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Abstract

Chua predicted the existence of the fundamental circuit element, which provides the 
linkage of flux (ϕ) and charge (q). The new circuit element that is called memristor 
(memory + resistor) was demonstrated by Hewlett Packard (HP) researchers in 2008. 
Researchers focused on memristor fabrication, modeling, and its application with other 
circuit elements. Researchers could not find the commercially memristor devices in the 
market because of some fabrication difficulties. For this reason, researchers focused on 
the memristor modeling to analyze its characteristics with other circuit elements. This 
chapter presents a review of the general information of memristor and its device param-
eters. The chapter is continued with the details of memristor mathematical and SPICE 
models and memristor emulators based on the other circuit elements.

Keywords: memristor, memristor models, SPICE, memristor emulator, active circuit 
element-based memristors

1. Introduction

Both active circuit elements and passive circuit elements are used in circuit design, and the first 
circuit elements that come to mind are passive circuit elements: resistor, capacitor, and induc-

tor. Resistor, capacitor, and inductor define the relationship between the voltage and current, 
voltage and charge, and current and flux, respectively. Leon Chua from the University of 
California (Berkeley) showed the missing relationship as shown in Figure 1 between flux and 
current in 1971 and 1976 [1, 2].

At the same time, Chua called the missing circuit element as a memristor (memory + resistor) 
and presented the mathematical equations of the new circuit element. But the seminal paper 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



of Chua could not find attentions among the researchers because of the technical fabrication 
difficulties of the memristor. Therefore, researchers did not focus on the memristor and its 
application until its first fabrication of memristor by HP researchers in 2008 [3]. The first 
memristor is made from TiO2 thin film and has crossbar structure as shown in Figure 2.

The HP research team also presented the mathematical model of TiO2 memristor, and current-

voltage relationship is defined by

  V =  [M ( x  1  ,  x  2  , …  x  
n
  ) ] I  (1)

where V is the voltage and I is the current. Here, M is the resistance of memristor and mem-

ristance and depends on x
i
 state variables. Memristance which performs nonlinear charac-

teristics depends on frequency and applied input signal. The TiO2 memristor consists of two 

Figure 1. The fundamental two-terminal passive circuit elements.

Figure 2. The scanning tunneling microscope image of the memristor [4].
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main structures which are named doped and undoped region as shown in Figure 3, and the 

memristance changes the ratios of the doped region and device thickness.

Memristor acts as a conductor if the thickness of the doped region becomes wide as shown in 
Figure 3b. Undoped region becomes wide as shown in Figure 3c, and memristor behaves as a 
high-resistance element when the input signal applied in an opposite direction.

Memristance is as below:

  M (x)  =  [ R  
ON

   x +  R  
OFF

   (1 − x) ] ,  (x =   w __ 
D

  )   (2)

The change of the x value is depicted:

    dx ___ 
dt

   =   
 μ  
v
    R  
ON

  
 _____ 

 D   2 
   i (t)   (3)

The μ
v
 is the electron mobility, and w and D denote the doped area of memristor and thickness 

of the memristor, respectively. The resistances of the high and low dopant concentrations are 
symbolized with R

ON
 and R

OFF
, respectively. Researchers added a function to the memristor 

mathematical model to take into account the nonlinear dopant effect [3, 5–7]. Equation (3) is 
rearranged as follows:

    dx ___ 
dt

   =   
 μ  
v
    R  
ON

  
 _____ 

 D   2 
   i (t) f (x)   (4)

The first function which is called window function is presented by HP research team [3] as 

shown below:

  f (x)  =   
x (1 − x) 

 _____ 
D

    (5)

Doped 

Region

Undoped

Region

w

D

Doped Region

Undoped

Region

w

D

  (a)      (b) 

Doped Region,w

D

Undoped Region

(c) 

Figure 3. Memristor (a) initial state, (b) low-resistance state, and (c) high-resistance state.
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The HP model is linear and very simple; so Wolf and Joglekar [5] depicted the new window 

function as shown below:

  f (x)  = 1 −   (2x − 1)    2p   (6)

The function is starting to similar the rectangular shape when p-value becomes higher, 
namely, dopant drift is decreasing as shown in Figure 4.

