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Abstract

Efficient numerical techniques developed in the field of computer graphics are able

to simulate compellingly realistic simulations of interactions between solids and

fluids. In this work, we apply one of these techniques, the Semi-Lagrangian Stable

Fluids method coupled with a new model of interaction between fluid and general

semi-rigid 3D meshes, to biomechanical hydrodynamics visualization. The near-

body surface dynamics provide meaningful information for rendering visuals that

are intuitive to the streamlined flow characteristics surrounding the body. Our

results show the visualization of active and passive resistive forces on the body in

a video-based capture of an immersed dolphin kick. We also applied the resultant

fluid field in a novel application where procedural fire trails of a muscle-shape body

was directed by its near-body fluid dynamics. The techniques we employed are

less used for engineering applications due to errors which are inherent outcomes of

systemic approximations in its formulation. The errors, manifesting as excessive

damping, are expected to change the nature of steady-state fields and nullify the

typical engineering static flow analysis. On the other hand, near-body solid/fluids

interaction are affected to a lesser degree since errors originating from dissipation

are more severe when accumulated over time. Although it is generally not possible

to numerically validate unsteady, high-velocity vector fields, our investigations

show that near-body solid/fluid dynamics converges with respect to parametric

refinements. Though far from a correctness proof, the numerical convergence of

near-body quantities suggests the applicability of the method to certain classes of

analysis and visualization where near-body characteristics are of greater concern.
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Chapter 1

Introduction

Simulation of fluid and its interaction with submerged objects are well known to

be a challenging problem in the field of computer graphics and engineering. The

difficulties come from the intricate underlying physics which requires huge amount

of computational resource and time. However, fluid simulation is still required in

many applications in visualization, special effects, games, and engineering such

as car building. It is even found in sport where there is a need for analysis and

understanding fluid flows in swimming.

Given the demand, there has been much research done in the field of fluid sim-

ulation. Through out decades of development, there are two major schools of

techniques were created for fluid simulation. The more classical ones were devel-

oped in the field Computational Fluid Dynamics (CFD) for engineering and the

more recent techniques were developed for CFD usages in computer graphics. In

order to explain the purpose and motivation of this thesis, it is useful to briefly

explain the difference between these two schools of fluid simulation techniques and

their usages.

Computational Fluid Dynamics (Ferziger and Peric, 1999) is a well established field

for analysing various flow problems. Among its many branches, the analytical and

empirical study of the coupling between erratic, free-moving, and unstructured

deformable bodies within an incompressible fluid medium, which is the focus of

1



Figure 1.1: Near-body characteristic visualization using flow fields ob-
tained from a direct, Semi-Lagrangian simulation. The image shows in-
stantaneous pressure field on the upper-body surface during a dolphin
kick motion. The pressure values are normalized and color-coded using
the HSV color bar shown. The red tone indicates high pressure and the
blue tone indicates tangential surface pressure flow.

our work, is widely acknowledged to be a highly complex problem to which no

known verifiable solution exists for the general case (Negrao, 1995).

Typically, the nature and the objective of the simulation have direct implica-

tions on the choice of methodology, accuracies, and stability of the numerical pro-

cess. As such, classical CFD literature contains an abundance of techniques that
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are applicable to only specialized classes of flow problems. Indiscriminate use of

generic CFD software, other than on the most trivial problems, often churns results

whose accuracies are questionable, possibly meaningless, and cannot be validated

in today’s state-of-the-art of computational fluid dynamics. Generally, substantial

knowledge in the theories of fluid dynamics and the many limitations and caveats

of simulation software are necessary in determining the choice or applicability of

any solution method.

On the other hand, in computer graphics research, techniques have emerged that

were able to create stunningly realistic animations of fluid phenomenon with com-

plexities far beyond the typical engineering CFD experiment. Furthermore, these

simulations are conducted at a fraction of the computational costs while engi-

neering CFD harness super-computers in the order of hours/days of computation

time, the typical graphics-based technique can be deployed on general-purpose

computers.

This apparent gap between the two classes of CFD developments comes as no

surprise. The motivation and background underlying the developments within

each research community is largely different. The Semi-Lagrangian Stable Fluids

method (Stam, 1999) and its various derivatives, commonly used for the synthesis

of visual effects, are purported approximations of fluid dynamics. Nevertheless,

as the method retains its physical basis through the Navier-Stokes equations, the

simulations that it produces often appear realistic and convincingly plausible. The

typical engineering techniques, such as discretization methods or turbulence mod-

els, on the other hand, are less approximated and rely on carefully discretization

of the problems at high resolution. These techniques are therefore much slower

and complex than computer graphics’ methods. They often need special treatment

for each specific problem domain, for otherwise, the results are unreliable and the

techniques can easily become unstable.

Our work focuses on leveraging the speed and the ability to simulate complex

scenes when applying Computer Graphics’ fluid simulation techniques to appli-

cations that are not easily achievable using classical CFD techniques. However,

because there is no complete verification method existed for complex CFD prob-

lems, and because of the approximation nature of most simulation techniques, we
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must be careful in the choice of application as well as must have a proper under-

standing of the possible limitations and expected errors when using fast CG fluid

simulation techniques. Only under this proper understanding, can we make an

informed choice of applications and make just assessment of the outcome of this

work.

1.1 Numerical dissipation problem

Numerical dissipation, a generic term referring to fluid momentum that are lost

or unaccounted for, is the main problem with the Semi-Lagrangian method. The

errors manifest as large, implausible damping of velocities in the fluid field. Such

dissipation is a direct result of the approximation mechanism, where advection

flows are traced and interpolated at a finite number of grid points. Unfortunately,

there is presently no known method to quantify the magnitudes of these inaccu-

racies. The lack of analytical solutions, and the fact that these highly-unsteady

simulations are not typical of Engineering experiments, further prevents valida-

tion or comparisons between results. It should be noted however that such lack

of solutions in classical CFD is not due to a lack of interest, but rather that the

problems are generally considered to be overwhelmingly difficult with today’s tech-

nology. Thus, when assessing the soundness and applicability of any CFD method

for solving any fluid dynamics problem, an informed rationalization coupled with

an understanding of the systemic limitations is required.

Velocity dissipation are first-order numerical errors whose severity increases over

time. As a result, the fluid medium in a Semi-Lagrangian simulation tends to

appear more viscous than it were. Effects such as vortex shedding, trails, and

other flow phenomenon are visibly dampened. For many engineering simulations,

the steady-state presence of vortexes are of primary concern because it is the

basis for evaluating the performance or feasibility of an engineered design. In

other applications, however, steady-state outcome is less critical and dissipation

errors are arguably more tolerable. For instance, in simulations where near-body

characteristics are of primary interest, the presence of vortexes that are located at
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a distance is of little consequence. And in simulations where the volume of fluid

is constantly moving forward, shedded fluid trails are of little concern. In these

scenarios, the artificial dampening, which effectively waters down these effects,

may pose a lesser influence on the validity and usability of the results.

Under no circumstances, however, can a claim of correctness be made (and such

is neither the purpose nor conclusion of this work). After all, all numerical sim-

ulations make assumptions and ours is no different. However, given the physical

basis of the formulation, coupled with an understanding of the nature in the ex-

pected errors, we postulate that the applicability of some of these recent CFD

developments in computer graphics may extend beyond its traditional realm.

1.2 Thesis objective and contribution

There are three main objectives for our work. The first objective is to develop a

method for generic simulation and interaction model between a fluid volume and

a general 3D deformable mesh. The method should be able to work with captured

movement of a 3D human model or any other 3D mesh. The second objective of

our work is to apply the simulation and interaction result to visualize the near

body hydrodynamics information, which is useful in improving the swimmer’s

performance. The third objective is to extend this simulation and interaction

scheme into other novel applications, such as improvement of fire animation.

In summary, our contributions are as following:

• We proposed a new interaction model between fluid and general 3D meshes.

• Our interaction model is not dependent on the dynamics of the 3D object.

The 3D model can freely deform in any way and our interaction model will

take care of the deformation effects on the fluid. This is extremely useful in

the case where we need to investigate the interaction between the swimming

person and fluid. In this situation, we only able to capture the swimmer

movement without any knowledge of how the movement or the forces required

to produce the movement.
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• Our work is the first to investigate the possibilities to apply fast and approx-

imated simulation methods developed by graphics community into everyday

life application, particularly, in the visualization of resistive forces on swim-

mer body. This application might be useful for swimming coaches who desire

to find way to improve swimmer performance, but do not have any knowl-

edge nor the time of how to setup and run a fluid simulation problem in

engineering setup.

• We also proposed to use this interaction model in other applications such as

fire trails enhancement. This kind of application show that our method can

be applicable in the game setting where approximated interactions between

game characters and fluids is needed.

1.3 Results summary

Our work adapts the Semi-Lagrangian Stable Fluids simulation method of (Stam,

1999) to the biomechanical visualization of hydrodynamics surrounding the body

surface of a swimmer. The adaptation can also be used genericly to simulate the

effect of a moving 3D semi-rigid object on a fluid volume. Figure 1.1 shows a still

image from the simulation. The motion involves several cycles of full-submerged

dolphin-kicks that were digitized from a series of video frames. The shaded sur-

face encodes the pressure flow field on the surface of the body. The animated

visuals depict smooth and intuitive pressure variations that are meaningful to the

understanding of biomechanical hydrodynamics.

