16,530 research outputs found

    Short Block-length Codes for Ultra-Reliable Low-Latency Communications

    Full text link
    This paper reviews the state of the art channel coding techniques for ultra-reliable low latency communication (URLLC). The stringent requirements of URLLC services, such as ultra-high reliability and low latency, have made it the most challenging feature of the fifth generation (5G) mobile systems. The problem is even more challenging for the services beyond the 5G promise, such as tele-surgery and factory automation, which require latencies less than 1ms and failure rate as low as 10910^{-9}. The very low latency requirements of URLLC do not allow traditional approaches such as re-transmission to be used to increase the reliability. On the other hand, to guarantee the delay requirements, the block length needs to be small, so conventional channel codes, originally designed and optimised for moderate-to-long block-lengths, show notable deficiencies for short blocks. This paper provides an overview on channel coding techniques for short block lengths and compares them in terms of performance and complexity. Several important research directions are identified and discussed in more detail with several possible solutions.Comment: Accepted for publication in IEEE Communications Magazin

    Turbo Detection of Space-time Trellis-Coded Constant Bit Rate Vector-Quantised Videophone System using Reversible Variable-Length Codes, Convolutional Codes and Turbo Codes

    No full text
    In this treatise we characterise the achievable performance of a proprietary video transmission system, which employs a Constant Bit Rate (CBR) video codec that is concatenated with one of three error correction codecs, namely a Reversible Variable-Length Code (RVLC), a Convolutional Code (CC) or a convolutional-based Turbo Code (TC). In our investigations, the CBR video codec was invoked in conjunction with Space-Time Trellis Coding (STTC) designed for transmission over a dispersive Rayleigh fading channel. At the receiver, the channel equaliser, the STTC decoder and the RVLC, CC or TC decoder, as appropriate, employ the Max-Log Maximum A-Posteriori (MAP) algorithm and their operations are performed in an iterative 'turbo-detection' fashion. The systems were designed for maintaining similar error-free video reconstruction qualities, which were found to be subjectively pleasing at a Peak Signal to Noise Ratio (PSNR) of 30.6~dB, at a similar decoding complexity per decoding iteration. These design criteria were achieved by employing differing transmission rates, with the CC- and TC-based systems having a 22% higher bandwidth requirement. The results demonstrated that the TC-, RVLC- and CC-based systems achieve acceptable subjective reconstructed video quality associated with an average PSNR in excess of 30~dB for Eb/N0E_b/N_0 values above 4.6~dB, 6.4~dB and 7.7~dB, respectively. The design choice between the TC- and RVLC-based systems constitutes a trade-off between the increased error resilience of the TC-based scheme and the reduced bandwidth requirement of the RVLC-based scheme

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200
    corecore