Biolek et al. [6] modified the model of Wolf and Joglekar:

  f (x)  = 1 −   (x − stp (− i) )    2p   (7a)

  stp (i)  =  { 
1, i ≥ 0

  0, i < 0     (7b)

The window function which is presented by Biolek is shown in Figure 5.

Prodromakis et al. [7] depict the versatile model as the following:

  f (x)  = j (1 −   [  (x − 0.5)    2  + 0.75]    p )   (8)

Figure 5. Window function presented by Biolek et al. [6].

Figure 4. Window function presented by Wolf and Joglekar [5].
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Model function of Prodromakis et al. becomes higher than the value of 1 unlike previous win-

dow functions. The function depends on the various p-values shown in Figure 6.

Researchers suggested various mathematical memristor models such as nonlinear ion-drift 

model [8], Simmons’ tunnel barrier model [9], and ThrEshold Adaptive Memristor (TEAM) 
model [10] different from the linear HP model. The chapter is continued with memristor 
device.

2. Memristor switching device parameters

The pinched hysteresis loops serve as a fingerprint in the characterization of memristors [11] 

as shown in Figure 7. It is to say that, if any two-terminal device is showing pinched hys-

teresis loop, a memristor regardless of the device material is accepted. Resistive switching 

(or memristive behavior) in metal-oxide semiconductor was first observed by Hickmott in 
1962, but it was interpreted as the current anomaly [12]. As in resistive switching devices, a 

typical pinched hysteresis loop is seen at the first and third quadrants of the current-voltage 
(I-V) curves [13]. Put differently, all memristors can be accepted as resistive switching devices 
regardless of the operating mechanisms and the device material [14].

Figure 6. Window function presented by Prodromakis et al. [7].

)b)a

Bo�om Electrode

Ac�ve Layer or Layers

Top Electrodes

Figure 7. (a) Schematic representation of a memristor device and (b) typical pinched hysteresis current-voltage loop of 
memristor devices.
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2.1. Active layer material and top/bottom electrode

The semiconductor-based memristor devices usually consist of an active layer sandwiched 
between a top and a bottom electrode (TE/BE) depicted in Figure 7. The first physical imple-

mentation of the memristor was achieved by HP labs using TiO2 metal-oxide active layer [3]. 

After that, several physical memristor devices suggested the use of different materials and 
production methods. Most metal-oxide semiconductors exhibit memristor characteristics, 
including TiO2, ZnO, HfO2, VO2, TaO

x
, and so on [13, 15, 16]. There are two types of contact 

in semiconductor: one is of Schottky (rectifying), and the other one is ohmic. Several electrode 
materials can be used as TE or BE including Pt, Au, Ag, Al, etc. In one diode-one resistor (1D1R)-
type memory cell memristor device, one of the electrodes must be a Schottky contact [17].

2.2. Unipolar or bipolar operation

The unipolar and bipolar operation of memristor devices which are shown in Figure 8 can be 
categorized in according with current-voltage characteristics. In unipolar operation charac-

teristics depend only on the amplitude of the applied voltage, whereas bipolar operations are 
resolved by polarity and amplitude of the applied voltage [13]. Unipolar operation is more 
striking than bipolar operation in memristor switching devices, since it needs simple circuits. 
But then, bipolar operation has generally high uniformity and more endurance compared to 
unipolar operation [18].

2.3. Physical mechanism

There are two types of physical working mechanisms in the explanation of the time-depen-

dent current-voltage characteristics, based on molecular or ionic models: the homogeneous 
interface type and the filamentary (conduction path) type [13, 16]. In the homogeneous type, 
the migration of oxygen vacancies as the majority carriers causes change of resistance. The fil-
ament-type mechanism is associated with the formation and rupture of conductive  filaments 

Figure 8. Typical current-voltage curves of memristor devices (a) unipolar and (b) bipolar.
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in the active layer. Both types of mechanisms can be observed in the memristor devices as 
shown in Figure 9 and depend on the material and fabrication methods [18].

