24 research outputs found

    Vortex fluid for gaseous phenomena

    Full text link

    Model-reduced variational fluid simulation

    Get PDF
    We present a model-reduced variational Eulerian integrator for incompressible fluids, which combines the efficiency gains of dimension reduction, the qualitative robustness of coarse spatial and temporal resolutions of geometric integrators, and the simplicity of sub-grid accurate boundary conditions on regular grids to deal with arbitrarily-shaped domains. At the core of our contributions is a functional map approach to fluid simulation for which scalar- and vector-valued eigenfunctions of the Laplacian operator can be easily used as reduced bases. Using a variational integrator in time to preserve liveliness and a simple, yet accurate embedding of the fluid domain onto a Cartesian grid, our model-reduced fluid simulator can achieve realistic animations in significantly less computational time than full-scale non-dissipative methods but without the numerical viscosity from which current reduced methods suffer. We also demonstrate the versatility of our approach by showing how it easily extends to magnetohydrodynamics and turbulence modeling in 2D, 3D and curved domains

    Phenomenological Simulation of Brooks

    Get PDF
    International audienceThe goal of our work is to simulate the shape and variations of the water surface on non-turbulent brooks both efficiently and at very high resolution. In this paper, we treat only the shape and animation. We concentrate on the simulation of quasi-stationary waves and ripples in the vicinity of obstacles and banks, and more particularly, shockwaves. To achieve this, we rely on phenomenological laws such as the ones collected over the last two centuries in the field of hydrodynamics: most of the visually interesting phenomena (apart from turbulence) are known qualitatively and characterized in reasonably simplified situations. It is thus wasteful to run a full-range Navier-Stokes simulation for quiet flows when only qualitative results are needed. The complexity of the velocity field along the streambed and around the obstacles is taken into account by solving a simple Laplace equation, assuming a stationary irrotational non-compressible ideal 2D flow. We obtain a stationary solution of the surface waves, that we perturb in order to get a quasi-stationary brook simulation. This yields a real-time simulation of the fluid visible features.Nous cherchons à caracteriser la forme et le mouvement de la surface d'un ruisseau sans recourir à une simulation numerique compliquée type Navier-Stokes en exploitant les connaissances a priori sur les structures qui s'y forment: ondes de chocs, ridules... Ceci nous permet d'obtenir un modele animé (sans rendu) temps réel

    Synthesizing interactive fires

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1994.Includes bibliographical references (leaves 58-60).by Christopher Harton Perry.M.S

    MODELING AND RENDERING OF CONVECTIVE CUMULUS CLOUDS FOR REAL-TIME GRAPHICS PURPOSES

    Get PDF
    The paper presents a simulation and rendering model of three dimensional covective cloud evolution. The model is physically based, however its purpose is graphical. The main stress is put on balancing two parts of a model: the atmsphere simulation with convective motion of air and water vapor combined with rendering of semi-transparent and light-scattering clouds, in order to achieve realistic animation in real-time. We examine and compare two algorithmic approaches based on CPU and GPU computations

    Modeling and animation of orb webs

    Get PDF
    Modeling of natural phenomena has been of particular interest in the graphics ommunity in recent years. This thesis will explore a method for creating and animating orb webs using a coupled spring-mass system. Using a spring-mass system for creating the orb web is ideal as we can represent each web strand using coupled spring-mass pairs. This allows the orb web simulator to be physically based, i.e., the simulation follows the laws that act on objects in the real world. This in turn simplifies the process of animating the web, as the animation emerges from the simulator without anyone having to set it up explicitly. Since this model is physically based, it would allow for realistic visualization of effects such as observing an orb web under a wind. In the children's book ``Charlotte's Web', the spider creates orb webs with words inscribed on them. Charlotte's web is used as an inspiration, in this thesis, to create webs which no real world spider could possibly create, while keeping the model physically based. This involves modifying the orb web such that the target text shows up on the orb web while keeping the web looking as natural as possible

