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Abstract

Most organizations face distributed scheduling problems where private preferences of individuals mat
ter. Course assignment is a widespread example arising in educational institutions and beyond. Often
students have preferences for course schedules over the week. FirstComeFirstServed (FCFS) is the most
widely used assignment rule in practice, but it is inefficient and unfair. Recent work on randomizedmatch
ing suggests an alternative with attractive properties – Bundled Probabilistic Serial (BPS). A major chal
lenge in BPS is that themechanism requires the participants’ preferences for exponentiallymany schedules.
We describe a way to elicit preferences reducing the number of required parameters to a manageable set.
We report results from field experiments, which allow us to analyze important empirical metrics of the as
signments compared to FCFS. These metrics were central for the adoption of BPS at a major university.
The overall system design yields an effective approach to solve daunting distributed scheduling tasks in
organizations.

Keywords: Computational Social Science, Course Assignment, Preference Elicitation, Field Study

Introduction

Scheduling is ubiquitous in organizations and often involves the assignment of people with preferences to
scarce resources or tasks. Examples include the allocation of surgeons to hospital operating rooms, work
ers to shifts or projects over time, or students to different courses on a weekly schedule. There is a huge
literature on optimization formulations and decision support for rosting, staffing, or scheduling which is
typically analyzing such problems from the point of view of a single decision maker or planner (Burke et
al. 2004; Cardoen et al. 2010; Ernst et al. 2004). For most of these problems peoples’ private preferences
matter. Surgeons have preferences for certain time slots for their operations (Cardoen et al. 2010), workers
have preferences for times of the day and free time (Burke et al. 2004), and students have preferences for
particular course schedules across the week (Budish et al. 2017). In practice, schedules are often based on
firstcome firstserved procedures (as in course scheduling) or people are simply asked for their preferences
that are then considered in staff scheduling and rostering, for example. However, these mechanisms are
neither incentive compatible, nor efficient or fair.

Mechanism design investigates economic mechanisms which set incentives for participants to reveal their
preferences truthfully. Auctions are known as incentivecompatible and efficient economic mechanisms for
resource allocation problems (Klemperer 1999; Milgrom 2004). However, the scheduling problems dis
cussed earlier do not lend themselves to auctions. First, monetary transfers are not allowed or desired in
these environments. Second, cardinal utility and interpersonal utility comparison is toomuch to assume and
we can only hope to get ordinal preferences. Third, preferences are private andwewant to havemechanisms
that incentivize students to reveal these preferences truthfully. Fourth, the allocation of course schedules
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is a computationally hard (NPhard) problem and for realistic problem sizes an exact solution might not be
tractable.

The theory of matching under preferences analyzes mechanisms which set incentives for participants to re
veal their preferences truthfully without monetary transfers. It is a successful application of computational
economics andmore broadly computational social sciences. The field has drawn significant academic atten
tion after the Nobel Prize inMarket Design in 2012 with important applications in thematching of residents
to hospitals, in school choice, or in kidney exchanges (Roth 2015). Until recently, this theory was largely
restricted to problems where participants have unit demand (e.g. a single course seat). However, new ap
proaches have been developed which allow for more complex preferences such as preferences for packages
of course seats or schedules and other complex constraints (Budish et al. 2013; Kamada and Kojima 2017;
Nguyen et al. 2016). Interestingly, randomization turned out to be a powerful tool to achieve mechanisms
with good properties in the presence of complex preferences.

This theory provides foundations for new types of distributed information systems respecting private pref
erences of participants. While these systems can be used for various types of decision support in organiza
tions, we illustrate how these economic design goals come to bear in course assignment. The assignment of
students to course schedules can be seen as a widespread coordination problem arising in all larger edu
cational institutions and beyond. We introduce new mechanisms to build effective information systems for
the assignment of course schedules to students and report results from largescale field experiments. More
importantly, we show that information systems design, in particular the elicitation of user preferences, is of
central importance in the implementation of such new forms of distributed information systems. While the
topic is very close to others in information systems design such as online auctions, multiunit auctions, or
combinatorial auctions (Adomavicius et al. 2012; Adomavicius and Gupta 2005; Bapna et al. 2007; Bapna
et al. 2010; Bapna et al. 2003; Goetzendorff et al. 2015; Scheffel et al. 2011), matching without money has
not received much attention yet. Overall, we aim to extend the information systems literature on decision
support and design science to distributed resource allocation and coordination problems without money
(Banker and Kauffman 2004).

Course Assignment

Course assignment is a ubiquitous problem at universities and an excellent example of scheduling problems
with preferences as they arise in other domains as well. While some universities use matching mechanisms
such as the deferred acceptance algorithm (Diebold et al. 2014; Gale and Shapley 1962) or course bidding
(Krishna and Ünver 2008; Sönmez and Ünver 2010), in most cases scarce course seats are allocated via
firstcome firstserved (FCFS). Although many course assignment problems are similar to the widely stud
ied school choice problems (Abdulkadiroğlu and Sönmez 2003; Ashlagi and Shi 2016) with students having
private preferences for one out of many courses, other applications differ significantly. In particular, stu
dents are often interested in schedules of courses across the week. Assigning schedules of courses has been
referred to as the combinatorial assignment problem (CAP) (Budish 2011).