2.4. Operation current-voltage

It is well known that reversible switching between a low-resistance state (LRS) or ON (SET) 
and a high-resistance state (HRS) or OFF (RESET) can be achieved by applying a certain volt-
age [18]. Operation voltage is also an important value for CMOS or other device integrations 
for memristor devices. Another criterion for the memristor devices is the power consumption 

related to the operation current. With the aim of escape permanent damage from over cur-

rent, the compliance or limit current (CC) must be set in both unipolar and bipolar operations 
[13]. The compliance current is also related to power consumption of a memristor device [19].

2.5. ON/OFF ratio

The memristor has two states when used as a switching device: the high-resistance state 

(HRS) or OFF (RESET) state and the low-resistance state (LRS) or ON (SET) state [13]. The 

ON/OFF ratio defined as the proportion between resistances in HRS and LRS is some of the 
most important parameters when memristors are used as switching device [18].

2.6. Retention time and endurance

The time to hold ON/OFF state is an important criterion when memristor device used a resis-

tive switching memory or ReRAM element [20]. It is expected that the memristor device’s dis-

tribution of the HRS or LRS state which is shown in Figure 10 has acceptable values besides its 
ON/OFF ratio [19]. Since the memory unit needs to be repeatedly read or written by the other 
control units, cycling endurance is one of the main importance of memristor-based memory 
devices [18].

Some of recent memristor devices which are composed of various materials are compared 

according to the some important parameters as shown in Table 1 [19, 22–24]. The chapter is 

continued with memristor emulators based on the active circuit elements.

Figure 9. Typical current-voltage curves of memristor devices: (a) filamentary and (b) homogenous transitions on 
bipolar operation [19].
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3. Memristor models and emulators

Many SPICE models and emulators are presented by researchers [6, 25–47]. The first and 
applicable memristor model has been presented by Biolek and co-workers [6]. This model 

takes into account the boundary conditions using window function, and the feedback-con-

trolled integrator is used to implement memory effect of the memristor. The block diagram of 
memristor and its SPICE model is shown in Figure 11. All simulation results which are shown 

in Figure 12 are completed using SPICE codes as shown below. Each curve is compatible with 
TiO2 memristor, and boundary effects are taken into account (Table 2).

Researchers are not able to reach the memristor devices in the market because of some pro-

duction problems of the memristor. For this reason, researchers focused on the designing of 
memristor emulators to use with other circuit elements. Yener and Kuntman reported full 

active device-based memristor emulator which is consisting of differential difference current 
conveyor (DDCC) [35]. The proposed grounded memristor emulator consists of four circuit 

blocks based on DDCC as shown in Figure 13. Furthermore, there are no experimental results; 
however, its SPICE simulation results are given.

Figure 10. Typical endurance test of a memristor device @0.1 V for 100 cycles [21].

Active layer 

material

TE/BE Operation 

mode

Operation 

mechanism

Operation 

voltage

ON/OFF 

ratio

Retention 

time

Endurance Ref.

ZnO Al/Al Bipolar Homogenous −1.5 V/+1.5 V 5 × 101 N/A 100 [19]

TiO2 Al/Al Bipolar Filamentary −3 V/+1.5 V 8 × 102 N/A 1012 [22]

HfO2 Pt/Ti Bipolar Filamentary −3.5 V/+2 V 103 104 1000 [23]

TaO
x

Pt/Pt Unipolar Filamentary −1.5 V/+1 V 101 N/A 1000 [24]

Table 1. Comparison table of some recent memristor devices.
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Another active circuit element-based grounded memristor emulator [36] has been imple-

mented by using current backward transconductance amplifier (CBTA). This emulator con-

sists of two different circuits such as decremental and incremental type given in Figure 14. 

Each memristor emulator is composed of a single CBTA, two resistors, one grounded capaci-
tor, and single analog multiplier. In order to validate the feasibility of the presented memris-

tor, only SPICE simulation results have been given.

The generalized mutator structure based on adder and subtractor has been proposed by 
Minaei et al. [37]. As far as connection ports are concerned, the generalized structure employs 
memristor, meminductor, and memcapacitor without using analog multiplier. By selecting an 
inductor to port 3, a capacitor to port 4, and a nonlinear resistor such as a diode to port 1, the 

generalized structure given in Figure 15 is utilized as memristor. Nonetheless, so as to verify 
the workableness of the presented structure, the SPICE simulation results are given.

Figure 11. (a) Block diagram and (b) SPICE model of the memristor [6].

