is co-branching at the root and has no nodes
at level 2. We refer to any tree with this isomorphism type as an uncoded E^ tree.

Notice that the coded and uncoded E^ trees are not isomorphic.
To give a slightly more general perspective, we need to distinguish coding a E^

relation and coding a E^ sentence. To code the E^ relation P, we build a tree Tp
which is co-branching and for each (n) G Tp, we let TP[(n)] code the E^ sentence

P(n). That is, we effectively generate a tree Tp[(n)] which is a coded E^ tree if the

lP{ sentence P(n) is true and is an uncoded E^ tree if the E^ sentence P(n) is false.

The isomorphism type of TP is uniquely determined by the following facts: the
root of Tp is co-branching, and for every z G T at level 1, Tp[z] is either a coded lPx
tree or an uncoded Tf? tree, with infinitely many of each type. Furthermore, TP has

the property that

p[n) <=> TP[(tt)] is a coded Entree.

To see that Tp is A!)-categorical, suppose that T is computable and isomorphic to

Tp. For any z G T at level 1, T[z] is a coded E^ tree if and only if 3gq, gx (z -< gq -<

o\). 0' can determine which nodes z G T are at level 1 and can tell whether T[z]
is a coded or uncoded E^ tree. If T[z] is a coded E^ tree, then 07 can determine the

unique node at level 2 in T[z]. Of course, 0' can also determine this information in

Tp, so we can easily build the A^ isomorphism.
To see that TP need not be A^-categorical, assume P(x) is noncomputable. Let

Sp ? co<co be the closure of the following conditions under initial segments.

(1) For all n, m, (n, m) G Sp.

(2) If n is even, then (n, 0,0) G SP.

Sp is a computable tree and by the description of the isomorphism type of Tp,

Sp = Tp. In addition,

Sp[(n)]isa coded E? tree <=> n is even.

For any isomorphism / : TP ?? SP, P(n) holds if and only if /((?))
=

(m) for
some even number m. Therefore, the fact that P is noncomputable implies that /
cannot be A^.

We turn to coding an infinite and coinfinite n^ relation P(x) such that

P(x) ^^ \Jc3d R(x,c,d),

where R is computable. Let Tp ? co< be the closure of the following conditions

under initial segments. (We give both an informal and a formal description of these

conditions. Later, we will trust the reader to fill in the formal descriptions.)

(1) Tp is co-branching at the root. Formally, let (1) G TP and (pn) G TP for all

primes p and all n > 1. To clarify the coding below, view (1) as (2?).

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 209

(2) For all n and m, Tp [(2n, m)] is the tree defined above for coding the E^ sentence
Vc < m3dR{n, c, d). Formally, for all /, (2\ m. /) G TP and (2'\ m. /. 0) G 7>
if and only if / is the least number such that Vc < m3d < iR{n. c.d).

(3) For all odd primes p and all n > 1, Tp[(pn)] consists of n ? 1 copies of the
coded 1^ tree and infinitely many copies of the uncoded 1^ tree. Formally, for
all m and /, (pn, m, /) G 7p, and (pn, m, i, 0) G 7/ if and only if i < n ? \.

If P{n) holds, then 7>[(2W)] is co-branching at the root, and every node at level 1

(in this restricted tree) is the base of a coded lP{ tree. We call any tree with this

isomorphism type a coded n^ tree.

For an odd prime p and n>\, the tree Tp[(pn)] is co-branching at the root and at
level 1 has exactly n - 1 many coded lf(trees and infinitely many uncoded ^ trees.

We call any tree with this isomorphism type an (n
?

1)-uncoded n^ tree. Notice
that if P{n) does not hold, then 7>[(2")] is an m-uncoded n^ tree for some m.

Just as in the 1^ case, we have given a procedure for effectively constructing a tree

Tp[(2n)] from the n^ sentence P{n). This tree is a coded n^ tree if the H^ sentence

P{n) holds and it is an m-uncoded n^ tree (for some m) if the n^ sentence P{n) is
false. The other trees of the form Tp[(pn)] are added so that the isomorphism type
of Tp will be independent of the choice of P, as long as 7" is infinite.