Further more, we also demonstrate the general applicability of the near-body dy-

namics fluid field through its usage in a novel application. A hypothetical muscu-

lar shape rigid body was filled with procedural fire animation and moved within

a closed fluid volume. The interaction between the fluid and the muscle shape

disturb the velocity field, which, in turn, directs and enhances the movement of

the fire trails and gives them a natural look.

Although procedural fire is a fast method for generating fire animation, it lacks

a necessary physical basis to be interactive with surrounding environment. With
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the introduction of the fluid velocity field, we have helped create a new level of

interaction. Among many possibilities, we can create novel situation where the fire

can interact with fluid medium such as water, which is not possible in real life or

add in a windy air flow that can affect the movement of the fire particles’ shapes.

1.4 Thesis organization

The rest of this thesis is organized as follows: chapter 2 briefly discuss Navier-Stoke

equations, which are the mathematical background of our work, and the related

background literature; chapter 3 describes the technical details and our contribu-

tion to the fluid/surface interaction model; chapter 4 describes the visualization of

the results by applying the simulation on a motion capture sequence of a scanned

human geometry. We also describe the fire interaction example and fluid’s inter-

action with hypothetical objects. We conclude the thesis with a discussion of our

approach and some of its limitations in chapter 5.
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Chapter 2

Background

2.1 Fluid simulation and animation for computer

graphics

Fluid simulation in computer graphics has a long standing development history of

nearly two decades. The techniques which are used to generate fluid animation

in computer graphics range from kinematics method to dynamics method in both

2D and 3D.

Among the earliest techniques, (Reeves, 1983) and (Sims, 1990) used particle sys-

tems to simulate fuzzy objects like water. Here, primitive particles are assigned

kinematic attributes such as velocities, positions, colours and are randomly intro-

duced into the particle systems to simulate fluid particles. Although not following

an accurate physical process, these methods produced acceptable visual results.

The complexity of fluid flows was greatly enhanced with the introduction of ran-

dom turbulences in (Stam and Eugene, 1993). However, these turbulences did not

have the physical basis, they were just random turbulence vector fields varying

over space and time and were generated using Fourier synthesis. Because lack-

ing of physical background, these early methods could only produce visual results

without additional interactions with external forces and objects.

The set of Navier-Stoke equations is the mathematical model that describes the
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general fluid movement. By incorporating these equations the researchers were

able to produce more compelling and accurate animations of fluid or fluid like

phenomena.

Early applications of the Navier-Stoke equations were first implemented in 2D. In

(Yaeger et al., 1986) the equations were used to solve for the vorticity movements

that resemble the planet Jupiter’s surface. Similarly, in (Gamito et al., 1995) also

used vorticity coupled with a Poisson solver on a velocity field to simulate the

fluid movement on 2D. The vorticity movements were modelled as the movement

of particles in the velocity fields and their positions were integrated forward in

time. Later, in (Chen et al., 1997) a height field was derived from the pressure

term which is obtained by solving a 2D version of the Navier Stoke equations.

The height field was then used to animate the water surface. These methods were

however not stable.

3D animation of fluid was first developed in (Foster and Metaxas, 1997) by finite

differencing the Navier-Stoke equations with an explicit time solver. This method

is however not stable in its nature. Even with small time step or high resolution

grid, the finite differencing numerical scheme will eventually blow up and the

simulation has to be restarted.

To solve the instability problem, (Stam, 1999) introduced a semi-Lagrangian ap-

proach. This method essentially borrows the Lagrangian view point to solve the

advection part of the Navier Stoke equations using back-tracking of imaginary

particles through the fluid velocity field. This alleviates the need for solving the

advection equation with finite differencing scheme and makes the method uncon-

ditionally stable. The stability is obtained from the fact that the new velocity

values cannot exceed the maximum velocity of the original velocity field. Beside

the stability advantage, this method was also the first to introduce the operator

splitting scheme to the graphics community. This scheme helps breaking down

complex partial differential equations (PDE) into manageable pieces which can

be solved or approximated using specialized techniques. The major problem with

this semi-Lagrangian method is numerical dissipation where artificial viscosity is

introduced into the solution through numerical error from interpolations at grid

points. This causes the velocity field to be dampened and the total energy is not
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Figure 2.1: 2D simulation results (upper) and 3D simulation result
(lower) of Jos Stam’s method. Pictures from Stam (2003)

conserved. Some results of this method are shown in figure 2.1.

Based on the semi-Lagrangian method many variations have been developed to

simulate the fluid movement, to capture the fluid surface and the fluid interaction

with the surrounding environment. Since our work only concerns with the fluid

movement and interaction with submerged objects but not the fluid surface, in the

next section we will review some prominent work related to this area.

2.2 Fluid and object interaction

Several solutions have been proposed to model the fluid and object interactions.

For example, some authors (Foster and Metaxas, 1997; Stam, 1999) treated rigid

bodies as boundary condition and set the fluid velocities around the object’s

boundary. This velocity fixing is often sufficient to coerce fluid flows to go around

the object.
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In (Foster and Fedkiw, 2001) improved the technique by letting the fluid to flow

freely around a polygonal rigid object along the tangents. The improvement was

also adopted by others e.g. (Enright et al., 2002).

Carlson (Carlson et al., 2004) introduced the rigid-fluid method as a rigorous way

to ensure the motion consistency between interacting fluid and solids. The method,

which accounts for two-way coupling between fluids and solids, enforces a rigid

motion constraint on cells that are occupied by the same rigid body. The result

is that the rigid cells are simply fluids with very high viscosity, and a deformation

operator is used to restrict their movements. Interestingly, substances that are

less-solid, such as melting wax, can also be modelled with a similar approach. It is

not trivial and not clear of how to represent 3D deforming triangle meshes using

this representation of solid.

Olivier (Arash et al., 2003) introduced a different way to couple fluid with solids.

In his work, he bridged the Eulerian fluid simulation using velocity field with

the Lagrangian rigid body representation through introduction of marker in fluid

and the spring mass system in the rigid body. Although this representation leads

directly to an interaction model using impulse force calculation, it is not suitable

for representing complex non-deforming rigid object.

(Müller et al., 2004) also introduced an interaction model between fluid and de-

formable objects based on triangular mesh. This model based on several boundary

conditions and interaction between the triangles and the fluid particles. For exam-

ple, there are no-slip and non-penetration condition at the boundary of the object.

This work however is only applicable to fluid simulated with Smooth Particle Hy-

drodynamics (SPH).

(Klingner et al., 2006) introduced a different model of fluid animation in which

fluid is not simulated in a fix grid but on a tetrahedral mesh which changes based

on the boundary of the simulated environment, including the boundary of the

moving object. The generation of the tetrahedral mesh is however a large overhead

in addition to the fluid simulation. Beside, it is not clear how to refine the mesh

in order to achieve desirable near body hydrodynamics visualization results.

(Chentanez et al., 2006) presented a method of two way coupling between de-
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formable elastic object and fluid through the combination of the fluid simulation’s

projection step and elasticity simulation’s integration step into one single equa-

tion. This method show a physically correct interaction model. However, it is

not suitable for our project since its require both the object and the fluid to be

simulated and it only works with elastic objects. For general captured models and

motions, there is not an existing method to estimate the physical characteristics

that decide the motions, hence we can not come up with a single physics equation

for both the captured motion and the fluid simulation.

The processing power of GPU has also been utilized in fluid simulation. (Harada

et al., 2007) used GPU to simulate the two way coupling of fluids and rigid bodies.

They used particle based fluid simulation and particle system for rigid bodies.

Although the method works fast it only works with rigid bodies, it is unclear how

to employ the method with general mesh based object. However, GPU is also a

promising area that can greatly enhance the grid based fluid simulation speed.

The difference of our method is that we only focus on one way coupling between

object movement and the surrounding fluid modelled on a 3D spatial grid. This

is specially suitable with the investigation and visualization of the fluid effects

produced by predefined 3D object movement, in contrast to two ways coupling

methods. Our interaction model is simple, fast, and general and can handle semi-

rigid objects. Its results are also shown to be useful in simulating and visualizing

near-body hydrodynamics information.

2.3 Fluid simulation and application in engineer-

ing and biomechanics

Computational fluid dynamics within Engineering, Applied Mathematics, and

other branches of sciences have taken on substantially different paths. Due to

differences in levels of tolerance in accuracies, the methods that are favoured also

differ between the communities. Suffice to mention, however, the desire to syn-

thesize meaningful visuals which depict natural phenomena is not unique to com-

puter graphics. The ability to visualize, understand,and optimize the dynamics of
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a swimmer has long been something that swimming coaches and sports scientists

desired.

In the context of biomechanical hydrodynamics visualization, a few attempts have

been made using methods of classical CFD. Some of these works deal with exter-

nal fluid phenomenon of simpler biological mechanisms (Mittal, 2004), fluid flows

internal to biological bodies (Mittal et al., 2004), while others work with scanned

human bodies in steady states (Hyman, 2004).

2.4 Navier-Stoke equations

Our work deals with incompressible fluid simulation and is entirely governed by the

famous Navier-Stoke equations. Because of their importance, in this section, we

will briefly explain the derivation of these equations to help the reader understand

the underlying physical concepts as well as the methods to solve these equations.

For a more complete explanation of these equations in the computer graphics

context, we refer the reader to (Bridson and Müller-Fischer, 2007).