Figure 12. Charge-flux, current-voltage, current-voltage-time, and x-time curves for memristor model [6].
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Kim and co-workers presented the active circuit element-based memristor emulator [38]. 

This circuit is also implemented on the bread board using discrete circuit elements that are 
ADL1116PAL for NMOS transistors, ADL1117PAL for PMOS transistors, TL082 for OPAMP, 
and AD633 for analog multiplier and passive elements. There are three important tasks to 
implement memristor emulator: memory effect, frequency-/voltage-dependent characteris-

tics, and nonlinearity. Memory effect and frequency/voltage dependency characteristics are 
implemented by using a capacitor like many other previous emulator circuits. Nonlinear 
characteristic of the memristor is obtained using multiplier circuit block. But each used block 
gives rise to extra power dissipation and more complex circuit (Figure 16).

DDCC

DDCC

Integrator

Multiplier

DDCC

Summer

DDCC

Memristor

Multiplier

α

Im(t)

Vm(t)

Figure 13. DDCC-based memristor emulator which is presented by Yener and Kuntman [35].

* HP Memristor SPICE Model
* For Transient Analysis only
* created by Zdenek and Dalibor Biolek
**************************

* Ron, Roff - Resistance in ON/OFF States
* Rinit - Resistance at T = 0
* D - Width of the thin film
* uv - Migration coefficient
* p - Parameter of the WINDOW-function
* for modeling nonlinear boundary conditions
* x - W/D Ratio, W is the actual width
* of the doped area (from 0 to D)
*

.SUBCKT memristor Plus Minus PARAMS:
+ Ron = 1 K Roff = 100 K Rinit = 80 K D = 10 N uv = 10F p = 1
***********************************************

* DIFFERENTIAL EQUATION MODELING *
***********************************************

Gx 0 x value = {I(Emem)*uv*Ron/D^2*f(V(x),p)}
Cx x 0 1 IC = {(Roff-Rinit)/(Roff-Ron)}
Raux x 0 1T

* RESISTIVE PORT OF THE MEMRISTOR *
*******************************

Emem plus aux value = {−I(Emem)*V(x)*(Roff-Ron)}
Roff aux minus {Roff}
***********************************************

*Flux computation*
***********************************************

Eflux flux 0 value = {SDT(V(plus,minus))}
***********************************************

*Charge computation*

***********************************************

Echarge charge 0 value = {SDT(I(Emem))}
***********************************************

* WINDOW FUNCTIONS
* FOR NONLINEAR DRIFT MODELING *
***********************************************

*window function, according to Joglekar
.func f(x,p) = {1-(2*x-1)^(2*p)}
*proposed window function

;.func f(x,i,p) = {1-(x-stp(−i))^(2*p)}
.ENDS memristor

Table 2. SPICE codes of modeled memristor [6].
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Another active circuit-based memristor emulators which are shown in Figure 17 have been 
presented by Abuelma’atti and Khalifa [39]. Each emulator which is based on current-feed-
back operational amplifier (CFOA) enjoys operating two different types like decremental and 
incremental memristor emulators. This situation is a disadvantage of the emulator besides its 
grounded structure. Each circuit comprises three CFOAs, four resistors, two capacitors, and 
germanium diode without using an analog multiplier. Nonlinear characteristic is provided 
by germanium diode. CFOA which is an active element is modeled by AD844 commercially 
available active devices, and experimental results have been investigated.

Figure 14. CBTA-based memristor emulator (a) decremental structure and (b) incremental structure [36].

V1 (+)

(-)

(+)

Subtractor 

(-)

Adder

V3

V2

V4I4

I1

I3

I2

Figure 15. Generalized mutator structure based on adder and subtractor [37].
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Sánchez-López and Aguila-Cuapio proposed the charge-controlled memristor emulator cir-

cuit [40]. This circuit which is shown in Figure 18 is grounded; hence, application areas of 
the presented memristor emulator are limited in circuit designs. Moreover, it is implemented 
with discrete circuit element such as AD844 and AD633 besides its disadvantages.