The need to assign course schedules rather than courses individually became apparent in an application of
matching with preferences at the Technical University of Munich (TUM) that we will discuss. Since 2014
the TUM is using the deferred acceptance algorithm for twosided matching problems and random serial
dictatorship for onesided matching problems to assign seminars or practical courses to students. Every
semester about 1500 students are being matched centrally (Diebold et al. 2014). For seminars and practical
courses students need to get assigned one out of many courses offered per semester. In many situations
students’ preferences do not only concern a single course. For example, in the first three semesters there are
large courses with hundreds of students. These courses include a lecture and small tutor groups. Students
need to attend one tutor group for three to four courses in each semester. These tutor groups should not
overlap and they should be adjacent to each other such that students do not have a long commute for each of
the tutor groups individually. For example, a student might want to have two tutorials in the morning and
one after lunch on a particular day to reduce her commute time, and she would have a strong preference for
this schedule over one where the tutorials are scattered across the week. In any case, students have timely
preferences over course schedules that need to be considered, which makes it a combinatorial assignment
problem. Similar problems can be found in many organizations.
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A first and seminal approach to address this fundamental problem, the approximate competitive equilib
rium from equal incomes mechanism (ACEEI), was published by Budish (2011). In ACEEI students re
port their complete preferences over schedules of courses, the mechanism assigns a budget of fake money to
each student that she can use to purchase packages (or schedules) of courses. Then an optimizationbased
mechanism computes approximate competitive equilibrium prices, and the student is allocated her most
preferred bundle given the preferences, budgets, and prices. It is well known that serial dictatorships are
the only strategyproof and efficient mechanisms for multiunit and also combinatorial assignment prob
lems (Ehlers and Klaus 2003; Pápai 2001). ACEEI is relaxing design goals such as strategyproofness and
envyfreeness to approximate notions, which makes it a remarkable and practical contribution to a funda
mentally hard problem. Themechanism has been shown to be approximately strategyproof, approximately
envyfree, and Pareto efficient. Budish et al. (2017) reports the empirical results at the Wharton School of
Business. In addition, Budish and Kessler (2017) summarize the results of lab experiments.

The work was breaking new ground, but the ACEEI mechanism is also challenging. First, it is not guaran
teed that a price vector and course allocation exists that satisfies all capacity constraints. Second, the prob
lem of computing the allocation problem in ACEEI is PPADcomplete and the algorithms proposed might
not scale to larger problem sizes required in the field (Othman et al. 2016). Third, studentsmight not be able
to rankorder an exponential set of bundles, which is a wellknown problem (aka. missing bids problem) in
the literature on combinatorial auctions (with money) (Bichler and Goeree 2017; Milgrom 2010). The latter
is a general problem in CAP not restricted to ACEEI, which we will discuss in much more detail below.

Randomization can be a powerful tool in the design of algorithms, but also in the design of economic mech
anisms. Nguyen et al. (2016) recently provided two randomized mechanisms for onesided matching prob
lems, one with cardinal and one with ordinal preferences for bundles of objects. The mechanism for ordi
nal preferences is a generalization of probabilistic serial (Bogomolnaia and Moulin 2001b), called Bundled
Probabilistic Serial (BPS). Nguyen et al. (2016) show that this randomized mechanism is ordinally efficient,
envyfree, and weakly strategyproof. These appealing properties come at the expense of feasibility, but the
constraint violations are limited by the size of the packages. In course assignment problems the size of the
packages is typically small (e.g., packages with three to four tutor groups) compared to the capacity of the
courses or tutor groups (around 30 seats or more). There is no need for prices or budgets, and computation
ally the mechanism runs in polynomial time, which is important for large instances of the course allocation
problem that can frequently be found. This makes BPS an interesting approach to many scheduling prob
lems that appear in practice.

Contributions

We address important problems in the implementation of mechanisms for the combinatorial assignment
problem that are beyond a purely theoretical treatment. In particular, preference elicitation is a central
concern in combinatorialmechanisms andwe provide a practical approach that addresses the combinatorial
explosion of possible packages for many applications. Theoretical contributions of assignment mechanisms
largely focus on incentivecompatibility, envyfreeness (as a form of fairness), and efficiency as primary
design desiderata. Based on a largescale field experiment, we are able to report properties of matchings
such as their size, their average rank, the probability ofmatching, the profile, and the popularity compared to
FCFS. These properties are of central importance for the choice of mechanisms and the design of respective
information systems.

Implementing and testing new IS artifacts in organizations is challenging and we are grateful for the pos
sibility to run a largescale field experiment at the (anonymized) university. This is particularly true for a
nontrivial mechanism such as BPS, which involves advanced optimization and randomization. Yet, we can
report on the assignment of 1439 students in the summer term 2017 to 67 tutor groups for 4 classes and
the assignment of 1778 students in the winter term 2017/2018 to 66 tutor groups for 4 classes using BPS.¹
Based on this data the department has adopted the new mechanism for good.