The Navier-Stoke equations are a set of partial different equations (PDE) that

hold through out the simulated fluid volume. They are written as:

∂~u

∂t
= ~g − ~u · ∇~u− 1

ρ
∇p+ υ∇ · ∇~u (2.1a)

∇ · ~u = 0 (2.1b)

The symbols used in these equations are explained as below:

• ~u : is used to represent the velocity field of the fluid volume.

• p : stands for the pressure.

• ρ : stands the fluid density.

• ~g : stands for the gravitational acceleration. Note that, in application that

additional control is required, control forces can be added on top of the
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gravity. And hence, ~g is more generally called “body forces” because it is

applied through out the fluid volume.

• υ : stands for the fluid’s kinematic viscosity.

• ∇ : stands for the gradient operator that is commonly used in calculus.

• The dot · : stands for the dot product operation.

The first differential equation (2.1a) is sometimes called the “momentum equa-

tion”. Although looking quite complex, it is actually derived from the fundamental

Newton’s second principal which govern how an object accelerates given the force

acting on it: ~F = m~a.

To derive the equation (2.1a), we start with a model of the fluid movement. The

most common way of modelling the fluid flow is using a particle system, that is to

think of the fluid as consisting of very small fluid blobs. Each blob has a mass m

and a volume V and a velocity ~u. In order to integrate the system over time, we

need to figure out the forces acting on a fluid blob. Then the equation ~F = m~a

tells us how the fluid blob accelerates. The acceleration of the fluid blob is the

time derivative of its velocity:

~a =
D~u

Dt
(2.2)

The forces that act on the fluid blob then can be related to its velocity:

~F = m
D~u

Dt
(2.3)

The most obvious force acting on the blob is gravity m~g. Other part of the fluid

also exerts forces on the blob. First, there is the fluid pressure force. The high

pressure region will push against the lower pressure region. We are however, not

interested in the pressure itself but the difference of pressure between the regions.

The simplest way to measure this difference is to use the gradient operator: ∇p.
We need to integrate this over the fluid blob volume to get the pressure force:

~Fpressure = −V∇p (2.4)
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V is the volume of the fluid blob. The negative sign is from the fact that the force

will point away from high pressure region, toward to lower pressure region. Here

we use the gradient operator ∇ to measure the spatial differences in the pressure

field. The discretization of this operator will be shown in later section.

The second type of force that exerts on the fluid blob from other part of the fluid

is the viscous force. Just like frictional force, viscous force is caused by the fluid

blobs moving at different velocities rubbing against each other. The force tries

to minimize the difference in velocities of nearby fluid blobs. We can use the

differential Laplacian operator ∇ · ∇ to measure the difference of the velocity of

the fluid blob with the surrounding. To get the viscous force, we multiply it with

the dynamic viscosity coefficient and integrate over the fluid blob’s volume.

~Fviscosity = V µ∇ · ∇~u (2.5)

Putting everything together, we have:

m
D~u

Dt
= m~g − V∇p+ V µ∇ · ∇~u (2.6)

Divide both side with V we have

ρ
D~u

Dt
= ρ~g −∇p+ µ∇ · ∇~u (2.7)

We divide both side by the density ρ to get:

D~u

Dt
= ~g − 1

ρ
∇p+ υ∇ · ∇~u (2.8)

υ is the kinematic viscosity equal to
µ

ρ
.

We almost arrive at the momentum equation (2.1a). In equation (2.8) we use the

material derivative, the reason for this is that velocity of a fluid particle depends

on both time and its position. By definition material derivative of a quantity can
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be expanded using the total derivative as:

Dq

Dt
=

d

dt
q(t, ~x)

=
∂q

∂t
+
∂q

∂~x
· d~x
dt

=
∂q

∂t
+∇q · ~u

(2.9)

Substitute the material derivative in (2.9) into (2.8) we have our momentum equa-

tion:
∂~u

∂t
+ ~u · ∇~u = ~g − 1

ρ
∇p+ υ∇ · ∇~u (2.10)

The second equation in the Navier Stoke system, equation (2.1b) is sometimes

called the diversion free condition or incompressibility condition of the fluid. The

reason for this condition is that we assume the fluid keeps constant volume at all

time. While in reality, fluid might change its volume, but that will only noticeable

under extreme circumstances such as incredibly high pressure or in phenomena

such as explosion. In our case, we want to model the interaction between a moving

semi-rigid object and fluid under normal condition, hence, the compressibility of

the fluid can be ignored.

The assumption of incompressibility and constant volume of the fluid lead to the

fact that the amount of fluid that flow into and out of a constant fluid region must

be equal. Hence, the total rate of change of fluid velocity in all direction of the

fluid blob must be zero. The total rate of change of velocity can be measured using

the divergence operator (hence the name divergence free condition):

∇ · ~u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0

(2.11)

In this section, we have briefly presented the derivation of Navier-Stoke equations.

The method to solve these equations numerically to obtain a fluid simulator will

be discussed in section 3.3.1.
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Chapter 3

Methodology and Implementation

3.1 Components and Approach

Our goal is to examine the interaction between a moving semi-rigid 3D object and

then visualize the near-body hydrodynamics of the interaction. In this section we

will go through the components and the key steps in our algorithm.

The first important component of our algorithm is the 3D object, which is modelled

as a series of fixed number of key-frames. Its movement is obtained when the key

frames are played, the time step between each key frame is known. Each key frame

is a 3D triangle mesh, whose normals at vertices and faces points outward from

the mesh. We use triangle mesh for generality purpose but any type of mesh such

as procedural mesh as in section 4.2 can also be used as long as the mesh can be

voxelized and the velocity of boundary voxels can be calculated in some ways.

The second component is the fluid simulator, which runs on a 3D simulation grid.

The simulator’s role is to update the velocity field on the simulation grid. At each

instance, the simulator takes in a key frame, voxelizes it, calculates the boundary

voxels’ velocities, incorporates the velocities into the simulation grid and integrates

the simulation grid over time to calculate the new velocities at all other grid

points. The simulation time step should match the time step between the object’s

key frames, otherwise, we choose to interpolate the object’s key frames to have
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matching time steps.

The whole process is summarized in figure 3.1:

Figure 3.1: Algorithm summary

Since our objective is to visualize the near-body hydrodynamics characteristics

given the object’s movement, hence, the movement can be considered unchanged

and defined by fixed key frames. Thus, the voxelization, and calculation of bound-

ary cells’ velocities can be considered preprocessing steps. For real time application

where the object movement is unpredictable, the object meshes and its boundary

voxels’ velocities must be voxelized and calculated online.

3.2 3D Model voxelization

Any general object constructed from several 3D triangular mesh key frames can be

voxelized. The models we are interested in this project are laser scanned models

of human-bodies. We assume the motion comprises of a fixed number of key

frames, as is the case with conventional motion capture. To generate the model’s

motion, we bind the external geometry of the model to a skeletal structure, whose

movement deforms the skin as guided by a pre-defined set of deformation weights

(Wang and Phillips, 2002). As a result, each key frame of the model is set up to

have the same number of vertices and faces, which are well corresponded between

key frames. This is an important property of our 3D model as it facilitates a simple

calculation method for boundary voxels’ velocities.
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The voxelization step essentially classifies the space around the geometry of each

key frame at the same resolution as fluid simulation grid’s resolution. When the

geometry is situated in the fluid simulation grid, each spatial grid cell will be

classified as an interior, boundary or exterior cell. Due to the discretization of

the space, the grid cells cannot faithfully reconstruct the geometry volume. As

a result, a boundary cell might not lie on the actually geometry surface, hence

we need a clear definition of what it means by an exterior cell, interior cell and a

boundary cell:

• Exterior cells are cells whose center points lie completely outside of the ge-

ometry.

• Interior cells are cells whose center points lie completely inside the geometry

surface and are not adjacent to any exterior cell.

• Boundary cells are cells whose center points lie on the geometry’s triangles,

or lie inside the geometry but are adjacent to at least one exterior cell.

This definition makes sure that there is not any whole in the voxelized volume

hence preventing the fluid to flow through the object.

Several methods exist for voxelizing a general polyhedral models, of which we

employed the method similar to (Baerentzen and Aanaes, 2005).

The first step is to classify whether a grid point lies inside or outside of the key

frame’s geometry. Algorithm 1 contains the pseudo-code for this step. Basically,

for each of the grid points, we find the closest point to it on the geometry, and

then use the dot product of the vector between the two points and the normal

at the closest point to decide whether the grid point lie inside or outside of the

geometry.

We should note that in Algorithm 1 the normal ~n is not the real normal of the

geometry, but rather the pseudo-normal calculated as weighted average of the

geometry faces’ normals. The calculation of this pseudo-normal gives a more ac-

curate representation of the geometry’s vertices’ normals than traditional average
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Algorithm 1 Classifying the grid points

for each grid point P do

closestPoint = NULL

for each triangle T of the geometry do

P1 ← Closest point on T to P

if closestPoint = NULL or distance(P ,P1) < distance(P , closestPoint)

then

closestPoint ← P1

end if

~n ← Geometry normal at closestPoint

~x ← vector from P to closestPoint

if ~n · ~x ≥ 0 then

insideSet ← P

else

outsideSet ← P

end if

end for

end for
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normals. More detailed explanation for the use of the pseudo-normal is given in

section 3.2.1.

After classification of the inside voxels and outside voxels, the boundary voxels

can be easily found. We simply iterate through all the inside voxels. The ones

that have at least one exterior voxel adjacent to it will be considered the boundary

voxels.