We can now describe the isomorphism type of Tp precisely. Tp is co-branching
at the root and consists of infinitely many coded n^ trees and infinitely many m

uncoded n? trees for each m. Furthermore, we have

P{n) <=^ 7/>[(2")]isacodedn2)tree.

To see that 7> is A^-categorical, fix a computable tree T which is isomorphic to

Tp. For any t G 7 at level 1, 7[r] is a coded n^ tree if and only if

\Jg ((t
-< o A -.35 (t -< ? -< a)) -> T[a] is a coded X? tree).

Since the property of being a coded 5^-tree can be expressed in a X^ manner, this

predicate is n^. Similarly, the predicate which says T[z] is an ^-uncoded H^ tree

(for a fixed value of n) is X^. Formally, 7[t] is an #-uncoded n^ tree if and only if

there are disjoint to, ..., t?_i such that z -< tz and 7[tz] is a coded 5^ tree and for
all disjoint to, ..., xn such that t -< t,-, at least one tz is not the root of a coded

E^
tree. Since expressing T[o] is a coded 1^ tree is a ll\ statement, this entire expression
is the conjunction of a Y?\ and a n^ statement, and hence is lP2.

Assume that 7 is a computable tree which is isomorphic to Tp. By the comments

above, 0" can determine which nodes at level 1 in Tp and T are the base of coded

nij trees and which are the base of n-uncoded n^ trees. Once we match these nodes

up, we can use 0r to build the isomorphism above level 1, since we are essentially
back in the case of X^ trees.

Because we can describe the isomorphism type of Tp precisely, we can build a

computable tree SP ? co< which is isomorphic to 7> and for which

A = { x : Sp[(x)] is a coded n^ tree }

is computable. To see that Tp need not be A^-categorical, consider the case when

P{x) is n^-complete. If/ : TP ?> SP is an isomorphism, then P{x) <=^ f{x) G

A. Therefore, / cannot be A^ without contradicting the n^-completeness of P.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

210 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

The last example we consider before the general case is how to code the E3 relation

P(x) <^=> 3bVc3d R(x.b,c.d).

We first code P(x) into a computable tree Tp ? oj<oj as follows.

(1) Tp is co-branching at the root. In this case, we let (n) G Tp for all n.

(2) For each n: TP[(n)] is co-branching at the root; for each m, TP[(n)] has

infinitely many nodes at level 1 each of which is the root of the tree for the

YI2 sentence Vc 3d R(n, m, c, d): and for each m, Tp[(n)] has infinitely many
nodes at level 1 each of which is the root of the m-uncoded n^ tree.

If P(n) holds, then Tp[(n)] consists of infinitely many coded U? trees as well

as infinitely many m-uncoded nij trees for each m. We refer to any tree with this

isomorphism type as a coded E3 tree. If P(n) does not hold, then TP[(n)] consists

of infinitely many m-uncoded U? trees for each m, and nothing else. We refer to

any tree with this isomorphism type as an uncoded E3 tree. As above, we are coding
the E3 sentences P(n) by effectively constructing a tree TP[(n)] which is a coded E3
tree if the E3 sentence P(n) is true and is an uncoded E3 tree if the E3 sentence P(n)
is false.

We can describe the isomorphism type of Tp precisely as follows. Tp is co

branching at the root and consists of infinitely many coded E3 trees and infinitely

many uncoded E3
trees.

To see that TP is A^-categorical, let T be any computable tree which is isomorphic
to Tp. For any z G T at level 1, T[z] is a coded E3 tree if and only if

3z2 (t
< r2 A level(12)

= 2 A T[t2] is a coded n^ tree).

Since determining if T[t2] is a coded U? tree is TI^, this predicate is E|j. Therefore,

0//; can determine which nodes at level 1 in T and TP are the base of a coded E3 tree

and which are the base of an uncoded E3 tree. Once these nodes are matched up

correctly, 0" can build the rest of the isomorphism as in the previous case. Therefore,

Tp is A^-categorical.
Since we can describe the isomorphism type of Tp exactly, we can build a com

putable tree SP ? co< which is isomorphic to TP and such that

A =
{ n : SP[(n)]is a coded E3 tree }

is computable. As above, if P(x) is E^-complete, there cannot be a A3 isomorphism
between TP and Sp.