Babacan and co-workers presented new memristor emulator based on multi-output opera-

tional transconductance amplifier (OTA) [41]. This emulator shown in Figure 19 is a deriva-

tive of the DDCC-based memristor emulator [42], but memristance value of this emulator 

y

w
x z

y
w

x z
y

w

x
z

CFOA1

CFOA2
CFOA3

Vm

(a) 

y

w
x z

y

x z
w y

w

x
z

CFOA1

CFOA2
CFOA3

Vm

(b) 

Figure 17. CFOA-based memristor emulator with (a) decremental and (b) incremental characteristic [39].

Figure 16. Voltage-controlled memristor emulator which is presented by Kim and co-workers [38].
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can be adjusted by biasing current of the OTA. The change of the memristance value can be 
controlled by changing resistor (R) value. Average memristance value can be controlled using 
OTA-gm value because of the fact that OTA is used as controllable resistor by connecting the 
negative output terminal to the positive input terminal. In order to demonstrate the perfor-

mance of OTA-based memristor emulator, both SPICE simulation results and experimental 
results have been performed. For experimental results, the memristor emulator is built using 
passive elements and commercially available active devices such as OPA860 for MO-OTA and 
AD633 for the analog multiplier.

Yesil and co-workers suggested only one DDCC-based memristor emulator which can be 
operated in high-frequency regions [42]. It is observed from Figure 20 that the capacitor 

provides the memory effect and the multiplication of both capacitor and resistor voltages 
is connected to the Y terminal of the active device. The resistance of memristor emulator 

circuit decreases when the Z terminal of the DDCC device is chosen as positive terminal (ZP). 

Consequently, the circuit shows decremental memristor characteristics. For another state, an 

+Vdd +Vdd

-Vdd

Y

X

Z

Vm(t)

W

Y3

Y4

W X1

X2Z

Ca C1R1 Rz RbRx

-Vdd

Figure 18. Memristor emulator based on AD844 [40].

P

N

R C

ZP

ZN

ZP,N

ZP

VR

VC
VN

VP

IIN

VIN

MO-OTA

Figure 19. OT-based memristor emulator which is presented by Babacan and co-workers [41].
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incremental memristor can be obtained when the Z terminal of DDCC is chosen as negative 
terminal (ZN). This emulator consists of the third terminal (V

sum
) to provide the floating char-

acteristic. Serial connected memristors split applied voltage such as resistor if these memris-

tors carry out a voltage; accordingly, the third terminal is connected to the output terminal. 
Just as DDCC-based [35], CBTA-based [36], and adder-and-subtractor [37]-based memristor, 
the performance of [42] is confirmed by SPICE simulations results.

Sozen and Cam proposed new floating memristor emulator based on OTA and CCII as shown 
in Figure 21 [43]. This emulator is made up of three OTAs, four CCIIs, and seven passive ele-

ments. Both SPICE simulation results and experimental results of the presented memristor 
emulator have been given to confirm its workableness and feasibility. Commercially available 
active devices CA3080 and AD844 have been utilized instead of OTA and CCII, respectively.

Sánchez-López et al. proposed second-generation current conveyor (CCII)-based flux-con-

trolled memristor emulator which is shown in Figure 22 [44]. The presented emulator com-

prises of four CCIIs, a multiplier circuit, five resistors, and single grounded capacitor. AD844 
and AD633 are used instead of CCII and analog multiplier in the flux-controlled memristor 
emulator, respectively. So as to indicate the performance of flux-controlled memristor emula-

tor, both SPICE simulation results and experimental results have been exhibited.

X

DDCC

VR

VC

VINPUT

CT RT

RSIINPUT

ZN1

ZP,N

ZN2Y1

Y3

Y2
Vsum

INPUT

OUTPUT

Figure 20. DDCC-based memristor emulator which is presented by Yesil and co-workers [42].

Figure 21. OTA- and CCII-based memristor emulator [43].
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Babacan and Kacar suggested new memristor emulator which does not need any multiplica-

tion block as shown in Figure 23 [45]. This emulator is also fully floating, namely, has two 
terminals, and input signal can be applied in both terminals. The nonlinearity is provided by 
transistors which are operated in the subthreshold region. The presented memristor emula-

tor includes single-ended OTA, one grounded capacitor, and two PMOS transistors. Note 
that the bulk terminals of PMOS transistors are connected to drain terminals of relevant 
transistors.