After all the key frames have been voxelized, the next step is to calculate the

boundary voxels’ velocities. Since we do not have the correspondences of the

boundary voxels between two key frame, we choose to approximate the velocities

through the vertex velocities of the actual mesh. In figure 3.2, we calculate the

velocity of the closest point P’ of boundary voxel P and assign that velocity to

voxel P. The velocity of P’ is calculated as the interpolation of the velocities of the

three vertices of the triangle containing P’. If it is an edge or vertex that P’ falls

on, then the interpolation will be from two vertices and one vertex respectively.

The velocity of a vertex is calculated through finite differencing the position of

Figure 3.2: Velocity of a boundary voxel is approximated as the velocity
of its closest point on the mesh, which is interpolated from the velocities
of the vertices of the containing triangle.

that vertex and the corresponding vertex in the next key frame.
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3.2.1 Angle weighted pseudo-normal

As has been mentioned earlier, we used the angle-weighted normals instead of

average normals for a point on the geometry surface. This is a more accurate

measurement of the true object’s shape as it can avoid bias when a vertex has

many incident faces, as seen in figure 3.3. Hence, we can avoid false classification

of exterior point as interior point when using algorithm 1, as in the case of point

S in figure 3.3.

Figure 3.3: The normal at the vertex is changed if the triangle is divided
into multiple smaller triangles. The averaged normal is biased toward the
direction of the smaller triangles’ normals.

The formulation of angle-weighted normal is straight forward:

~n =

∑n
i=1 αi ~ni∑n
i=1 αi

(3.1)

Where as αi is the incident angle on the ith face that contains the point P at which

we are calculating the normal. This is illustrated in figure 3.4. When the point

P falls on exactly one face, the formula degenerate into exactly the normal of the

face:

~n =
2π~nf

2π
= ~nf (3.2)
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Figure 3.4: The angle weighted normal.

3.3 Fluid simulator

The fluid simulator is the most complicated component of our system. We build

the simulator by numerically solve the Navier-Stoke equations (2.1). At each time

step, the solver will integrate overtime to find new velocity value for the fluid

field. Beside the normal steps needed for the velocity field integration, we need to

incorporate one extra step to treat the velocities at the object boundary cells.

In section 3.3.1, we will break down the Navier-Stoke equations to see the required

steps for the fluid simulation and in section 3.3.2 we will go into the detailed

implementation of the simulator and also how to implement the extra step for

incorporation of the object’s movement.

3.3.1 Breaking down the Navier-Stoke equations

The momentum equation (2.1a) is quite complicated at the first glance. There

are four terms in this equation, namely, the advection term −u · ∇u, the diffusion

term υ(∇·∇u), the pressure term −1

ρ
∇p and the acceleration term due to external

forces, and lumped under ~g. There are multiple ways of solving the momentum

equation, but we will employ the operator splitting scheme which works particu-

larly well and very suitable for graphics application. The motivation for using this
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scheme is that we can divide the equation into smaller, more manageable pieces

and solve each piece with the special numerical method that is suitable for it. We

should note that it is possible to solve all the terms at once, however, it will force

us to deal with the complexity of the whole equation and the algorithm might not

be as efficient as the employment of a special algorithm for each of the term.

Similar to Forward Euler method for solving differential equation numerically,

the splitting scheme is also a first order accurate method. To understand this

method, let us look at a simple example to illustrate how the splitting scheme

works. Suppose we want to solve a simple ordinary differential equation:

dq

dt
= f(q) + g(q) (3.3)

We want to obtain the new value of qn+1 after a small period of time ∆t from the

current value qn. The splitting scheme says that we can do this through Forward

Euler method in two step. First, we solve for an intermediate value q1:

q1 = qn + ∆tf(qn) (3.4)

And second, we solve for the value qn+1 from q1:

qn+1 = q1 + ∆tg(q1) (3.5)

Solving the equation 3.3 into steps, we have effectively divided a more complicated

problem into two simpler independent problems where we might have special nu-

merical methods that can solve them more efficiently. The two simpler differential

equations are:

dq

dt
= f(q) (3.6a)

dq

dt
= g(q) (3.6b)

Applying this scheme to our momentum equation we can solve the equation through

solving four independent differential equations independently and sequentially.
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The four equations are:

∂~u

∂t
= ~g (3.7a)

∂~u

∂t
= −u · ∇~u (3.7b)

∂~u

∂t
= υ∇ · ∇~u (3.7c)

∂~u

∂t
= −1

ρ
∇p s.t. ∇ · ~u = 0 (3.7d)

At each time step, the simulator would solve these four equations sequentially,

as shown in figure 3.5. For each step, the input will be the velocity field of the

previous step. The easiest step in the above process is the add force step. This

Figure 3.5: The sequence of steps for the simulator in each time steps.

step is used to add in the gravity force or the control force to direct the fluid flow.

We assume that the animator force can be stored in a force field similar to the

velocity field, and the force at the position ~x will be F (x). The velocity field after

applying this step will be:

~u1(x) = ~F (x)∆t (3.8)

The advection is responsible for swirling motion and the turbulences of the fluid.

A disturbance somewhere in the fluid is transported to another position in the

fluid volume by its own movements. This is a difficult term to solve and is the

cause of the instability in many methods. Intuitively, we can solve this with the

Forward Euler method. In one dimension we can write the equation as following:

∂u

∂t
= −u∇u

= −u∂u
∂x

(3.9)
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Converting 3.9 into discretized form, we have:

un+1
i − uni

∆t
= −u

uni+1 − uni−1
2∆x

(3.10)

Here i is the index of the ith cell along the discretized dimension x. ui and ui+1 are

the velocities at two adjacent cells. Rearrange this equation, we have an explicit

formula for the velocity field in the next time step in one dimension (this can easily

be extended to three dimensions):

un+1
i = uni −∆tuni

uni+1 − uni−1
2∆x

(3.11)

This seems to be a really simple formula, there are unfortunately serious problems

with this Forward Euler method. Firstly, the Forward Euler has been proven to

be unconditionally unstable for the discretization of the spatial derivative ∇u.

What it means is that if we keep integrating the velocity field over time, no matter

how small the time step is, the integration will inevitably introduce some errors

and eventually blow up the simulation as the error is accumulated over time.

Secondly, the very high frequency components of the solution will erroneously

register as having zero or near zero value spatial derivative (Bridson and Müller-

Fischer, 2007). Hence, this component will not be integrated and changed much

more slower than other low frequency component. This will introduce serious

errors to the simulation and affect the visualization of the result.

Fortunately, there is a method that borrows the Lagrangian view of the fluid. Using

this view, fluid is just a set of small particles that are moving around. Because

of this, the velocity of a point ~x is actually just the old velocity of the particle

that end up at that position at the current time. Applying this reasoning to the

velocity field we can get the semi-Lagrangian method, used by (Stam, 1999). What

we want is to figure out the velocity at a grid position ~x. Imagine that there is a

virtual particle that flow along with the fluid and end up at the position ~x. The

starting position of the particle would be:

~xS = ~x−∆t~u1(~x) (3.12)
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The value we want to know is the new velocity at position ~x, ~u2(~x). This value

will be exactly the current velocity at the starting position of the virtual particle

ending up at x which is ~u1(~xS). But what if the position ~xS is not on the grid? The

answer is that we can interpolate the velocity at ~xS from the surrounding velocities

value. For simplicity, we use tri-linear interpolation of the surrounding voxels’

velocities. More accurate interpolations scheme are available. The advection step

is summarized in figure 3.6.

Figure 3.6: The new velocity at ~x is interpolated from the old velocity
surrounding ~xS. The points surrounding the position ~xS are the centres
of the surrounding cells.

And the final formula for u2 is:

~u2(~x) = ~u1(trackback(~u1, ~x)) (3.13)

Where trackback(~u1, ~x) is the function that gives the tracked back position from

~x in the velocity field ~u1.

Under careful numerical analysis, the interpolation made by this advection step

results a problem known as numerical dissipation (Bridson and Müller-Fischer,

2007). This means that instead of solving the original PDE equation 3.7b, we

actually solved a modified PDE of the form:

∂~u

∂t
= −~u · ∇~u+ ~u∆x∇2~u (3.14)
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The extra term is a viscosity like term, which makes the fluid appear more viscous

than normal, and gradually over time the fluid loses its energy. There are methods

to reduce the effect of this problem. The details of these methods can be found in

(Bridson and Müller-Fischer, 2007).

The third step to solve the Navier-Stoke equations is the diffusion step, which

accounts for the change in velocity field due to viscosity of the fluid. This step is

equivalent to the diffusion equation:

∂~u3
∂t

= υ∇ · ∇~u2 (3.15)

Similar to the advection equation, we can solve this directly using the Forward

Euler method and use finite differencing to discretize the equation. However, doing

it that way can cause the instability for the simulation process. The problem is

that when the viscosity υ or the time step is large, the effect of diffusion might

be spread over a range of several cells. The direct finite differencing on the other

hand, only account for the diffusion of adjacent cells. To go around this problem,

we once again borrow the tracking back idea from the advection step. Instead of

integrating forward from the current velocity field ~u2, we choose to find ~u3 that

when diffuse backward we obtain ~u2 the equation for this process is as follow:

~u3 −∆tυ∇ · ∇~u3 = ~u2 (3.16)

Discretizing the Laplacian operator in the above equation results in a system of

linear equation, which can be solve effectively using existing iterative methods.

Our implementation for this diffusion step will be presented in section 3.3.2.