We now present two general constructions. First, we use a construction similar

to the H^ coding to pass from a H?n coding to a
H?n+X coding. Let P(x) be an infinite

and coinfinite U?n+X relation such that

P(x) <^ \Ja R(x,a)

where R is E?. Assume that we have defined the isomorphism types for a coded lPn
tree and an uncoded E^ tree and that such trees are not isomorphic. Assume that

these trees are defined in such a way that given any lPn sentence we can effectively
construct a tree which is a coded E^ tree if the sentence is true and is an uncoded E^
tree if the sentence is false. Furthermore, assume that there is a lPn sentence which

is true in the coded 1% tree and false in the uncoded E^ tree. We define Tp as the

closure of the following conditions under initial segments.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 211

(1) Tp is co-branching at the root. Formally, we put (1) G 7> and (pu) G 7> for

all primes p and u > 1.

(2) For all u and m, 7p[(2w,m)] is constructed to code the 1% sentence Va <

m R{u, a).

(3) For all odd primes p and u > 1, Tp[(pu)] consists of {u
?

1) copies of the

coded 1% tree and infinitely many copies of the uncoded Sjj tree.

If P{u) holds, then the root of 7>[(2W)] is co-branching and the nodes at level 1 in

this tree are all roots of coded 1% trees. We refer to any tree with this isomorphism

type as a coded n^+1
tree.

If P{u) does not hold, then the root of Tp[(2u)] is co-branching, and the trees

above the nodes at level 1 contain infinitely many copies of the uncoded 1% tree and

for some m, exactly m copies of the coded 1% tree. We refer to any tree with this

isomorphism type as an m-uncoded n^+1 tree.

The isomorphism type of TP is uniquely determined by the fact that the root is

co-branching and TP consists of infinitely many copies of the coded n|j+1 tree and

infinitely many copies of the m-uncoded U?n+x
tree for each m.

For any computable tree 7 isomorphic to Tp and any t g T at level 1, T[z] is

a coded n??+1 tree if for all m, there are distinct nodes zo,... ,zm such that for all

/ < m,

(1) t < tz A level(Tz)
= 2 A 7>[tz] is a coded Z? tree.

This condition is n^+1 by our assumption on the complexity of determining if a

tree is a coded lPn tree. Furthermore, T[z] is an m-uncoded n^+1
tree if there

exist distinct nodes z\,..., zm such that for all 1 < / < m, equation (1) holds (for
m = 0 this check is vacuous), but for all choices of nodes z\,..., zm+x, there is some

1 < / < m -h 1 such that

(t < T/ A level(Tz)
=

2) ?? 7>[tz] is an uncoded Z?? tree.

Altogether, this condition is the conjunction of a 5^ statement and a Tl? statement.

To see that Tp is A^+2-categorical, notice that each of the conditions in the

previous paragraph can be determined by 0^+1^. Therefore, given any computable
tree T isomorphic to 7>, 0^n+1^ can match up the nodes at level 1 correctly. The

fact that the rest of the isomorphism can be built follows by induction.

To see that Tp is not
A^+1-categorical, consider the case when P{x) is n??+1

complete. Because we know the isomorphism type of Tp exactly, we can build a

computable tree Sp such that

A =
{ m : Sp[(m)] is a coded TI?+1 tree }

is computable. If / : 7> ?> Sp is an isomorphism, then P{x) holds if and only if

f{(2x))
=

(m) for some m G A. Therefore, / cannot be A^ without contradicting
the fact that P is n^+1 -complete.

It remains to show how to pass from a n^ coding to a
Z^+1 coding. Let P{x) be

an infinite and coinfinite S^+1-complete relation given by

P(x) <?=> 3a R{x,a)

where R is n^. Assume that we have determined the isomorphism types for the

coded and m-uncoded n^ trees with the corresponding complexity results as above.

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

212 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

We define the computable tree Tp as the downward closure of the following condi

tions.

(1) Tp is co-branching at the root. Formally, for all u. (u) G Tp.