    Acoustic tomography of the atmosphere using iterated Unscented Kalman Filter

    Get PDF
    2012 Fall.Includes bibliographical references.Tomography approaches are of great interests because of their non-intrusive nature and their ability to generate a significantly larger amount of data in comparison to the in-situ measurement method. Acoustic tomography is an approach which reconstructs the unknown parameters that affect the propagation of acoustic rays in a field of interest by studying the temporal characteristics of the propagation. Acoustic tomography has been used in several different disciplines such as biomedical imaging, oceanographic studies and atmospheric studies. The focus of this thesis is to study acoustic tomography of the atmosphere in order to reconstruct the temperature and wind velocity fields in the atmospheric surface layer using the travel-times collected from several pairs of transmitter and receiver sensors distributed in the field. Our work consists of three main parts. The first part of this thesis is dedicated to reviewing the existing methods for acoustic tomography of the atmosphere, namely statistical inversion (SI), time dependent statistical inversion (TDSI), simultaneous iterative reconstruction technique (SIRT), and sparse recovery framework. The properties of these methods are then explained extensively and their shortcomings are also mentioned. In the second part of this thesis, a new acoustic tomography method based on Unscented Kalman Filter (UKF) is introduced in order to address some of the shortcomings of the existing methods. Using the UKF, the problem is cast as a state estimation problem in which the temperature and wind velocity fields are the desired states to be reconstructed. The field is discretized into several grids in which the temperature and wind velocity fields are assumed to be constant. Different models, namely random walk, first order 3-D autoregressive (AR) model, and 1-D temporal AR model are used to capture the state evolution in time-space . Given the time of arrival (TOA) equation for acoustic propagation as the observation equation, the temperature and wind velocity fields are then reconstructed using a fixed point iterative UKF. The focus in the third part of this thesis is on generating a meaningful synthetic data for the temperature and wind velocity fields to test the proposed algorithms. A 2-D Fractal Brownian motion (fBm)-based method is used in order to generate realizations of the temperature and wind velocity fields. The synthetic data is generated for 500 subsequent snapshots of wind velocity and temperature field realizations with spatial resolution of one meter and temporal resolution of 12 seconds. Given the location of acoustic sensors the TOA&rsquos are calculated for all the acoustic paths. In addition, white Gaussian noise is added to the calculated TOAs in order to simulate the measurement error. The synthetic data is then used to test the proposed method and the results are compared to those of the TDSI method. This comparison attests to the superiority of the proposed method in terms of accuracy of reconstruction, real-time processing and the ability to track the temporal changes in the data

    Animation de phénomènes gazeux basée sur la simulation d'un modèle de fluide à phase unique sur le GPU

    Get PDF
    Le présent mémoire porte sur l'animation passive de phénomènes naturels. L'animation est dite passive lorsque qu'elle [i.e. lorsqu'elle] est directe et sans contrôle ou sans dynamique inverse. En particulier, le type de phénomènes naturels traités est celui des phénomènes gazeux et plus précisément, ceux modélisés par un fluide à phase unique. Tout d'abord, le domaine de l'animation de fluide synthétisé par la simulation d'un modèle physique sera introduit ainsi que la problématique abordée.Le document comprend trois contributions abordant la problématique à différents niveaux. Dans le premier ouvrage, on retrouve une méthode permettant de résoudre les équations de Navier-Stokes en une seule itération sur le GPU (Graphical Processing Unit). La méthode est si simple qu'elle a pu être implémentée en moins d'une journée de travail dans Fx-Composer (vidéo : http: //www.youtube.com/watch?v=PScfTOKbSpU). En plus d'être extrêmement rapide sur le GPU, cette méthode rend l'animation de fluide beaucoup plus accessible et peut être utilisée à différentes fins : l'initiation à l'animation de fluide à l'aide d'une méthode simple à implémenter ou l'ajout rapide d'effets visuels dans un jeu vidéo ou autre application interactive. La deuxième contribution aborde le problème au niveau de la visualisation du fluide. On y retrouve l'élaboration d'une méthode explicite et inconditionnellement stable pour la résolution numérique de l'équation de convection-diffusion utilisée pour simuler la densité d'un gaz qui à la fois est diffusé et transporté dans le domaine par un champ de vecteurs-vitesse, qui dans notre cas représente le mouvement d'un fluide.Le troisième article aborde le problème au niveau de la complexité calculatoire et réduit l'animation 3D de feu à une utilisation 2D strictement en espace-écran. La complexité d'une animation en espace-écran est constante pour une résolution d'image donnée puisque les calculs se font uniquement sur les pixels de l'écran (ou une sur une sous-résolution de ceux-ci)

    Atmospheric cloud modeling methods in computer graphics: A review, trends, taxonomy, and future directions

    Get PDF
    The modeling of atmospheric clouds is one of the crucial elements in the natural phenomena visualization system. Over the years, a wide range of approaches has been proposed on this topic to deal with the challenging issues associated with visual realism and performance. However, the lack of recent review papers on the atmospheric cloud modeling methods available in computer graphics makes it difficult for researchers and practitioners to understand and choose the well-suited solutions for developing the atmospheric cloud visualization system. Hence, we conducted a comprehensive review to identify, analyze, classify, and summarize the existing atmospheric cloud modeling solutions. We selected 113 research studies from recognizable data sources and analyzed the research trends on this topic. We defined a taxonomy by categorizing the atmospheric cloud modeling methods based on the methods' similar characteristics and summarized each of the particular methods. Finally, we underlined several research issues and directions for potential future work. The review results provide an overview and general picture of the atmospheric cloud modeling methods that would be beneficial for researchers and practitioners
    corecore