The final pressure step requires to find the pressure of the fluid. But what is

pressure and how to calculate the pressure field? Because pressure is the push of

one water region against another region, it actually relates to the incompressibility

of the fluid. The more fluid flows into an infinitesimal volume the more pressure

it creates to push fluid out of the volume on the other side. So we can consider

pressure as forces that ensures the incompressibility of the fluid volume. Mathe-

matically we can relate the velocity and the pressure through the incompressibility
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equation,
∂~un+1

∂t
= −1

ρ
∇p .s.t ∇ · ~un+1 = 0

~un+1 = ~u3 −∆t
1

ρ
∇p .s.t ∇ · ~un+1 = 0

(3.17)

Multiply each side of the equation (3.17) with ∇· we have:

∇ · ~un+1 = ∇ · ~u3 −∇ ·∆t
1

ρ
∇p .s.t ∇ · ~un+1 = 0 (3.18)

Substitute the divergence free constraint we have:

0 = ∇ · ~u3 −∇ ·∆t
1

ρ
∇p

∇ · ~u3 = ∆t
1

ρ
∇ · ∇p

(3.19)

From (3.19) we can calculate the pressure by discretize the ∇· and ∇·∇ operator.

We will not discuss the discretization of these operators, cause a complete reference

can be found in (Bridson and Müller-Fischer, 2007). Substitute the pressure we

calculated in (3.19) into (3.17) we can calculate the new velocity field ~un+1. This

concludes one cycle of the fluid simulator.

We have gone through the steps to evolve the fluid velocity field from the current

value ~un to the new value ~un+1. The next section 3.3.2 discusses the implementa-

tion details of the fluid simulator and the incorporation of the object movements.

3.3.2 Grid structure for fluid simulation

Before going into the details of the implementation, we should first define the

grid structure that our whole system would run on. The grid structure is used to

represent the fluid state as well as for voxelization of our models. The visualization

of the grid is shown in figure 3.7. The velocity field is a 3D grid of known size

S1xS2xS3 in dimension x, y, z respectively. The voxels are of equal size h. For

each voxel, we define a velocity vector ~v at the center and a pressure value p.

In our implementation, we represent the velocity field is represented with three

dimensional float C++ arrays. We have one array for each component x, y or
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Figure 3.7: The grid structure for the fluid simulator and the voxeliza-
tion of object models.

z of the velocities and one array to store pressures in the voxels. We also need

to handle the boundary of the grid. For convenience, we pad each array with

2 extra units in each dimension, therefore the each array will be of dimension

(S1 + 2)x(S2 + 2)x(S3 + 2). With this padding, we can avoid lengthy conditional

when access the cells at position 0 or position S1+1 or S2+1 or S3+1 of the grid.

These edge cells also contain the boundary values that establish the boundary

conditions of the simulation.

3.3.3 Implementing the add force step

We assume the accelerations we want to add into the velocity field is stored in 3D

arrays in a similar fashion with the storage of the velocity fields. Each component

of the acceleration in x or y or z dimension is stored in a 3D float array. The

algorithm for add force step is listed in algorithm 2. This algorithm only add one

component of the velocity field with one component of the force. To complete the

add force step, we repeat this procedure with all three components of the velocity

field.

For additional convenience, the user can also add the force at specific position in
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Algorithm 2 The add force procedure.

1: procedure AddForce(Array3D u,Array3D f , float timeStep) . Add the

acceleration in f into velocity field u

2: for i = 1 to S1 do

3: for j = 1 to S2 do

4: for k = 1 to S3 do

5: u[i][j][k] += f [i][j][k]*timeStep;

6: end for

7: end for

8: end for

9: end procedure

the velocity field with the algorithm 3

Algorithm 3 The add force procedure.

1: procedure AddForce(Array3D u,int x, int y, int z, float forceV alue, float

timeStep)

2: u[x][y][z] += forceV alue*timeStep;

3: end procedure

3.3.4 Implement the advection step

The implementation of the advection step implements equation (3.7b). It follows

exactly the simple backtracking method described earlier. As has been shown

in figure 3.6 the new velocity at point P is calculated as the linear interpolated

velocity at point P ′ which is tracked back from P over one time step. We use

tri-linear interpolation of the 8 cells surrounding the point P ′. In the case that

P’ lies outside the grid’s boundary, we choose to clamp the indexes and get the

velocity that is nearest to P ′ as the interpolant. We treat each component of the

velocity field separately and advect each component independently.

Suppose P ′ has position (x, y, z) on the grid. Let (i, j, k) be the integer such that

i ≤ x ≤ i + 1, j ≤ y ≤ j + 1, k ≤ z ≤ k + 1 then the eight cells that surround
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P ′ are at positions: (i, j, k), (i + 1, j, k), (i, j + 1, k), (i, j, k + 1), (i + 1, j + 1, k),

(i+ 1, j, k + 1), (i, j + 1, k + 1), (i+ 1, j + 1, k + 1).

Then the advection can be done as in algorithm 4. In this algorithm, we passed

in the quantity we wanted to advect as old quantity oq and stored the advected

result as new quantity in nq. The old quantity can be the current velocity field

component, or an array storing any quantity such as heat of the fluid. We also

passed in the current velocity field in ux, uy, uz. We also specified the type of

quantity in oq. The variable name dimension signals that most of the time, oq

is the velocity components in different dimensions. If dimension = 1, we are

advecting the x component of the velocity and 2 for the y dimension, and 3 for the

z dimension. If dimension = 0, we are not advecting the velocity but another non-

velocity value. At the end of the algorithm, we had to take care of the boundary

values of the advected result. Here we choose to set the boundary values to zeros

because the fluid cannot flow at the boundary. The routine SetBoundaryZero

will be discussed in the separated section 3.3.7.

3.3.5 Implement the diffuse step

The diffusion step is responsible for propagating fluid velocity from one voxel to

another voxels due to effect of viscosity. A voxel can exchange velocity with its six

adjacent neighbours, two in each direction. The amount of exchange is governed

by equation (3.15). However, as discussed earlier, due to stability problem, we will

use equation (3.16). The equation is rewritten here for reading convenience:

~u3 −∆tυ∇ · ∇~u3 = ~u2
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Algorithm 4 The advection procedure.

1: procedure Advect(Array3D oq,Array3D nq, Array3D ux, Array3D uy, Ar-

ray3D uz, Integer dimension)

2: factor = timeStep/cellSize

3: for i = 1 to S1 do

4: for j = 1 to S2 do

5: for k = 1 to S3 do

6: x = i - ux[i][j][k]*factor

7: y = j - uy[i][j][k]*factor

8: z = k - uz[i][j][k]*factor

9:

10: i1 = floor(x), i2 = i1 + 1

11: j1 = floor(y), j2 = j1 + 1

12: k1 = floor(z), k2 = k1 + 1

13:

14: r1 = x - i1, r2 = 1 - r1

15: t1 = y - j1, t2 = 1 - t1

16: s1 = z - k1, s2 = 1 - s1

17:

18: nq[i][j][k] =

19: r1 * (t1 * (oq[i1][j1][k1] * s1 + oq[i1][j1][k2] * s2) +

20: t2 * (oq[i1][j2][k1] * s1 + oq[i1][j2][k2] * s2)) +

21: r2 * (t1 * (oq[i2][j1][k1] * s1 + oq[i2][j1][k2] * s2) +

22: t2 * (oq[i2][j2][k1] * s1 + oq[i2][j2][k2] * s2))

23:

24: SetBoundaryZero(nq, dimension)

25: end for

26: end for

27: end for

28: end procedure
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We need to discretize the Lapalacian operator ∇ · ∇ in order to implement the

equation:

∇ · ∇~u3 =
∂2~u3
∂x2

+
∂2~u3
∂y2

+
∂2~u3
∂z2

=
~u3(i+ 1, j, k) + ~u3(i− 1, j, k)− 2~u3(i, j, k)

∆x2
+

~u3(i, j + 1, k) + ~u3(i, j − 1, k)− 2~u3(i, j, k)

∆y2
+

~u3(i, j, k − 1) + ~u3(i, j, k − 1)− 2~u3(i, j, k)

∆z2

(3.20)

Because we are using square grid, ∆x = ∆y = ∆z = h. Substitute this discretiza-

tion into equation (3.16) we have an equation relate the velocities of the voxels in

the new velocity field ~u3 to those of the old velocity field ~u2.

~u2(i, j, k) =~u3 −∆tυ(
~u3(i+ 1, j, k) + ~u3(i− 1, j, k)− 2~u3(i, j, k)

h2
+

~u3(i, j + 1, k) + ~u3(i, j − 1, k)− 2~u3(i, j, k)

h2
+

~u3(i, j, k − 1) + ~u3(i, j, k − 1)− 2~u3(i, j, k)

h2
)

(3.21)

Each voxel of the grid give us an equation like (3.21). These equations construct

a sparse linear equation system and can be solved efficiently using a Gauss-Seidel

relaxation iterative solver. The pseudo-code for this is listed in Algorithm 5 Similar

to the advect algorithm, oq is the array that store the current quantity we want to

advect and nq is the place where we store the advected result. In our experience,

we use 20 iterations to solve the linear system with acceptable accuracy. The

number of iteration can be tuned for better accuracy. One intuitive way to tune

this parameter is that it should grow with the size of the grid. The larger the grid

the more iterations we need to get to the convergence of the solution. In some

implementations, instead of using a fix number of iterations we can measure the

amount of change between iterations to decide when to stop the algorithm.
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Algorithm 5 The diffuse procedure.