(2) For each u: TP[(u)] is co-branching at the root: for each m. TP[(u)] has

infinitely many nodes at level 1 each of which is the root of tree coding the H^
sentence R(u,m): and for each m. Tp[(u)] has infinitely many nodes at level 1

each of which is the root of an m-uncoded YI?n tree.

If P(u) holds, then Tp[(u)] is co-branching at the root and contains infinitely
many copies of the coded n^ tree and infinitely many copies of the m-uncoded H^

tree for each m. We refer to any tree with this isomorphism type as a coded E^+1
tree.

If P(u) does not hold, then Tp[{u)] is co-branching at the root and consists of

infinitely many copies of the m-uncoded H^ tree for each m. In particular, there are

no coded n^7 trees in TP[(u)]. We refer to any tree with this isomorphism type as

an uncoded
lPn+{

tree.

Let T be a computable tree isomorphic to TP and suppose z G T is a level 1 node.

T[z] is a
E|J+1 coded tree if and only if there is a i2 G T such that

t < i2 A levelfe)
= 2 A T[z2] is a coded U?n tree.

By assumption on the complexity of IT^ trees, this condition is E^+1. As above,

this condition implies that TP is A?+2-categorical. To show that TP is not
A?n+l

categorical, we define a tree Sp and argue as above. H

?6. Trees under the infimum function. We end this paper with a brief discussion

about trees defined using the infimum function and a conjecture about when they
are computably categorical. We have already mentioned (see Section 1) that if

(T A) is computable, then the corresponding (T. -<) is also computable. However,
it is simple to build a tree T in which -<< is computable and A is not. Start with 0 as

the root, and make every even number a successor of 0 at level 1. To diagonalize

against the possibility that pe computes A. we wait until <pe((4e + 2,4e + 4))|
= 0,

and if this ever happens, we add the next available odd number x to T at level 1

with x -< Ae + 2 and x -< 4e + 4. T will have domain co and height 3, and ^< will be

computable, but our diagonalization ensures that A is not computable.
The notion of an embedding depends strongly on whether we define trees using

-< or A. Consider the following two trees:

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 213

It is easy to embed 7o into Ix with respect to -<. but there is no embedding of 7o
into Ix respecting A. (The infimum of any pair of distinct nodes in 7o is the root,

whereas no possible image of 7o in L has the same property.) For the remainder

of this section, therefore, we will speak of ~<-embeddings and A-embeddings. to

distinguish these two types of embeddings. In the rest of the paper, of course,

"embedding" always means -<-embedding. Notice that for an isomorphism, it does
not matter which notion we use. That is. any isomorphism between trees under -<

is also an isomorphism of the same trees under A (and conversely).
The simple example above creates problems when one investigates computable

categoricity. Consider the tree 7 which consists of a root with infinitely many copies
of 7o and infinitely many copies of 7i (and nothing else) as successor trees above the
root. This tree has height 4. and {T -<) is not of finite type, hence not computably

categorical, by Theorem 1.8. However. {T A) is computably categorical. Clearly
we can build a computable copy of (7. A), and given any two computable copies,
we can find the root of each, then identify successor trees of each type in each copy
and match them up. In particular, every successor tree contains three pairwise

incomparable nodes a.b. and c. and once those nodes have appeared, we simply

compute a Ab, a Ac. and b Ac. The successor tree is of type 7o if and only if these

three infima are equal.

We do have the following result.

Lemma 6.1. Any computably categorical tree {T -<) will still be computably cate

gorical when re-interpreted as (7, A), assuming only that the function A so defined is

computable.

Proof. If a computable structure {T', A1) is isomorphic to (7. A), then the cor

responding {T', -<') is also computable, hence isomorphic to (7, -<) via some com

putable (p. As noted above, the isomorphism cp must also preserve infima, so it is
an isomorphism of (7. A) onto {T1, A1) as required. H

To determine computable categoricity for trees under the infimum function, there

fore, we need to consider A-embeddings rather than -(-embeddings. Fortunately,

one of our main tools. Kruskal's Theorem (stated as Theorem 3.4), yields not only

-<-embeddings but also A-embeddings. The first step, therefore, is to refine the

notion of being of finite type by referring to A instead of -<.

