25 research outputs found

    Emulator Circuits and Resistive Switching Parameters of Memristor

    Get PDF
    Chua predicted the existence of the fundamental circuit element, which provides the linkage of flux (ϕ) and charge (q). The new circuit element that is called memristor (memory + resistor) was demonstrated by Hewlett Packard (HP) researchers in 2008. Researchers focused on memristor fabrication, modeling, and its application with other circuit elements. Researchers could not find the commercially memristor devices in the market because of some fabrication difficulties. For this reason, researchers focused on the memristor modeling to analyze its characteristics with other circuit elements. This chapter presents a review of the general information of memristor and its device parameters. The chapter is continued with the details of memristor mathematical and SPICE models and memristor emulators based on the other circuit elements

    OTA Based Mem-capacitor Validation and Implementation Using Commercially Available IC

    Get PDF
    This paper discusses a mem-capacitor circuit which is based on two MO-OTA along with a multiplier and 4 passive elements. This circuit is a charge-controlled memcapacitor emulator which is independent of any memristor also it consists the feature of electronic tunability. Additionally, this circuit is simpler and uses less hardware because it lacks a mutator and uses fewer active-passive components. The circuit behaviour is justified through various simulations in cadence Orcad tool with 180nm CMOS TSMC parameters. Additionally, conclusions from simulations and theory are validated experimentally through commercially available IC

    OTA Based Mem-capacitor Validation and Implementation Using Commercially Available IC

    Get PDF
    This paper discusses a mem-capacitor circuit which is based on two MO-OTA along with a multiplier and 4 passive elements. This circuit is a charge-controlled memcapacitor emulator which is independent of any memristor also it consists the feature of electronic tunability. Additionally, this circuit is simpler and uses less hardware because it lacks a mutator and uses fewer active-passive components. The circuit behaviour is justified through various simulations in cadence Orcad tool with 180nm CMOS TSMC parameters. Additionally, conclusions from simulations and theory are validated experimentally through commercially available IC

    Memcapacitor and Meminductor Circuit Emulators: A Review

    Get PDF
    This research was funded by the Japanese KAKENHI through Grant Number JP18k04275 and Spanish Ministry of Education, Culture, and Sport (MECD), through Project TEC2017-89955-P and Grant Numbers: FPU16/01451 and FPU16/04043.In 1971, Prof. L. Chua theoretically introduced a new circuit element, which exhibited a different behavior from that displayed by any of the three known passive elements: the resistor, the capacitor or the inductor. This element was called memristor, since its behavior corresponded to a resistor with memory. Four decades later, the concept of mem-elements was extended to the other two circuit elements by the definition of the constitutive equations of both memcapacitors and meminductors. Since then, the non-linear and non-volatile properties of these devices have attracted the interest of many researches trying to develop a wide range of applications. However, the lack of solid-state implementations of memcapacitors and meminductors make it necessary to rely on circuit emulators for the use and investigation of these elements in practical implementations. On this basis, this review gathers the current main alternatives presented in the literature for the emulation of both memcapacitors and meminductors. Different circuit emulators have been thoroughly analyzed and compared in detail, providing a wide range of approaches that could be considered for the implementation of these devices in future designs.Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) JP18k04275Spanish Ministry of Education, Culture, and Sport (MECD) TEC2017-89955-P FPU16/01451 FPU16/0404

    High -Frequency Tunable Grounded and Floating Incremental-Decremental Meminductor Emula-tors and its application as AM Modulator

    Get PDF

    New Modified Voltage Differencing Voltage Transconductance Amplifier (MVDVTA) based Meminductor Emulator and its Applications

    Get PDF
    This paper presents a new modified voltage differencing voltage transconductance amplifier (MVDVTA) basedmeminductor emulator circuit. The proposed emulator circuit is memristor-less, uses only a single active building block(ABB) and has simple circuitry. The MVDVTA based emulator design consists of only two capacitors and a single resistor.The performance of the proposed design has been verified over a wide frequency span. For simulation purpose LTSpice toolis used with 0.18μm CMOS technology. The proposed emulator has also been employed in chaotic oscillator and adaptivelearning application circuit to verify its workability. The proposed design gives satisfactory performance for both theapplications, hence confirming its functionality in practical environment

    Memristors : a journey from material engineering to beyond Von-Neumann computing

    Get PDF
    Memristors are a promising building block to the next generation of computing systems. Since 2008, when the physical implementation of a memristor was first postulated, the scientific community has shown a growing interest in this emerging technology. Thus, many other memristive devices have been studied, exploring a large variety of materials and properties. Furthermore, in order to support the design of prac-tical applications, models in different abstract levels have been developed. In fact, a substantial effort has been devoted to the development of memristive based applications, which includes high-density nonvolatile memories, digital and analog circuits, as well as bio-inspired computing. In this context, this paper presents a survey, in hopes of summarizing the highlights of the literature in the last decade
    corecore