1: procedure Diffuse(Array3D oq,Array3D nq, Integer dimension, Float

visocsityCoefficient)

2: factor = visocsityCoefficient*timeStep*cellSize

3: for round = 1 to 20 do

4: for i = 1 to S1 do

5: for j = 1 to S2 do

6: for k = 1 to S3 do

7: if round = 0 then

8: nq[i][j][k] = (oq[i][j][k] +

9: factor*(oq[i− 1][j][k] + oq[i+ 1][j][k] +

10: oq[i][j + 1][k] + oq[i][j − 1][k] +

11: oq[i][j][k + 1] + oq[i][j][k − 1])

12: )/(1+6*factor)

13: else

14: nq[i][j][k] = (oq[i][j][k] +

15: factor*(nq[i− 1][j][k] + nq[i+ 1][j][k] +

16: nq[i][j + 1][k] + nq[i][j − 1][k] +

17: nq[i][j][k + 1] + nq[i][j][k − 1])

18: )/(1+6*factor)

19: end if

20: end for

21: end for

22: end for

23: end for

24: SetBoundaryZero(nq, dimension)

25: end procedure
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3.3.6 Implement the project step

This step ensures the divergence free condition of the fluid field. We will use

equation (3.7d) to implement this step. As seen in equation (3.17) we can calculate

the next velocity field ~un+1 from the ~u3 by subtracting from it the gradient of the

pressure field. Equation (3.19) gives us a way to calculate the pressure field.

∇ · ~u3 = ∆t
1

ρ
∇ · ∇p

In section 3.3.5 we have discussed how to discretize the Laplacian operator ∇ ·∇.

Now we just need to discretize the operator ∇· and then we can use the iterative

Gauss Seidel solver similar to the one in 3.3.5 to solve for pressure field p.

The discretization of the left hand side is as following:

∇ · ~u3 =
∂(~u3)y
∂y

+
∂(~u3)y
∂y

+
∂(~u3)z
∂z

=
(~u3(i+ 1, j, k))x − (~u3(i− 1, j, k))x

2∆x
+

(~u3(i, j + 1, k))y − (~u3(i, j − 1, k))y
2∆y

+

(~u3(i, j, k + 1))z − (~u3(i, j, k − 1))z
2∆z

(3.22)

where ∆x = ∆y = ∆z = h.

After discretizing the Laplacian operator on the right hand side of equation (3.19)

and solving the linear system we can easily substitute the pressure field into equa-

tion (3.17) to calculate the final velocity field ~un+1.

~un+1 = ~u3 −∆t
1

ρ
∇p
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The gradient of the pressure field can be easily discretized:

∇p(i, j, k) = (
∂p

∂x
,
∂p

∂y
,
∂p

∂z
)

= (
p(i+ 1, j, k)− p(i− 1, j, k)

2∆x
,

p(i, j + 1, k)− p(i, j − 1, k)

2∆y
,

p(i, j, k + 1)− p(i, j, k − 1)

2∆z
)

(3.23)

where ∆x = ∆y = ∆z = h.

Now, we have gathered all the ingredients needed to implement the project step.

The pseudo-code for this step is listed in algorithm 6 and 7.

3.3.7 Enforce the fluid volume boundary

In our implementation, we assumed that the fluid is moving within the containment

of a rigid wall. There are many ways to enforce this constraint. One can set fluid

velocity at the boundary voxels such that the fluid can only flow along the rigid

wall but not flow into the rigid wall. This means that at the left and right walls,

the x component of the fluid velocity is set to zero. On the other hand, one can

make the fluid bounce back when it hit the wall. This means that we set the

velocity at the boundary voxels to be of the opposite sign to the velocity in the

adjacent voxels. Each method of boundary handling will create different effect on

the fluid volume. Intuitively, we often observe that fluid flow along hard wall of

the container instead of bouncing back, hence we choose the first method in our

implementation. The pseudo-code is listed in algorithm 8.

3.3.8 Incorporate the object movement

We have seen how to implement the fluid solver. Our last step in the implemen-

tation is the incorporation of the object movement into the fluid volume. Here,

we have to especially care about the fluid velocity at the boundary voxels of the
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Algorithm 6 The project procedure.

1: procedure Project(Array3D ux,Array3D uy, Array3D uz)

2: Array3D p, d . Store the pressure and divergence calculations

3: for i = 1 to S1 do

4: for j = 1 to S2 do

5: for k = 1 to S3 do

6: d[i][j][k] = (ux[i+ 1][j][k] - ux[i− 1][j][k] +

7: uy[i][j + 1][k] - uy[i][j − 1][k] +

8: uz[i][j][k + 1] - uz[i][j][k − 1])/(2*cellSize)

9: p[i][j][k] = 0

10: end for

11: end for

12: end for

13: f = cellSize*cellSize*fluidDensity/timeStep

14: for round = 1 to 20 do

15: for i = 1 to S1 do

16: for j = 1 to S2 do

17: for k = 1 to S3 do

18: p[i][j][k] = (p[i+ 1][j][k] + p[i− 1][j][k] +

19: p[i][j + 1][k] + p[i][j − 1][k] +

20: p[i][j][k + 1] + p[i][j][k − 1] - f*d[i][j][k])/6

21: end for

22: end for

23: end for

24: end for
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Algorithm 7 The project procedure (continue).

25: for i = 1 to S1 do

26: for j = 1 to S2 do

27: for k = 1 to S3 do

28: ux[i][j][k] -= 0.5*(p[i+ 1][j][k] - p[i− 1][j][k])/cellSize

29: uy[i][j][k] -= 0.5*(p[i][j + 1][k] - p[i][j − 1][k])/cellSize

30: uz[i][j][k] -= 0.5*(p[i][j][k + 1] - p[i][j][k − 1])/cellSize

31: end for

32: end for

33: end for

34: SetBoundaryZero(ux, 1)

35: SetBoundaryZero(uy, 2)

36: SetBoundaryZero(uz, 3)

37: end procedure

voxelized object model. One hard constraint we need to maintain is that the fluid

cannot flow into the object body. Our idea to implement this step is that we

calculate the local interactions of the fluid layer at the object boundary voxels and

the propagation of disturbance will be automatically taken care of by the fluid

simulator.

For any given boundary voxel on any given key frame we define following four

variables:

• ~vf : the current fluid velocity at the voxel.

• ~vo : the object velocity at the voxel. This velocity is calculated as explained

in section 3.2

• ~n : the normal of the object boundary at the voxel. This is the approximated

angle weighted normal as explained in section 3.2.1. The normal is pointing

out of the object surface.

• υ : the viscosity coefficient that control how viscous the fluid is when flow

along the object surface.
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Algorithm 8 Setting the boundary velocity routine.

1: procedure SetBoundaryZero(Array3D u, Integer dimension)

2: if dimension = 1 OR dimension = 0 then

3: for j = 0 to S2+1 do

4: for k = 0 to S3+1 do u[0][j][k] = 0 u[S1+1][j][k] = 0

5: end for

6: end for

7: end if

8: if dimension = 2 OR dimension = 0 then

9: for i = 0 to S1+1 do

10: for k = 0 to S3+1 do u[i][0][k] = 0 u[i][S2 + 1][k] = 0

11: end for

12: end for

13: end if

14: if dimension = 3 OR dimension = 0 then

15: for i = 0 to S1+1 do

16: for j = 0 to S2+1 do u[i][j][0] = 0 u[i][j][S3 + 1] = 0

17: end for

18: end for

19: end if

20: end procedure
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The fluid must not flow through the object boundary and into the body hence the

relative object fluid velocity must be greater or equal to zero when projected on

the normal vector. Let ~vfn and ~von be the velocity of the fluid and the boundary

at the same voxel along the normal vector direction. We have:

~vfn = (~vf · ~n)~n

~von = (~vo · ~n)~n
(3.24)

The relative velocity along ~n is ~vrn = ~vfn − ~von. If ~vrn is in the same direction

with ~n then the fluid is flowing away from the object and at the same time being

pushed by the object. Hence we reassign the fluid velocity at the voxel as:

~vfn = ~vfn + ~von (3.25)

If ~vrn is in the opposite direction with ~n then the fluid is flowing against the

object, but it cannot go through hence the fluid velocity is reassigned such that it

is exactly the object velocity at the voxel:

~vfn = ~von (3.26)

Grab the two equations together we calculate the normal component of the fluid

velocity at boundary voxel as following:

~vfn =

~vfn + ~von if~vrn~n > 0

~von if~vrn~n ≤ 0
(3.27)

The tangent component of the fluid velocity is also affected by the object movement

due to the friction between the surface and the fluid. We use the Newtonian fluid

equation to address this frictional force. The Newtonian fluid equation is:

τ = −υdu
dx

(3.28)

Here, τ is the shear stress between the surfaces. du is the difference in the velocities
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between the two surface and dx is the height of the fluid layer. Let the tangent

components of the fluid velocity and the object velocity to be:

~vft = ~vf − ~vfn
~vot = ~vo − ~von

(3.29)

Then according to the Newtonian fluid equation, the new tangent component of

the fluid velocity is:

~vft = ~vft − υ
~vft − ~vot

h
(3.30)

After calculating the tangent and the normal components of the fluid velocity at

the boundary voxels, we simply add up the two to get the final fluid velocity:

~vf = ~vft + ~vfn (3.31)

This modification of the fluid velocity at the object boundary voxels is done before

the projection step to make sure the changes are propagated to other part of the

fluid volume.
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Chapter 4

Results

In this chapter, we will present the simulation and visualization results obtained

from our program. In particular, we will presented three types of results:

• Visualizations of the near body hydro-dynamics. These results demonstrate

our ability to obtain useful information and visualize it from the dynamics

simulation. This is the main focus of our work.