¹Not all students submitted a non empty preference list. Therefore, we consider in our evaluation only 1415 students in summer
term and 1736 students in winter term.
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In such a large application one cannot elicit preferences of students for BPS and let them participate in FCFS
simultaneously. Instead we simulated FCFS via a version of Random Serial Dictatorship that allows for bun
dles (BRSD), which is of independent interest as an assignment mechanism. In our numerical experiments
we simulated FCFS via a large number of random order arrivals in BRSD using the preferences elicited in
BPS and average across all of them. This approach allows for a comparison between BPS and BRSD (as a
proxy for FCFS) on equal footing.

FCFS only collects limited information about the preferences of participants, a single package only. Mech
anisms for the combinatorial assignment problem allow participants to specify preferences for all possible
packages. We argue that this provides a much better comparison of the average performance of FCFS com
pared to just a single instance of FCFS.

However, BPS requires a ranking of exponentially many schedules, which is a prerequisite for the economic
properties described. Preference elicitation and user interface design have long been a topic in IS research
(Lee and Benbasat 2011; Santos and Bariff 1988). We contribute an approach that is applicable in a wide
array of CAP applications where timely preferences matter. We elicit a small number of parameters about
breaks and preferred times and days of the week. Together with some prior knowledge about student pref
erences this allows us to score and rankorder all possible packages. Students could iteratively adapt the
parameters and the ranking, which then served as an input for BPS. While such ranking algorithms will
differ among types of applications, adequate decision support that aids the ranking of exponentially many
packages is a crucial prerequisite to actually achieve the benefits of combinatorial assignment in realworld
applications.

In our empirical analysis, we show that BPS has many advantages over BRSD in all of the properties intro
duced earlier. While the differences in these criteria are small, envyfreeness turns out to be the most com
pelling advantage of BPS. The level of envy that we find in BRSD is substantial in spite of the limited comple
mentarities in student preferences, who are only interested in packages with at most four tutor groups. This
has to be traded off with the simplicity of FCFS. Overall, we show that randomized matching mechanisms
together with appropriate decision support tools are a powerful new IS design recipe for daunting coordina
tion problems in organizations. The work falls into the broader category of IS design science (Hevner and
Chatterjee 2010; Peffers et al. 2007). We design an artifact to solve a relevant problem in organizations,
develop a technologybased solution, and evaluate the quality and efficacy in a field experiment.

Problem

Let us now define the combinatorial assignment problem (CAP) in the context of course assignment appli
cations, desirable properties, and randomized mechanisms.

Assignment Problems

Assigning objects to agents with preferences but without money is a fundamental problem referred to as
assignment problemwithpreferencesoronesidedmatchingwith preferences. Weuse the termassignment
or matching interchangeably. In course assignment, students express ordinal preferences, which need to be
considered in the assignment. A onesided onetomany course assignment problem consists of a finite
set of n students (or agents) S and a finite set of m courses (or objects) C with the maximum capacities
q = (q1, q2, . . . , qm).

In the combinatorial assignment problem in the context of course allocation, every student i ∈ S has a
complete and transitive preference relation ≽i∈ P over subsets (or bundles) b ∈ B of elements of C. A
preference profile ≽= (≽1, . . . ,≽n) ∈ P |S| is an ntuple of preference relations. For most of the paper we
assume strict preferences.

We can model feasible assignments with linear constraints. Thereby, bundles are described with binary
vectors b ∈ {0, 1}m, where bj = 1 if course j is included in bundle b. We define the size of b with size(b) =∑m

j=1 bj , the number of different courses included in the bundle. Let xib be a binary variable describing if
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bundle b is assigned to student i. The supply constraints make sure that the capacity of the courses are not
exceeded, and the demand constraints determine that each student can win at most one bundle.∑

i∈S,b∈B

xibbj ≤ qj ∀j ∈ C (supply)

∑
b∈B

xib ≤ 1 ∀i ∈ S (demand)

xib ∈ {0, 1} ∀i ∈ S, b ∈ B (binary)

Courses in our application are actually tutor groups and each tutor groupbelongs to one of ℓ classes. Students
in our application can only select bundles with atmost one tutor group in each of these classes. For example,
a student might select a bundle with a course seat in a tutor group for mathematics on Monday at 1 pm, and
another tutor group in software engineering two hours later, but no additional tutor group in mathematics
or software engineering in this bundle. As a result, the possible size of a bundle b is size(b) ≤ ℓ ≪ m. The
web interface takes care that students only submit valid bundles, which have at most one tutor group for
each of the ℓ classes and a size less than or equal to ℓ.

A deterministic combinatorial assignment (deterministic matching) is a mappingM ⊆ S × B of students
S and bundles B of courses C. M describes the set of all deterministic matchings. A matching is feasible if
it is a feasible integer solution to the constraints demand and supply. Random combinatorial assignments
(random matchings) are related to fractional assignments with 0 ≤ xib ≤ 1 and random assignment mech
anisms can be used to fractionally allocate bundles of course seats to students. A lottery L is a probability
distribution over feasible deterministic matchings.

