301 research outputs found

    Size versus truthfulness in the house allocation problem

    Get PDF
    We study the House Allocation problem (also known as the Assignment problem), i.e., the problem of allocating a set of objects among a set of agents, where each agent has ordinal preferences (possibly involving ties) over a subset of the objects. We focus on truthful mechanisms without monetary transfers for finding large Pareto optimal matchings. It is straightforward to show that no deterministic truthful mechanism can approximate a maximum cardinality Pareto optimal matching with ratio better than 2. We thus consider randomized mechanisms. We give a natural and explicit extension of the classical Random Serial Dictatorship Mechanism (RSDM) specifically for the House Allocation problem where preference lists can include ties. We thus obtain a universally truthful randomized mechanism for finding a Pareto optimal matching and show that it achieves an approximation ratio of eovere-1. The same bound holds even when agents have priorities (weights) and our goal is to find a maximum weight (as opposed to maximum cardinality) Pareto optimal matching. On the other hand we give a lower bound of 18 over 13 on the approximation ratio of any universally truthful Pareto optimal mechanism in settings with strict preferences. In the case that the mechanism must additionally be non-bossy, an improved lower bound of eovere-1 holds. This lower bound is tight given that RSDM for strict preference lists is non-bossy. We moreover interpret our problem in terms of the classical secretary problem and prove that our mechanism provides the best randomized strategy of the administrator who interviews the applicants

    Welfare Maximization and Truthfulness in Mechanism Design with Ordinal Preferences

    Full text link
    We study mechanism design problems in the {\em ordinal setting} wherein the preferences of agents are described by orderings over outcomes, as opposed to specific numerical values associated with them. This setting is relevant when agents can compare outcomes, but aren't able to evaluate precise utilities for them. Such a situation arises in diverse contexts including voting and matching markets. Our paper addresses two issues that arise in ordinal mechanism design. To design social welfare maximizing mechanisms, one needs to be able to quantitatively measure the welfare of an outcome which is not clear in the ordinal setting. Second, since the impossibility results of Gibbard and Satterthwaite~\cite{Gibbard73,Satterthwaite75} force one to move to randomized mechanisms, one needs a more nuanced notion of truthfulness. We propose {\em rank approximation} as a metric for measuring the quality of an outcome, which allows us to evaluate mechanisms based on worst-case performance, and {\em lex-truthfulness} as a notion of truthfulness for randomized ordinal mechanisms. Lex-truthfulness is stronger than notions studied in the literature, and yet flexible enough to admit a rich class of mechanisms {\em circumventing classical impossibility results}. We demonstrate the usefulness of the above notions by devising lex-truthful mechanisms achieving good rank-approximation factors, both in the general ordinal setting, as well as structured settings such as {\em (one-sided) matching markets}, and its generalizations, {\em matroid} and {\em scheduling} markets.Comment: Some typos correcte

    Size versus truthfulness in the House Allocation problem

    Get PDF
    We study the House Allocation problem (also known as the Assignment problem), i.e., the problem of allocating a set of objects among a set of agents, where each agent has ordinal preferences (possibly involving ties) over a subset of the objects. We focus on truthful mechanisms without monetary transfers for finding large Pareto optimal matchings. It is straightforward to show that no deterministic truthful mechanism can approximate a maximum cardinality Pareto optimal matching with ratio better than 2. We thus consider randomised mechanisms. We give a natural and explicit extension of the classical Random Serial Dictatorship Mechanism (RSDM) specifically for the House Allocation problem where preference lists can include ties. We thus obtain a universally truthful randomised mechanism for finding a Pareto optimal matching and show that it achieves an approximation ratio of ee−1\frac{e}{e-1}. The same bound holds even when agents have priorities (weights) and our goal is to find a maximum weight (as opposed to maximum cardinality) Pareto optimal matching. On the other hand we give a lower bound of 1813\frac{18}{13} on the approximation ratio of any universally truthful Pareto optimal mechanism in settings with strict preferences. In the case that the mechanism must additionally be non-bossy with an additional technical assumption, we show by utilising a result of Bade that an improved lower bound of ee−1\frac{e}{e-1} holds. This lower bound is tight since RSDM for strict preference lists is non-bossy. We moreover interpret our problem in terms of the classical secretary problem and prove that our mechanism provides the best randomised strategy of the administrator who interviews the applicants.Comment: To appear in Algorithmica (preliminary version appeared in the Proceedings of EC 2014

    Assigning Course Schedules: About Preference Elicitation, Fairness, and Truthfulness

    Get PDF
    Most organizations face distributed scheduling problems where private preferences of individuals mat­ter. Course assignment is a widespread example arising in educational institutions and beyond. Often students have preferences for course schedules over the week. First­Come­First­Served (FCFS) is the most widely used assignment rule in practice, but it is inefficient and unfair. Recent work on randomized match­ing suggests an alternative with attractive properties – Bundled Probabilistic Serial (BPS). A major chal­lenge in BPS is that the mechanism requires the participants’ preferences for exponentially many schedules. We describe a way to elicit preferences reducing the number of required parameters to a manageable set. We report results from field experiments, which allow us to analyze important empirical metrics of the as­ signments compared to FCFS. These metrics were central for the adoption of BPS at a major university. The overall system design yields an effective approach to solve daunting distributed scheduling tasks in organizations