Definition 6.2. (1) A tree 7 is of strongly finite A-type if it satisfies Definition

1.6 when the word "embedding" is replaced everywhere by "A-embedding."

(2) A tree T is of finite A-type if it satisfies Definition 1.7 when the word "embed

ding" is replaced everywhere by "A-embedding" and "strongly finite type" is

replaced everywhere by "strongly finite A-type."

Notice that in our example from the previous page. (7, A) has finite A-type but

{T, -<) does not have finite -<<-type.

We conjecture that with these definitions, the proofs from Sections 2. 3, and 4

will go through with relatively few modifications, as long as one always refers to

A-embeddings and (strongly) finite A-type. Thus we would have the analogue of

Theorem 1.8:

Conjecture 6.3. For a computable tree {T, A) of finite height, the following are

equivalent:

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

214 STEFFEN LEMPP. CHARLES MCCOY. RUSSELL MILLER. AND REED SOLOMON

(1) T is of fin ite A - type ;

(2) (T A) is computably categorical:

(3) (T A) has finite computable dimension;

(4) (T A) is relatively computably categorical.

In [25]. Miller proved the corresponding result for computable trees (T, A) of

infinite height: the computable dimension of (T, A) must be co. Together with

Conjecture 6.3. this would answer the question of computable categoricity for all

trees under the infimum function.

REFERENCES

[1] C. J. Ash, Categoricity in hyperarithmetical degrees, Annals of Pure and Applied Logic, vol. 34

(1987). pp. 1-14.

[2] C. J. Ash and J. F. Knight, Computable structures and the hyperarithmetic hierarchy, Elsivier

Science. Amsterdam, 2000.

[3] C. J. Ash. J. F. Knight. M. Mannasse, and T. Slaman, Generic copies of countable structures,

Annals of Pure and Applied Logic, vol. 42 (1989), pp. 195-205.

[4] J. Chisholm, On intrisically l-computable trees, unpublished manuscript.

[5] J. N. Crossley, A. B. Manaster, and M. F. Moses. Recursive categoricity and recursive stability.
Annals of Pure and Applied Logic, vol. 31 (1986), pp. 191-204.

[6] R. G. Downey, On presentations of algebraic structures. Complexity, logic, and recursion theory

(A. Sorbi, editor). Dekker. New York, 1997, pp. 157-205.

[7] R. G. Downey and C. G. Jockusch, Every low Boolean algebra is isomorphic to a recursive one.

Proceedings of the American Mathematical Society, vol. 122 (1994). pp. 871-880.

[8] S. S. Goncharov. Autostability and computable families of constructivizations. Algebra and Logic.
vol. 14 (1975), pp. 647-680 (Russian), 392-409 (English translation).

[9]-, The problem of the number of non-self-equivalent constructivizations. Algebra and Logic,
vol. 19 (1980). pp. 401-414 (English translation).

[10]-. Groups with a finite number of constructivizations, Soviet Mathematics Doklady, vol. 19

(1981). pp. 58-61.

[11]-, Nonequivalent constructivizations. Nauka, Novosibirsk, 1982.

[12]-. Autostable models and algorithmic dimensions. Handbook of Recursive Mathematics.

vol. 1. Elsevier. Amsterdam. 1998.

[13] S. S. Goncharov and V. D. Dzgoev, Autostability of models. Algebra and Logic, vol. 19 (1980),

pp. 45-58 (Russian). 28-37 (English translation).

[14] S. S. Goncharov, S. Lempp. and R. Solomon, The computable dimension of ordered abelian

groups. Advances in Mathematics, vol. 175 (2003). pp. 102-143.

[15] S. S. Goncharov. A. V. Molokov. and N. S. Romanovskii, Nilpotent groups of finite algorithmic
dimension, Siberian Mathematics Journal, vol. 30 (1989), pp. 63-68.

[16] D. R. Hirschfeldt. B. Khoussainov. R. A. Shore, and A. M. Slinko, Degree spectra and

computable dimension in cdgebraic structures. Annals of Pure and Applied Logic. vol. 115 (2002), pp. 71

113.

[17] B. Khoussainov and R. A. Shore. Computable isomorphisms, degree spectra of relations, and

Scott families. Annals of Pure and Applied Logic, vol. 93 (1998), pp. 153-193.