Nguyen et al. (2016) show that a lottery of bundles induces probability shares over these bundles that satisfy
demand and supply constraints. Thus a lottery coincides with a fractional solution to both constraints. How
ever, a fractional solution respecting demand and supply does not need to have a lottery over deterministic
assignments.

For (noncombinatorial) assignment problems with singleunit demands the BirkhoffvonNeumann the
orem (Birkhoff 1946; Von Neumann 1953) says that every fractional allocation can be written as a unique
probability distribution over feasible deterministic assignments. That is, any random assignment can be im
plemented as a lottery over feasible deterministic assignments, such that the expected outcome of this lottery
equals the random assignment. However, the BirkhoffvonNeumann theorem fails when bundles of course
seats need to be assigned. Nguyen et al. (2016) generalize this result and show that any fractional solution
respecting the demand and supply constraints can be implemented as a lottery over integral allocations that
violate the supply constraints only by at most ℓ− 1 course seats.

Design Desiderata

Efficiency, envyfreeness, and strategyproofness are design desiderata of firstorder importance typically
considered in the theoretical literature on deterministic assignment problems. For randomizedmechanisms
one has to reconsider these design desiderata and we will briefly introduce relevant definitions in this sec
tion.

Stochastic dominance (SD) is the key concept among all of these definitions as it provides a natural way
to compare random assignments (Bogomolnaia and Moulin 2001b). Let ∆ describe the set of all possible
random matchings. With pi we refer to the assignment of student i in the random matching p, and denote
with pib the probability that student i gets allocated bundle b. We will omit the subscript i when it is clear
which student is meant. Given two random assignments p, q ∈ ∆, student i SDprefers p to q if, for every
bundle b, the probability that p yields a bundle at least as good as b is at least as large as the probability that
q yields a bundle at least as good as b.

Definition 1 (SDPreference). A student i ∈ S SDprefers an assignment p ∈ ∆ over q ∈ ∆, p ≽SD
i q, if∑

b′≽ib

pib′ ≥
∑
b′≽ib

qib′ ,∀b ∈ B
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In other words, a student i prefers the random assignment p to the random assignment q if pi stochastically
dominates qi. Note, that ≽SD is not a complete relation. That is there might be assignments p and q, which
are not comparable with this relation. Firstorder stochastic dominance (pi dominates qi if pib ≥ qib for all
b ∈ B) holds for all increasing utility functions and implies secondorder stochastic dominance, which is
defined on increasing concave (riskaverse) utility functions. In other words, riskaverse expectedutility
maximizers prefer a secondorder stochastically dominant gamble to a dominated one (Müller and Stoyan
2002).

One desirable property of matchings is (Pareto) efficiency such that no student can be made better off with
out making any other student worse off. A deterministic matchingM is efficient with respect to the students
if there is no other feasible matchingM ′ such thatM ′(i) ≽i M(i) for all students i ∈ S andM ′(i) ≻i M(i)
for some i ∈ S. One can generalize this to random matchings and lotteries:

Definition 2 (Efficiency). A random assignment p ∈ ∆ is called
i) ex post efficient, if p can be implemented into a lottery over Pareto efficient deterministic assignments.
ii) ordinally efficient, if there exists no random assignment q stochastically dominating p, i.e. @q ∈ ∆ :

∀i ∈ S : q ≽SD
i p and ∃i ∈ S : q ≻SD

i p.

Ordinal efficiency comes from the Pareto ordering induced by the stochastic dominance relations of indi
vidual students. It can be shown that ordinal efficiency implies ex post efficiency (Bogomolnaia andMoulin
2001b).

Fairness is another important design goal. A basic notion of fairness for randomized assignments is the
equal treatment of equals, i.e., students with identical preferences receive identical (symmetric) random
allocations. Envyfreeness is stronger.

Definition 3 (EnvyFreeness). A random assignment p ∈ ∆ is called
i) (strongly) SDenvyfree, if ∀i, j ∈ S : pi ≽SD

i pj .
ii) weakly SDenvyfree, if @i, j ∈ S : pj ≻SD

i pi.

SDenvyfreeness means that student i weakly SDprefers the random matching she is faced with to the
random assignment offered to any other student, i.e., a student’s allocation stochastically dominates the
outcome of every other student. For weak SDenvy freeness it is only demanded that no student’s allocation
is stochastically dominated by the allocation of another student. SDenvyfreeness implies equal treatment
of equals.

An assignmentmechanism is an algorithm, which computes amatchingM for given preferences of students.
More formally, A deterministic assignment mechanism is a function χ : P |S| → M that returns a feasible
matchingM ∈ M of students to courses for every preference profile of the students.

A randomized assignment mechanism is a function ψ : P |S| → ∆ that returns a random matching p ∈ ∆.
The mechanism ψ (≽) = p is ordinally efficient if it produces ordinally efficient allocations. We call ψ ex
post Pareto efficient, if p can be decomposed as a convex combination of Pareto optimal matchings. ψ is
symmetric, if for every pair of students i and j with ≽i=≽j also pi = pj . This means that students that
have the same preference profile also have the same outcome in expectation. A randomized mechanism is
envyfree if it always selects an envyfree matching.