The first memristor model which accounts for spike-timing-dependent plasticity (STDP) 
mechanism is proposed by Li and co-workers [46]. The model which is shown in Figure 24 

consists of five circuit models, and each model depends on the previous model so this model 
is complex and does not have any circuit implementation.

Babacan and Kacar suggested real-time fully floating memristor emulator which is accounted 
for synaptic activity [47]. Both memristive and STDP characteristics are obtained from the 

Figure 22. Floating flux-controlled memristor emulator based on CCII [44].

Figure 23. Fully floating memristor emulator based on OTA [45].
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circuit which is shown in Figure 25. It is observed from Figure 25 that fully floating mem-

ristor emulator consists of a few numbers of MOS transistors and capacitors without using 
analog multiplier. Furthermore, STDP is experimentally demonstrated in memristive 
devices [48–50].

In summary, the comparison of the memristor emulator circuits is according to some impor-

tant design parameters such as used circuit elements, electronically controllability, power sup-

ply value, etc. Each emulator has superior properties among the other emulators. Researchers 
can prefer appropriate emulator circuit for their memristor-based circuit designs (Table 3).

Figure 24. Memristor model which is accounted for STDP mechanism [46].

VA1 

CpotVtau

VA2

CdepVtau

T1

T2

T3

T4

T5

T6

T7

T8

TA

TB

VDD 

CA

Figure 25. Memristor circuit which is accounted for STDP mechanism [47].
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4. Conclusion

In this chapter, memristor devices, models, and emulators have been referred. Memristors 
have nonlinear characteristics; therefore, high-order mathematical equations should be used 
to create a mathematical model of the memristor. Active circuit elements are essential to build 
memristor emulators because of the fact that active elements are versatile and suitable for 
nonlinear circuit element designs. Nowadays, memristors can exhibit different characteristics 
when they are fabricated using various materials. Important characteristics such as switching 
mechanism, synaptic behavior, and operating frequency region are directly depending on the 
memristor structure. Hence, there is an essential to implement various models and circuits to 
emulate real memristors. Some emulator circuits exhibit hard-switching characteristics, other 
emulators exhibit smooth-switching characteristics, or some emulators account for spike-tim-

ing-dependent plasticity mechanism.

As a result, researchers are not able to reach real memristor easily so all emulator models 
and circuits are important to exhibit real memristors. Memristors are ultradense devices 

Reference No. of 

floating 
passive 

elements

No. of active comp No. of 

grounded 

passive 

elements

Sim./exp Electronically 

controllable

Floating/

grounded 

memristor 

emulator

Power supply

[35] — 10 DDCCs, 8 
transistors

4 R, 1 C Sim. No Grounded ±1.25 V

[36] 1 R 1 CBTA, 1 multiplier 1 R, 1 C Sim. No Grounded ±0.9 V

[37] 1 L, 1 C 1 adder and 1 

subtractor
1 D Sim. No Grounded ±1.25 V

[38] 1 R 2 OPAMPs, 1 
multiplier, 10 
transistors

1 R, 1 C Both No Grounded/
floating

±5 V

[39] 2 R, 1 D 3 CFOAs (AD844) 2 R, 2 C Exp. No Grounded NA

[40] 1 R 1 CCII(AD844), 1 
multiplier (AD633)

1 C Both No Grounded ±10 V

[41] — 1 MO-OTA, 1 

multiplier

1 R, 1 C Both Yes Grounded ±1.25 V/±5 V

[42] 1 R 1 DDCC, 1 multiplier 1 R, 1 C Sim. No Floating ±1.5

[43] 3 R 3 OTAs, 4 CCIIs 3 R, 1 C Both Yes Floating ±15

[44] 2 R 4 CCIIs (AD844), 1 
multiplier (AD633)

3 R, 1 C Both No Floating ±10 V

[45] — 1 OTA, 2 transistors 1 C Sim. No Floating ±1 V

[47] — 10 transistors 3 C Sim. No Floating —

Table 3. Comparison of memristor emulator circuits.
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and consume very low energy; that is why it is not only important to emulate real  emulator. 
Researchers need also emulator circuits which have minimum energy consumption and sim-

ple structure.
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