    Incentives in One-Sided Matching Problems With Ordinal Preferences

    Get PDF
    One of the core problems in multiagent systems is how to efficiently allocate a set of indivisible resources to a group of self-interested agents that compete over scarce and limited alternatives. In these settings, mechanism design approaches such as matching mechanisms and auctions are often applied to guarantee fairness and efficiency while preventing agents from manipulating the outcomes. In many multiagent resource allocation problems, the use of monetary transfers or explicit markets are forbidden because of ethical or legal issues. One-sided matching mechanisms exploit various randomization and algorithmic techniques to satisfy certain desirable properties, while incentivizing self-interested agents to report their private preferences truthfully. In the first part of this thesis, we focus on deterministic and randomized matching mechanisms in one-shot settings. We investigate the class of deterministic matching mechanisms when there is a quota to be fulfilled. Building on past results in artificial intelligence and economics, we show that when preferences are lexicographic, serial dictatorship mechanisms (and their sequential dictatorship counterparts) characterize the set of all possible matching mechanisms with desirable economic properties, enabling social planners to remedy the inherent unfairness in deterministic allocation mechanisms by assigning quotas according to some fairness criteria (such as seniority or priority). Extending the quota mechanisms to randomized settings, we show that this class of mechanisms are envyfree, strategyproof, and ex post efficient for any number of agents and objects and any quota system, proving that the well-studied Random Serial Dictatorship (RSD) is also envyfree in this domain. The next contribution of this thesis is providing a systemic empirical study of the two widely adopted randomized mechanisms, namely Random Serial Dictatorship (RSD) and the Probabilistic Serial Rule (PS). We investigate various properties of these two mechanisms such as efficiency, strategyproofness, and envyfreeness under various preference assumptions (e.g. general ordinal preferences, lexicographic preferences, and risk attitudes). The empirical findings in this thesis complement the theoretical guarantees of matching mechanisms, shedding light on practical implications of deploying each of the given mechanisms. In the second part of this thesis, we address the issues of designing truthful matching mechanisms in dynamic settings. Many multiagent domains require reasoning over time and are inherently dynamic rather than static. We initiate the study of matching problems where agents' private preferences evolve stochastically over time, and decisions have to be made in each period. To adequately evaluate the quality of outcomes in dynamic settings, we propose a generic stochastic decision process and show that, in contrast to static settings, traditional mechanisms are easily manipulable. We introduce a number of properties that we argue are important for matching mechanisms in dynamic settings and propose a new mechanism that maintains a history of pairwise interactions between agents, and adapts the priority orderings of agents in each period based on this history. We show that our mechanism is globally strategyproof in certain settings (e.g. when there are 2 agents or when the planning horizon is bounded), and even when the mechanism is manipulable, the manipulative actions taken by an agent will often result in a Pareto improvement in general. Thus, we make the argument that while manipulative behavior may still be unavoidable, it is not necessarily at the cost to other agents. To circumvent the issues of incentive design in dynamic settings, we formulate the dynamic matching problem as a Multiagent MDP where agents have particular underlying utility functions (e.g. linear positional utility functions), and show that the impossibility results still exist in this restricted setting. Nevertheless, we introduce a few classes of problems with restricted preference dynamics for which positive results exist. Finally, we propose an algorithmic solution for agents with single-minded preferences that satisfies strategyproofness, Pareto efficiency, and weak non-bossiness in one-shot settings, and show that even though this mechanism is manipulable in dynamic settings, any unilateral deviation would benefit all participating agents

    Size versus fairness in the assignment problem

    Get PDF
    When not all objects are acceptable to all agents, maximizing the number of objects actually assigned is an important design concern. We compute the guaranteed size ratio of the Probabilistic Serial mechanism, i.e., the worst ratio of the actual expected size to the maximal feasible size. It converges decreasingly to 1 − 1 e 63.2% as the maximal size increases. It is the best ratio of any Envy-Free assignment mechanism

    Algorithms as Mechanisms: The Price of Anarchy of Relax-and-Round

    Full text link
    Many algorithms that are originally designed without explicitly considering incentive properties are later combined with simple pricing rules and used as mechanisms. The resulting mechanisms are often natural and simple to understand. But how good are these algorithms as mechanisms? Truthful reporting of valuations is typically not a dominant strategy (certainly not with a pay-your-bid, first-price rule, but it is likely not a good strategy even with a critical value, or second-price style rule either). Our goal is to show that a wide class of approximation algorithms yields this way mechanisms with low Price of Anarchy. The seminal result of Lucier and Borodin [SODA 2010] shows that combining a greedy algorithm that is an α\alpha-approximation algorithm with a pay-your-bid payment rule yields a mechanism whose Price of Anarchy is O(α)O(\alpha). In this paper we significantly extend the class of algorithms for which such a result is available by showing that this close connection between approximation ratio on the one hand and Price of Anarchy on the other also holds for the design principle of relaxation and rounding provided that the relaxation is smooth and the rounding is oblivious. We demonstrate the far-reaching consequences of our result by showing its implications for sparse packing integer programs, such as multi-unit auctions and generalized matching, for the maximum traveling salesman problem, for combinatorial auctions, and for single source unsplittable flow problems. In all these problems our approach leads to novel simple, near-optimal mechanisms whose Price of Anarchy either matches or beats the performance guarantees of known mechanisms.Comment: Extended abstract appeared in Proc. of 16th ACM Conference on Economics and Computation (EC'15
    • …
    corecore