An important property of a mechanism is strategyproofness. This means, that there is no incentive for any
student not to submit her truthful preferences, no matter which preferences the other students report.

Definition 4 (StrategyProofness). Let ≽∈ P |S| be the (true) preference profile. A deterministic assign
ment mechanism χ is strategyproof if for every student i ∈ S and ≽′

i∈ P we have χi (≽) ≽i χi (≽′
i,≽−i).

Thereby, ≽−i denotes the preference profile of all agents i′ ∈ S \ {i}. It has been shown that participants in
strategyproof mechanisms such as the Vickrey auction do not necessarily bid truthfully in practice. Hence,
there was a recent discussion about obvious strategyproofness of extensive form games (Li 2017). Intu
itively, a mechanism is obviously strategyproof iff the optimality of truthtelling can be deduced without
contingent reasoning. For randomized mechanisms we need to adapt the definitions.
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Definition 5 (SDStrategyProofness). Letψ : P |S| → ∆ be a random assignmentmechanism and≽∈ P |S|

the (true) preference profile.

i) ψ is called (strongly) SDstrategyproof if for every student i ∈ S with≽′
i∈ P ψ (≽) ≽SD

i ψ (≽′
i,≽−i).

ii) ψ is called weakly SDstrategyproof if there exists no ≽′
i∈ P for some student i ∈ S such that

ψ (≽′
i,≽−i) ≽SD

i ψ (≽).

In other words, an ordinal mechanism is strategyproof if for any agent, the allocation resulting from mis
reporting is weakly stochastically dominated by the allocation from truthful reporting, with respect to an
agent’s true preferences. Weak strategyproofness means that there may not be any student i that strictly
prefers ψ (≽′

i,≽−i) over the truthful outcome, but theremay be students i that neither prefer ψ (≽′
i,≽−i) nor

ψ (≽). This can happen as the ≽SDrelation is not complete. We will omit the prefix SD for brevity in the
following.

Assignment Mechanisms

A lot is known about assignment problems with singleunit demand. Random Serial Dictatorship (RSD)
selects a permutation of the agents uniformly at random and then sequentially allows agents to pick their
favorite course among the remaining ones. Gibbard (1977) showed that RSD is the only anonymous and
symmetric, strongly SDstrategyproof, and ex post efficient assignment rule when preferences are strict.
Pycia and Troyan (2016) prove that RSD is the unique mechanism that is obviously strategyproof, efficient,
and symmetric in mechanisms without transfers.

However, RSD is not always ordinally efficient, only ex post efficient (Bogomolnaia and Moulin 2001a).
Zhou (1990) actually showed that no random mechanism for assigning objects to agents can satisfy strong
notions of strategyproofness, ordinal efficiency, and symmetry simultaneouslywithmore than three objects
and agents. So, we also cannot hope for these properties in combinatorial assignment problems. RSD can
also be applied to the combinatorial assignment problem. The Bundled Random Serial Dictatorship (BRSD)
orders the students randomly and assigns the most preferred bundle which is still available to each student
in this order. Although the package preferences take some toll on the runtime it is still very fast.

Firstcome firstserved (FCFS) can be seen as a serial dictatorship. Students login at a certain registration
and then reserve the most preferred bundle of courses that is still available. Although the arrival process
is not uniform at random, students have little control over who arrives first. While there is a certain time
when the registration starts, hundreds of students log in simultaneously to get course seats and it is almost
randomwho arrives first. Wewill simulate FCFS via BRSD and run the algorithm repeatedly to get estimates
for performance metrics of FCFS.

Probabilistic Serial (PS) (Bogomolnaia andMoulin 2001a) produces an envyfree assignment with respect to
the reported unitdemand preferences, and it is ordinally efficient, but it is only weakly SDstrategyproof.
Bundled Probabilistic Serial (BPS) by Nguyen et al. (2016) is a generalization of PS to the combinatorial
assignment problem. BPS computes a fractional solution via a generalization of the PS mechanism. The
BPS mechanism is also ordinally efficient, envyfree, and weakly strategyproof if preferences are strict.

Informally, in BPS all agents eat their most preferred bundle in the time interval [0, 1] simultaneously with
the same speed as long as all included objects are available. As soon as one object is exhausted, every bundle
containing this object is deleted and the agents continue eating the next available bundle in their preference
list. The duration with which every bundle was eaten by an agent specifies the probability for assigning this
bundle to this agent.²

Artifact

This section focuses on the preference elicitation, which is central given the exponential set of possible sched
ules students might be interested in. We first introduce the environment and the problem students face,
before we discuss different approaches to elicit their preferences.

²Due to space constraints we omit a formal description of BPS and the decomposition algorithm. Interested Readers are referred
to Nguyen et al. (2016).
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Background on the Application

The Technical University of Munich has been using stable matching mechanisms for the assignment of stu
dents to courses since 2014. The systemprovides awebbased user interface and every semester almost 1500
students are being matched to lab courses or seminars via the deferred acceptance algorithm for twosided
matching or random serial dictatorship for onesided matching problems.

