1,008 research outputs found

    Asynchronous displays for multi-UV search tasks

    Get PDF
    Synchronous video has long been the preferred mode for controlling remote robots with other modes such as asynchronous control only used when unavoidable as in the case of interplanetary robotics. We identify two basic problems for controlling multiple robots using synchronous displays: operator overload and information fusion. Synchronous displays from multiple robots can easily overwhelm an operator who must search video for targets. If targets are plentiful, the operator will likely miss targets that enter and leave unattended views while dealing with others that were noticed. The related fusion problem arises because robots' multiple fields of view may overlap forcing the operator to reconcile different views from different perspectives and form an awareness of the environment by "piecing them together". We have conducted a series of experiments investigating the suitability of asynchronous displays for multi-UV search. Our first experiments involved static panoramas in which operators selected locations at which robots halted and panned their camera to capture a record of what could be seen from that location. A subsequent experiment investigated the hypothesis that the relative performance of the panoramic display would improve as the number of robots was increased causing greater overload and fusion problems. In a subsequent Image Queue system we used automated path planning and also automated the selection of imagery for presentation by choosing a greedy selection of non-overlapping views. A fourth set of experiments used the SUAVE display, an asynchronous variant of the picture-in-picture technique for video from multiple UAVs. The panoramic displays which addressed only the overload problem led to performance similar to synchronous video while the Image Queue and SUAVE displays which addressed fusion as well led to improved performance on a number of measures. In this paper we will review our experiences in designing and testing asynchronous displays and discuss challenges to their use including tracking dynamic targets. © 2012 by the American Institute of Aeronautics and Astronautics, Inc

    Real-time Convolutional Neural Networks for Emotion and Gender Classification

    Full text link
    In this paper we propose an implement a general convolutional neural network (CNN) building framework for designing real-time CNNs. We validate our models by creating a real-time vision system which accomplishes the tasks of face detection, gender classification and emotion classification simultaneously in one blended step using our proposed CNN architecture. After presenting the details of the training procedure setup we proceed to evaluate on standard benchmark sets. We report accuracies of 96% in the IMDB gender dataset and 66% in the FER-2013 emotion dataset. Along with this we also introduced the very recent real-time enabled guided back-propagation visualization technique. Guided back-propagation uncovers the dynamics of the weight changes and evaluates the learned features. We argue that the careful implementation of modern CNN architectures, the use of the current regularization methods and the visualization of previously hidden features are necessary in order to reduce the gap between slow performances and real-time architectures. Our system has been validated by its deployment on a Care-O-bot 3 robot used during RoboCup@Home competitions. All our code, demos and pre-trained architectures have been released under an open-source license in our public repository.Comment: Submitted to ICRA 201

    From Commands to Goal-based Dialogs: A Roadmap to Achieve Natural Language Interaction in RoboCup@Home

    Full text link
    On the one hand, speech is a key aspect to people's communication. On the other, it is widely acknowledged that language proficiency is related to intelligence. Therefore, intelligent robots should be able to understand, at least, people's orders within their application domain. These insights are not new in RoboCup@Home, but we lack of a long-term plan to evaluate this approach. In this paper we conduct a brief review of the achievements on automated speech recognition and natural language understanding in RoboCup@Home. Furthermore, we discuss main challenges to tackle in spoken human-robot interaction within the scope of this competition. Finally, we contribute by presenting a pipelined road map to engender research in the area of natural language understanding applied to domestic service robotics.Comment: 12 pages, 2 tables, 1 figure. Accepted and presented (poster) in the RoboCup 2018 Symposium. In pres

    Individual and coordinated decision for the CAMBADA team

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaA coordenação em sistemas multi-robô é um aspecto crucial no futebol robótico. A maneira como cada equipa coordena cada um dos seus robôs em acções cooperativas define a base da sua estratégia. Este trabalho tem como foco o desenvolvimento da coordenação e estratégia da equipa CAMBADA. CAMBADA é a equipa de futebol robótico da modalidade RoboCup Middle Size League da Universidade de Aveiro. Foi desenvolvida pelo grupo ATRI, pertencente µa unidade de investigação IEETA. O presente trabalho baseia-se em trabalho desenvolvido anteriormente, tentando melhorar o desempenho da equipa. Cada robô da equipa CAMBADA é um agente independente e autónomo capaz de coordenar as suas acções com os colegas de equipa através da comunicação e da partilha de informação. O comportamento de cada robô deverá ser integrado na estratégia global da equipa, resultando assim em acções cooperativas de todos os robôs. Isto é conseguido através do uso de papeis(roles) e comportamentos(behaviours) que definem a atitude de cada robô e as acções que daí resultam. Novos papeis foram desenvolvidos para complementar a estratégia de equipa, e alguns dos papeis existentes foram melhorados. Também foram efectuadas melhorias em alguns dos comportamentos existentes. É efectu- ada a descrição de cada um destes papeis e comportamentos, assim como as alterações efectuadas. O trabalho desenvolvido foi testado nas competições do Robótica 2008 (o desenvolvimento não estava ainda concluído) e por fim nas competições do RoboCup'2008. A participação da equipa no RoboCup'2008 é analisada e discutida. A equipa consagrou-se campeã mundial, vencendo a competição da Middle Size League do RoboCup'2008 em Suzhou, China. ABSTRACT: Multi-robot coordination is one crucial aspect in robotic soccer. The way each team coordinates its individual robots into cooperative global actions define the foundation of its strategy. CAMBADA is the RoboCup Middle Size League robotic soccer team of the University of Aveiro. It was created by the ATRI group, part of the IEETA research unit. This work is focused on coordination and strategy development for the CAMBADA team. It is built upon previous work and tries to improve the team performance further. In CAMBADA each robot is an independent agent, it coordinates its actions with its teammates through communication and information exchange. The resulting behaviour of the individual robot should be integrated into the global team strategy, thus resulting in cooperative actions by all the robots. This is done by the use of roles and behaviours that define each robot attitude in the field and resulting individual actions. In this work, new roles were created to add to the team strategy and some of the previous existing roles were improved. Some of the existing behaviours were also improved to better fit the desired goals. Each role and behaviour is described as well as the changes made. The resulting work was put to test in the portuguese Robotica 2008 competition (while still in progress) and finally in the RoboCup'2008 world competitions. The performance of the team in the latter is analysed and discussed. The team achieved the 1st place in the RoboCup'2008 MSL world competitions

    Microsoft robotics soccer challenge : movement optimization of a quadruped robot

    Get PDF
    Estágio realizado na Universidade de Aveiro e orientado pelo Prof. Doutor Nuno LauTese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Integrating mobile robotics and vision with undergraduate computer science

    Get PDF
    This paper describes the integration of robotics education into an undergraduate Computer Science curriculum. The proposed approach delivers mobile robotics as well as covering the closely related field of Computer Vision, and is directly linked to the research conducted at the authors’ institution. The paper describes the most relevant details of the module content and assessment strategy, paying particular attention to the practical sessions using Rovio mobile robots. The specific choices are discussed that were made with regard to the mobile platform, software libraries and lab environment. The paper also presents a detailed qualitative and quantitative analysis of student results, including the correlation between student engagement and performance, and discusses the outcomes of this experience
    corecore