• The application of our method to the enhancement of procedural fire trail.

This application demonstrates the potential of our method in applications

that require real time interaction between fluid and other scene objects, e.g.

fire.

• The application of our method for general 3D semi-rigid objects. This appli-

cation demonstrates the generality of our method, in which, the interaction

model is applicable for almost any situation, whether the objects are real life

captured models or just hypothetical models for experimental purposes.

4.1 Visualization of near-body hydro-dynamics

Apart from other application that will be presented in later sections, this work’s

main focus is to visualize the near body characteristics obtained from the fluid
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flow fields. While it is possible to apply to any motion, it will be more meaningful

and useful when we apply this work to real life situation. We chose to apply

our simulation and interaction models to the motion capture data of a human

swimmer. The ultimate goal of our simulations is to understand and identify the

surface hydrodynamics that support or limit the performance of the human athlete.

4.1.1 Data acquisition

We will only briefly discuss the underwater motion capture process, whose details

befit its own paper and are secondary in the context of this work. Our setup

involves two underwater cameras that are firmly anchored against the side-wall of

a swimming pool. The pair of cameras are placed 3 meters apart, with a slight

tilt towards the center of the capture volume. A set of four buoyant and four

sunken markers were used to provide the camera calibration information. The most

challenging aspect of the underwater capture and calibration is the non-uniform

attenuation of light intensities. As such, our cameras have wide field of views

which require special care in accounting for severe radial distortion in the video

images. We calibrate the cameras using an implementation of the Direct Linear

Transform (Fitzgibbon, 2001), which accounts for radial lens distortion and require

only pairwise point relationships. We assume the light conducting environment to

be homogeneous (i.e., underwater) and hence, refraction is not a problem in our

case. Figure 4.1 shows frames of the underwater calibration setup and a swimmer’s

motion. To avoid errors that could be introduced in the digitization process, we

restrict ourselves to swimming motions that are planar to the direction of whole-

body motion, which is generally true of a submerged dolphin-kick movement. This

self-imposed constraint is solely to simplify digitization of the capture process; all

other parts of this work are fully functional in 3D.

After recovering the 3-D marker motion, we reconstruct the joint angles by fitting

the moving points to a skeleton rigged, laser-scanned geometry. The skinned

geometry deforms according to the joint kinematics that is obtained from the

motion capture data. Both the geometry and kinematics are then immersed into

the computational fluids simulator to estimate the hydro dynamical characteristics
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Figure 4.1: The underwater movements of the human swimmer are
recorded using a pair of conventional cameras in water-tight enclosures
and firmly anchored to the wall of the swimming pool. (LEFT) Camera
calibrations performed using a customized static frame which provides
eight markers whose pairwise distances are know. The coordinates of
the calibration markers are used to derive the intrinsic and extrinsic
parameters of the cameras. (RIGHT) The swimmer is outfitted with a
Lycra-made,full-body suit with customized fabric markers. The markers
partially assist the tracking process, but due to noise and image degrading
factors, tracking of markers is presently a semi-automatic, manually-
guided process.
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of the swimmer’s motion.

4.1.2 Near body hydrodynamics visualization results

Visualization of hydrodynamic characteristics around body surfaces is one of our

objectives. An advantage in using the Semi-Lagrangian method is that an abun-

dance of numerical information is readily available to illustrate spatio-temporal

near-body characteristics. A direct visualization of the pressure field provides

meaningful information about the experience of the performer during a cycle of

the movement.

Figure 4.2 shows a series of time lapsed images depicting pressure variations on

the lower leg as it performs a highly-intense downward “whip”. The color-coded

regions clearly shows that as the shank (red) is moving down, the thigh segment

has already initiated an upward cycle (blue). This surface characteristics obtained

from the simulation model is consistent with principles of sequential kinetic transfer

(Kreighbaum and Barthels, 1996), which advocates a smooth proximal-to-distal

successive joint rotations in order to maximize forward thrust (Maglischo, 2003).

One of the traditional ways to study near-body hydrodynamics is through the use

of specially-made tuft-suits. These full-body suits are made with fabrics that are

covered with short, hair-like strands. An underwater video recording of the swim-

mer’s movements exposes anomalies where surface flows are either not streamlined

or are introducing excessive resistance. The main disadvantage of this method is

that the stranded suit itself may introduce excessive resistance and drag, which

may result in performance degradation. Consequently, the dynamics of the record-

ing may not be representative of the swimmer’s peak performance.

By making use of the velocity flow field, we can display particle traces backward in

time. This achieves effects similar to tuft-suits, without the burden of the outfit.

Figure 4.3 shows a time-lapse sequence that incorporates particle traces from the

body surfaces. These traces are obtained directly from the fluid field using the

Semi-Lagrangian particle tracing backward in time. The lengths of the traces

can be varied to achieve different visuals. To illustrate that our simulator does
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Figure 4.2: Surface pressure variations on the frontal shank region
in a downward phase of the dolphin kick cycle. The proximal-to-distal
pressure variations are depicted as continuous color tone variations on
the shaded surface.

47



Figure 4.3: Time-lapse images showing one complete dolphin-kick cy-
cle(1/15 seconds per frame; viewed left to right, top to bottom), illus-
trating near-body path-lines that traces the characteristic flow fields sur-
rounding a moving boundary surface. Longer paths indicate faster motion
at the associated surface point. The path tracing technique was adapted
from the particle back tracing method used in the advection algorithm.
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Figure 4.4: Rapid dispersion of suspended particles in the dolphin kick
motion. Viewing order: top to bottom,, left to right.
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indeed simulate fully three-dimensional volumetric fluid flow, and not just body

surface effects, Figure 4.4 shows a simulation where planes of massless particles

were placed at regular intervals. The results of this simulation, though not the

near-body dynamics that we have focused on in this paper, is visually similar to

those that have obtained by others in the past e.g. (Foster and Metaxas, 1997;

Foster and Fedkiw, 2001; Enright et al., 2002; Carlson et al., 2004).

4.1.3 Tuning of simulation parameters

Various simulation parameters are required in the setting up for a fluid dynamic

simulation. These include integration time step, mesh densities, and volumetric

resolution. Generally, changing any parameter will result in different simulation

and numerical quantities. Further more In traditional computational fluid dynam-

ics simulation, parameters are required to be tuned carefully to avoid errors and

instability of the simulation. As such, we realized the importance of the parameter

tuning step.

Our strategy to obtain acceptable tuning values is as follows. We identify the

fundamental quantity which we are interested in. Typically, this quantity is an

integral of some dynamical quantity over the boundary surface. Next, through

a systematic process of parameter refinement, we identify the parameter values

where the value converges within some thresholds.

To illustrate our approach, the graph in figure 4.5 shows the convergence proper-

ties of the body surface pressure integral (Y-axis) against the simulation fluid cell

size (X-axis) (or alternatively, the resolution of the volume). These plots of near-

body quantities must show a convergent trend, for otherwise the Semi-Lagrangian

method cannot be considered a viable solution to the problem. From our experi-

ence, plots of parameter against body surface integrals does indeed converge. We

therefore analyse each plot, and determine sensible values for use in the simulation.

The values used must lie in the convergent zones of the collected quantities.
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Figure 4.5: Tuning grid resolution based on the convergence of total
pressure of 100 cells.

4.2 Application on fire enhancement

We also wanted to illustrate that the fluid velocity field and near body quantities

such as surface pressure can be useful in many applications. Although through

out our discussions, we focus on submerge swimming human, our method is also

applicable also for air and other objects.

Fire has long been one of interested effects in many areas such as in games and

movies. In (Shijun, 2010), the author has created procedural fire which approx-

imate real fire effect with particles of tear drop shape. Although it is not real

simulation of physical processes which create real fire, this approach can create

compelling looking animation of fire effect at the speed of hundreds of frames per

second. Further more, this approach can create novel, unreal effects such as volume

filling or path tracing fire, e.g. figure 4.6.

We have proposed to enhance these effects by extending them with fluid velocity

field. With this extension, we submerge the fire filled muscle-shape volume in the

fluid simulator just as our swimming human. When the muscle interacts with and

affects the fluid volume, we use the hydrodynamics characteristic in the velocity

field to move the left behind fire particles and create interesting and natural moving
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Figure 4.6: Volume filling (bottom) and path tracing (top) fire effects.
Image from (Shijun, 2010)

fire trail. We compare the fire trails in the case we use and don’t use the fluid

velocity field to see the effect of our approach as shown in figure 4.7.

As seen in the figure, when using the hydrodynamics, we are able to obtain a

natural looking fire trail. The fire particles in the fire trail exhibit fluid movement

(see the bottom of figure 4.7). When not using the hydrodynamics feature, the

fire particles in the trail stay in place and do not move as a coherent entity (see

the top of figure 4.7). The differences are shown more clearly in the accompanying

videos. This is one of many possible enhancements we could come up from the

combination of a fluid field and a procedural fire implementation. We look forward

to creating more interactions between them. Here, we have already been able to

create fire trail for a muscle shape volume, it will be interesting to extend this to

a novel moving human, which comprises of multiple muscles.