In the context of the study reported in this paper, the webbased software for BPS and for BRSD was imple
mented. 1439 Students in computer science and information systems in their second semester participated
in the matching during the summer term 2017 and they could choose tutorial groups from several courses
including linear algebra, algorithms, software engineering, and operations research. A computer science
student could have preferences for up to 5760 (= 10 · 24 · 24) bundles³ and an information systems student
could have preferences for up to 5184 (= 9 · 24 · 24) bundles.⁴ During the winter term 2017/2018, 1778 com
puter science and information systems students in their third semester participated in the matching and
could choose bundles of tutor groups out of four classes. A computer science student could have more than
700,000 different bundles.⁵

Automated Ranking of Packages

Anaive approachwould be to let the students rank bundles on their own by choosing the time slots they want
to have in their preference list. This would take a lot of time and lead to a substantial missing bids problem.
We developed an algorithm that allows to rankorder all possible packages based on a few parameters that
students need to specify. For this, we can leverage prior knowledge about timely preferences of students for
schedules of tutorials and lectures.

Students’ preferences mainly concern their commute and the possibility to free large contiguous blocks of
time (e.g., a day or a halfday) that they can plan for other activites (e.g., a parttime job). In larger cities,
the time that students spend for commuting is significant. Also long waiting times between courses are per
ceived as a waste of time as it is often hard for them to work productively in several one or twohour breaks
without appropriate office facilities available. For example, if a student had a tutorial on linear algebra in the
morning, a lunch break, and then the tutorials for algorithms and software engineering in the afternoon of
the same day with the minimal time for breaks specified, this would be considered ideal. The desired length
for breaks between tutorials and for the lunch break are considered parameters with default values in the
preference elicitation.

Figure 1 shows the initial page where a student can select the courses of interest. First, students choose the
lectures and tutorials they are interested in. The selected lectureswill be considered in the bundle generation
as constraints, i.e., if a time slot of a tutorial overlaps with the time of a selected lecture, then it will no longer
be considered in order to allow students to participate in the lecture. In a second step, the student marks
available time ranges in the weekly schedule. The day is partitioned into weekdays and time blocks of 30
minutes from 8:00 AM to 8:30 PM. If a tutorial is selected, all time slots of this tutorial will be highlighted
with a specific color. Thus, students learn when the tutorials and lectures of interest take place. A student
can set a minimal amount of time for a lunch break and a minimal amount of time inbetween two events
(default value is 15 minutes). We also allow students to provide weights {1, . . . , 5} for the different days.
That is, the students can express preferences over the days.

The preferences elicited on this screen are input for an algorithm that uses prior knowledge about student
preferences to rankorder all possible packages. The algorithm first generates bundles that satisfy all con
straints and then ranks them. Finding the bundles that do not violate constraints of the students (e.g.,
lectures to be attended) can be cast as a constraint satisfaction problem. After the feasible bundles are
generated, we rank these bundles. For this we assign a score to each bundle that considers

• how many days a student needs to come to the university per week in total,

³Consisting of the courses: linear algebra, algorithms, software engineering.
⁴Consisting of the courses: operations research, algorithms, software engineering.
⁵The computer science students need tutorials from all four classes (< 22 · 25 · 26 · 52).
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Figure 1. Process to rankorder packages
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• the preference ordering over the days,
• the total time a student has to stay at the university each day, and
• the length of the lunch breaks between courses.

These criteria and their implementation are developed in cooperation with the students representatives of
the computer science department of the TUM. The implementationmight be special, however, as we will see
in the survey evaluation, the students found that their preferences were well expressed by this method.

The score for a package b of courses across the week is the sum of the daily scores (score (b, d)) for all week
days d. The daily scores are computed as

score (b, day) =

(
w (b, day)

sp (b, day)
· f (sp (b, day)) + br (b, day)

)
· prio (day)

This score is scaled between 0 and 27.5 at a maximum and it considers how well the day is utilized with
courses. Ideally, a student would have all her tutorials on a single day, her most preferred day, have a 1hour
lunch break and a minimal time for breaks inbetween courses. This would yield 27.5 points.

The time spent at the university per day sp (b, day) is considered relative to the time a student attends courses
on that day (w (b, day)). These courses include tutorials and lectures. The ratio is used to weigh the score for
a day (f (sp (b, day))). This way a day where students do not spend more time in breaks than the minimum
number of minutes specified maximizes the score. The function f (·) assigns 1 point for up to 2 hours spent
at the university on a day (sp (b, day) ≤ 2), 2 points for up to 4 hours, 3 points for up to 6 hours, 4 points for
up to 8 hours, but only 2 points for days where a student is between 8 and 10 hours at the university. Longer
schedules are not permitted.

A second component in the daily score (score (b, d))) is the lunch break. A 1hour break was considered best.
The scoring function br (·) would assign 0 points for lunch breaks less than 30 minutes, 1 point for 3045
minutes, 1.5 points for 4560 minutes, 2 points for 6075 minutes, and again a low number of points for
longer breaks. Students could also exclude schedules with a break less than a certain time, say 30 minutes.