[18]-, Effective model theory: the number of models and their complexity, Models and com

putability: Invited papers from Logic Colloquium '97 (S. B. Cooper and J. K. Truss, editors). London

Mathematical Society Lecture Note Series, vol. 259. Cambridge University Press. Cambridge. 1999.

pp.193-240.

[19] J. B. Kruskal, Well quasi-ordering, the tree theorem, and V?zsonyi's conjecture. Transactions of
the American Mathematical Society, vol. 95 (1960). pp. 210-225.

[20] O. V. Kudinov. An integral domain with finite algorithmic dimension, unpublished manuscript.

[21]-. An autostable 1 -decidable model without a computable Scott family of 3 formulas. Algebra
and Logic, vol. 35 (1996). pp. 255-260 (English translation).

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

COMPUTABLE CATEGORICITY OF TREES OF FINITE HEIGHT 21 5

[22] P. LaRoche. Recursively presented Boolean algebras. Notices of the American Mathematical

Society, vol. 24 (1977). pp. A-552. research announcement.

[23] G. Metakides and A. Nerode. Effective content of field theory. Annals of Mathematical Logic.
vol. 17 (1979). pp. 289-320.

[24] R. G. Miller. The
/x\ spectrum of a linear order, this Journal, vol. 66 (2001). pp. 470-486.

[25]-, The computable dimension of trees of infinite height, this Journal, vol. 70 (2005).
pp. 111-141.

[26] C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proceedings of the Cambridge

Philosophical Society, vol. 59 (1963). pp. 833-835.

[27] A. T. Nurtazin. Strong and weak constructivizations and enumerable families. Algebra and Logic.
vol. 13 (1974), pp. 177-184.

[28]-. Computable classes and algebraic criteria of auto stability. thesis. Mathematical Institute

of the Siberian Branch of SSSR Academy of Sciences. Novosibirsk. 1974 (Russian).

[29] J. B. Remmel, Recursive isomorphism types of recursive Boolean algebras, this Journal, vol. 46

(1981). pp. 572-594.

[30]-, Recursively categorical linear orderings. Proceedings of the American Mathematical

Society, vol. 83 (1981), pp. 387-391.

[31] S. G. Simpson, Nonprov ability of certain combinatorial properties of finite trees. Harvey Friedman's

research on the foundations of mathematics (L. A. Harrington, M. D. Morley. A. Scedrov, and S. G.

Simpson, editors), North-Holland. Amsterdam. 1985. pp. 87-117.

[32] T. A. Slaman. Relative to any nonrecursive set. Proceedings of the American Mathematical Society.
vol. 126 (1998), pp. 2117-2122.

[33] R. I. Soare, Recursively enumerable sets and degrees, Springer-Verlag. New York, 1987.

[34] S. Wehner, Enumerations, countable structures, and Turing degrees. Proceedings of the American

Mathematical Society, vol. 126 (1998), pp. 2131-2139.

[35] W. White, On the complexity of categoricity in computable structures. Mathematical Logic Quar

terly, vol. 49 (2003), no. 6, pp. 603-614.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF WISCONSIN-MADISON

480 LINCOLN DRIVE

MADISON. WISCONSIN 53706-1388. USA

E-mail: lempp@math.wisc.edu

MOREAU SEMINARY

NOTRE DAME. INDIANA 46556. USA

E-mail: cmccoyl@nd.edu

DEPARTMENT OF MATHEMATICS

QUEENS COLLEGE?C.U.N.Y.

65-30 KISSENA BLVD.

FLUSHING, NEW YORK 11367. USA

E-mail: rmiller@forbin.qc.edu

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CONNECTICUT

196 AUDITORIUM ROAD

STORRS, CONNECTICUT 06269-3009. USA

E-mail: solomon@math.uconn.edu

This content downloaded from 64.251.254.77 on Mon, 28 Oct 2013 15:50:06 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	University of Portland
	Pilot Scholars
	3-2005

	Computable Categoricity of Trees of Finite Height
	Steffen Lempp
	Charles McCoy
	Russell Miller
	Reed Solomon
	Citation: Pilot Scholars Version (Modified MLA Style)