One problem of this application is that the volume movements are not known be-

fore hand, and hence it not possible to preprocess the voxelization. Fortunately,

the muscle is modelled procedurally and we can devise a simple voxelization strat-

egy for this kind of shape, which is explained briefly in 4.2.1.
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Figure 4.7: The fire trail created and animated not using the fluid
velocity field (TOP) and using the fluid velocity field (BOTTOM). Notice
how the fire trails in the are different. In the bottom of the figure, the
trail’s particles are more coherent and move together. In the top part,
the fire trail’s particles stay separately and do not move. This can be
observed more clearly in the accompanying videos.
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4.2.1 Real time voxelization

Figure 4.8: The creation of the muscle shape. Figure from (Keng Siang
and Ashraf, 2007)

The muscle is modelled as in figure 4.8a. At the center there is a action curve (the

black curve). This action curve is actually a bezier curve defined by three control

points. Denote the action curve as c(t). The muscle volume is defined such that

any cross section of the muscle at point t1 on c(t) and perpendicular to c(t) is a

circular disk with radius r1 dependent on t1:

r1 = SsinT (t1π) (4.1)

The constant S and T are parameters to control the bulge size and taper of the

muscle shape (Keng Siang and Ashraf, 2007). t1 is assumed to be in the range

(0, 1).

To voxelize the shape defined in this way, we can avoid using its triangle mesh to

do voxelization because the number of triangles might be large. Instead, we exploit

the implicit discrete representation of the muscle shape. We iterate through the

voxels, and for each voxel we decide whether it is outside or inside the volume

by calculating the distance from the voxel to the action curve. If the distance is

smaller than the radius at the projection point of the voxel on the curve, then the

voxel is inside the volume, else, it is out side.

Calculating the distance from the voxel to the bezier curve is not a fast operation.
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We would need to calculate the projection of the voxel on the curve, which requires

us to solve a polynomial equation of degree 3. We instead choose to discretize the

curve into segments to facilitate fast distance calculation.

Figure 4.9: Calculation of distance using discretized action curve and
its problem.

In figure 4.9, a voxel at point P can be classified as inside or outside by first

find the segment that contains its projection Q. If the distance between P and

Q is smaller than the shape radius at Q then P is inside, otherwise it is outside.

However, this strategy will create holes, as depicted in figure 4.9, because the

voxels in the hole areas do not have their projects on any segment. To solve this

situation, we choose to overlap the discretization with another one to cover the hole

areas. The arrangement of the two discretizations are shown in figure 4.10. The

holes created by the first discretization will be covered by the second discretization

of the curve.

4.2.2 Parameters passing to GPU

Our fire animation utilize the GPU to speed up the deformations of thousands of

fire particles. For each particle, the deformation is controlled by several parameters

such as the life of the particles, the deformation frequency, the positions of the

particle on the emitter (Shijun, 2010), the fluid velocity at the particle position
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Figure 4.10: Two overlapped discretization. The second discretization
is shown in thick lines connecting the red dots.

and the advected position calculated from the fluid field. Since each particle is

a tear drop triangular mesh with many vertices, passing these parameters along

with each of the vertex will be expensive and inefficient. Instead, we chose to pass

the parameters separately from the vertices using DirectX instance stream and

pass the vertices geometric information in a vertex stream. With proper vertex

definition, the GPU hardware will combine these two streams and pass to the

vertex and fragment shader.

Our original vertex definition in C++ is as following:

const D3DVERTEXELEMENT9 TEARDROPVERTEX: : Decl [ ] =

{
{ 0 , 0 , D3DDECLTYPE FLOAT4, D3DDECLMETHODDEFAULT, D3DDECLUSAGE POSITION, 0} ,
{ 0 , 16 , D3DDECLTYPE FLOAT3, D3DDECLMETHODDEFAULT, D3DDECLUSAGENORMAL, 0} ,
{ 0 , 28 , D3DDECLTYPE FLOAT4, D3DDECLMETHODDEFAULT, D3DDECLUSAGETEXCOORD, 0} ,
{ 1 , 0 , D3DDECLTYPE FLOAT4, D3DDECLMETHODDEFAULT, D3DDECLUSAGETEXCOORD, 1} ,
{ 1 , 16 , D3DDECLTYPE FLOAT4, D3DDECLMETHODDEFAULT, D3DDECLUSAGETEXCOORD, 2} ,
{ 1 , 32 , D3DDECLTYPE FLOAT4, D3DDECLMETHODDEFAULT, D3DDECLUSAGETEXCOORD, 3} ,
{ 1 , 48 , D3DDECLTYPE FLOAT4, D3DDECLMETHODDEFAULT, D3DDECLUSAGETEXCOORD, 4} ,
{ 1 , 64 , D3DDECLTYPE FLOAT4, D3DDECLMETHODDEFAULT, D3DDECLUSAGETEXCOORD, 5} ,
{ 1 , 80 , D3DDECLTYPE FLOAT4, D3DDECLMETHODDEFAULT, D3DDECLUSAGETEXCOORD, 6} ,
D3DDECL END()

} ;

The first three fields of the definition are vertex based data (stream 0) and the

rest is instance based data (stream 1). With this vertex definition, we were able
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Figure 4.11: A virtual movement of the cone inside the fluid volume

to reduce significantly the amount of data passed to the GPU.

4.3 Fluid simulation and general semi-rigid ob-

ject integrations

To illustrate that our method can use with any type of objects and movements

we have introduced several submergence of novel objects into the fluid volume.

Since the verification of erratic free flow simulation is generally not numerically

achievable we choose to compare our simulation with one real life common example

to show the viability of our simulation.

In figure 4.11, we show a cone moved in the fluid volume. It is generally difficult to
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Figure 4.12: A virtual snake move inside the fluid volume

setup this kind of movement and capture it, hence our method have the potential of

replacing real capture facility in this kind of novel object movement submerged in

a fluid volume. In this example, the colourful markers are massless particles whose

movements are exactly identical to the fluid and is animated with the velocity field.

Their purpose is to give the visualization of the real fluid. The bottom right of

the figure 4.11 we show the velocity field. In this picture we can see the swirling

and bending of the fluid layer under the effect of the cone’s movement.

In figure 4.12 we introduced a virtual snake which is almost impossible to capture

in real life. The snake move within the fluid volume and splash the fluid around its

movement. To illustrate the viability of our method, we compare with a real life

example. In top part of figure 4.13 we show a stream of fluid flow pass a stationary

cube in a similar fashion as the real life example in the bottom part. We compare
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the wake region in both pictures and see that there are common vortice patterns

in the fluid flow. Vortices are important features of fluid flow. Although the

two pictures are not exactly the same due to different experiment conditions, the

common pattern has shown that our method has its potential and its application

is possible, at least in the field of computer graphics where speed and visualization

are favoured over exact physical correctness.

Figure 4.13: A comparison between simulation (TOP) and real life
example (BOTTOM) of a fluid flow passing by a black cube.
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Chapter 5

Conclusions and Discussions

In this paper, we have presented a method to apply Semi-Lagrangian fluid sim-

ulation technique developed for computer graphics to visualization of near body

hydrodynamics of a submerged swimmer or any other submerged semi-rigid 3D

object. Our method is general and fast and can be applied in many applications.

Visualizing nearbody hydrodynamics characteristics is the focus of our work. The

visualizations are meaningful and potential aids for traditional facilities required

in coaching activities to analyze the performance of swimmers.

Optimal human performance, however, is of primary interests to the fields of

biomechanics, sports and exercise science; the limits of human performance are

of primary concern in the field of physiology; the basis of human behavior is fun-

damental drive in neuro-psychology. Indeed, the science of human movements

is multi-faceted, multi-disciplinary, and the cross-applicability of techniques has

become an increasingly common trend.

The thrust of this work involves applying a visual-driven approximation of a highly-

nonlinear phenomenon to the biomechanical visualization of swimming dynamics.

The suggestion of crossing a technique that was originally developed for computer

graphics effects and games, with an application which many would regard a more

serious branch of science require considerable persuasion and justification on our

part.
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There are several points of view in which the approach may be deemed acceptable,

and we categorically list them as follows:

• The current state of classical CFD, though more rigorous and analytical by

nature, is nowhere near an ablility to render simulations of such complexity.

• Current general-purpose fluid dynamics software are highly-specialized, dif-

ficult to use, and several orders of magnitude higher in computational costs.

• The computational cost typical of classical CFD methods largely overwhelms

the facilities available to a typical institution, consumer group, or an indi-

vidual (e.g.a swimming coach). It is hard to imagine that such software can

be adopted by a wider audience any time soon.

• Dissipation errors are more severe at a distance away from the body. Here, we

are only concerned with the near-body dynamics which lessens the effects of

dissipation errors. Thus, our method is more applicable in daily life analysis

setting such as in improving swimmers’ performances and not in engineering-

based analysis which requires accurate simulation in any part of the fluid flow.

The domains of our method and engineering based methods are, therefore,

different.

• Empirical plots of near-body quantities, such as the integral of surface pres-

sure, converges with respect refinements of simulation parameters. This sug-

gests possibilities of fine-tuning the simulation parameters to obtain values

that are acceptable to various degrees of user tolerance.

5.1 Publication

Part of the work in this thesis was published in Pacific Graphics 2007 (Truong

et al., 2007). The near body interaction between fire and the surrounding fluid

has been included in a fire simulation paper that is currently under submission to

The Visual Computer.
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