The daily scores are then multiplied by the priority of the day {1, . . . , 5}. If the student does not have to visit
the university at day d, he gets a fixed score of 30 for day d. As a result of this scoring rule, the more days the
student can stay at home, the higher is the score of this bundle. As a simplified example, if a student had
to come to the university on three different days to attend one course only, this bundle would get a score of
less than 25, while if he could attend all courses on a single day with minimal breaks, this will get an overall
score of more than 80 (for these three days).

In other words, the scoring rule will place bundles, that use a minimal number of days (ideally the most
preferred days) with only a few breaks but a one hour lunch break on top of the preference list. This would
minimize the commute time and maximize the contiguous time a student can devote to learning or work. If
the breaks between courses grow larger or courses take place on different or more days, this decreases the
score. Ties are not impossible but almost never occur such that the algorithm typically generates a strict
ranking of the feasible packages.

Even if it is a fair assumption that students have quite homogeneous preference structures, there might be
some special cases we cannot cover with such a scoring rule. Therefore we give the students the possibility to
adjust the outcome of this scoring procedure. On the ranking page, we display the 30 top rated preranked
bundles and the students can adapt this ranking manually, go back to the previous screen and adapt the
input parameters, or just accept the ranking with a single click. Note that ≈ 90% of the students received
one of their top ten ranked packages and only a few students received a package with a rank less than 30. So,
if a student inspects and confirms the ranking of the first 1030 packages, this covers the most important
quantile of the overall ranking list. We generated a ranking over 200 bundles for each student in advance
based on the prespecified parameters and further preferences only if necessary.

So far, we described the user interface for the winter term 2017/18. The user interface in the summer term
2017 required students to explicitly drag and drop the preranked packages on a screen. This was considered
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tedious such that in the winter term the generated ranking was suggested to students right away without any
draganddrop activies required and could be confirmed without much effort.

Evaluation

We already have summarized firstorder design goals for assignment problems: strategyproofness, fair
ness, and efficiency. Now we introduce secondorder design goals and respective metrics allowing us to
compare the assignments of BPS and FCFS empirically. Then we provide numeric results and summarize
the outcomes of a survey we conducted after the matching.

Metrics

Apart from efficiency, fairness, and strategyproofness, popularity was raised as a design goal. An assign
ment is called popular if there is no other assignment that is preferred by a majority of the agents. Popular
deterministic assignments might not always exist, but popular random assignments exist and can be com
puted in polynomial time (Kavitha et al. 2011). However, Brandt et al. (2017) prove that popularity is incom
patible with very weak notions of strategyproofness and envyfreeness, but it is interesting to understand
the popularity of BPS vs. BRSD. In our empirical evaluation we analyze whether BPS or FCFS are more
popular. To measure popularity we first define the function ϕi (b, b′) : B ×B → {±1, 0} associated with the

preference relations: ϕi (b, b′) =
{

+1 if b≻ib
′

−1 if b′≻ib
0 else

}
.

Definition 6 (Popularity). A random assignment p ∈ ∆ is more popular than an assignment q, denoted
p I q, if pop (p, q) > 0 with pop (p, q) =

∑
i∈S

∑
b,b′∈B pib · qib′ · ϕi (b, b′). A random assignment p is popular,

if @q ∈ ∆ : q I p.

Apart from popularity, the size and the average ormedian rank are of interest. The size of amatching simply
describes the number of matched agents. The average rank is only meaningful in combination with the size
of thematching, because a smallermatching could easily have a smaller average rank. We report the average
rank, because it has been used as ametric to gauge the difference inwelfare ofmatching algorithms inBudish
et al. (2017) and Abdulkadiroğlu et al. (2009), two of the few experimental papers onmatchingmechanisms.

The profile contains more information as it compares how many students were (fractionally) assigned to
their first choice, how many to their second choice, and so on. The profile of two matchings is not straight
forward to compare. We want to compare multiple profiles based on a single metric, and decided to use
a metric similar to the Area under the Curve of a Receiver Operating Characteristic in signal processing
(Hanley and McNeil 1982) which was also used in Diebold and Bichler (2017). The Area Under the Profile
Curve Ratio (AUPCR) for matching problems with bundles is defined as follows:

Definition 7 (AUPCR). With R denoting the number of possible ranks and b ∈ B, the AUPCR is:

AUPCR (M) =
1

R

R∑
r=1

|{(i, b) ∈M | rank (i, b) ≤ r}|
|S|

Empirical Results

The first application from the summer term 2017 comprised 1415 students and 67 courses (see Table 1).
Overall, we had a list of 5847 different bundles for the summer term. We simulated FCFS via BRSD on
the preferences collected for the BPS. BPS is weakly strategyproof and in such a large application it is fair
to assume that students do not have sufficient information about the preferences of others. In the survey,
we will see that a small proportion of the students reported that they deviated from truthful bidding and
did not report some of their preferred time slots. However, taking the preferences for bundles of tutor
groups elicited for the BPS allows for a comparison with BRSD. To compare the result of BPS and BRSD we
actually would have to run the BRSD for all permutations of the students. Note that computing probabilities
of alternatives in RSD explicitly is #P complete (Aziz et al. 2013). We ran BRSD 1000 to 1,000,000 times
with the same preferences but random permutations of the order of students and derived estimates for the
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different metrics. Since these results are very close, one can assume, that 1Mio runs of BRSD generate a
good approximation to the (real) induced random matching⁶.

Popularity

For the data from the summer and the winter term, BPS is more popular than BRSD. 636 students prefer
BPS to FCFS, while 96 students prefer FCFS to BPS. 683 students are indifferent (see Table 1). A positive
popularity score as described in Definition 6 means, that BPS is more popular than the BRSD outcome and
the score for BPS is 2.74 for the summer term and 3.41 for the winter term (compared to BRSD). For the data
from the winter term 754 students prefer BPS to FCFS, while 120 students prefer FCFS to BPS. 862 students
are indifferent. Table 1 summarizes popularity and stochastic dominance for the summer and the winter
term. The syntax for the SDpreference is the number of students preferring (BPS|BRSD). It shows that
BPS is preferable to BRSD according to SDpreference.

Summer Term Winter Term
Metric BPS BRSD BPS BRSD

exp. rank 2.20163 2.20835 1.97372 1.97873
exp. size 1086.58 1085.79 1603.01 1600.84

prob. match (top 100) 0.767901 0.767345 0.922253 0.922142
AUPCR 0.747419 0.750782 0.889512 0.888058

weak envy 0 381 0 451
strong envy 0 1064 0 1202
popularity 2.73635 3.41499

SDpreference (636|96) (754|120)

Table 1. Summary statistics for the summer term 2017 and the winter term 2017/2018.

Rank and Size

Table 1 reports that in terms of average rank, average size, and the probability of being matched to one of
the first 100 ranks BPS achieves higher scores in the summer term. Only the AUPCR for BRSD is slightly
better than for BPS. The computation times were negligible for BRSD (0.007 seconds per run). BPS required
0.12 seconds computation time with additional 6minutes for the lottery algorithm in the summer term. This
shows that BPS is a practical technique even for large assignment problems. In the BPS outcome 72.735% of
the students receive an assignment ranked in their top ten while in BRSD 72.637% receive such an outcome
(see Table 2 for BPS and Table 3 for BRSD). Table 2 reports the probability of being matched to a particular
rank and the AUPC in percentage for BPS, and Table 3 shows the rank profile for BRSD.

Rank 1 2 3 4 5 6 7 8 9 10
Prob match(%) 54.174 5.691 4.542 2.025 1.506 0.935 1.167 0.940 1.141 0.613
AUPC in (%) 54.174 59.865 64.407 66.432 67.938 68.874 70.041 70.981 72.122 72.735

Table 2. Rank profiles for BPS in summer term 2017.
Rank 1 2 3 4 5 6 7 8 9 10

Prob match(%) 53.973 5.725 4.538 2.053 1.529 0.931 1.181 0.948 1.150 0.610
AUPC in (%) 53.973 59.697 64.236 66.289 67.818 68.748 69.929 70.877 72.027 72.637

Table 3. Rank profile BRSD in summer term 2017.

The second application in the winter term included 1736 students and 66 courses. Overall, we had a list of
20,845 different bundles for the winter term. Again, BPS achieved better results than BRSD in all metrics
(see Table 1). In the BPS outcome 89.047% of the students receive an assignment ranked in their top ten
while in BRSD 88.891% receive such an outcome (see Table 4 for BPS and 5 for BRSD). The computation

⁶For brevity we omit the number of runs in the following and only report the results for 1 Mio runs of BRSD.
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times were again very low. BPS required 0.382 seconds, but the lottery algorithm around 30minutes due to
the higher number of bundles generated in the winter term.

Envy

Our experiments in the summer and the winter term confirm the theoretical result that BPS is (strongly)
envyfree. BRSD is neither weakly nor strongly envyfree. In the summer term, 1064 students do not fulfill
the envyfreeness condition (see Definition 3), from which 381 students do not even fulfill the weak envy
freeness condition (see BRSD in Table 1). Similarly, for the winter term 1202 students do not SDprefer
their outcome over the outcomes of every other student, and 451 of those students even prefer an outcome
of another student (see BRSD in Table 1).

Rank 1 2 3 4 5 6 7 8 9 10
Prob match(%) 73.596 7.083 3.392 1.660 1.041 0.698 0.465 0.447 0.366 0.299
AUPC in (%) 73.596 80.678 84.070 85.730 86.772 87.470 87.935 88.381 88.747 89.047

Table 4. Rank profiles for BPS in winter term 2017/2018.
Rank 1 2 3 4 5 6 7 8 9 10

Prob match(%) 73.452 7.046 3.382 1.673 1.040 0.704 0.486 0.443 0.358 0.307
AUPC in (%) 73.452 80.497 83.879 85.553 86.593 87.297 87.783 88.226 88.584 88.891

Table 5. Rank profile BRSD in winter term 2017/2018

Survey Results

After the students were assigned to the tutor groups and the courses started, we conducted a survey among
the students using a 5point Likert scale (1 = strongly agree, 2 = agree,..., 5 = strongly disagree). 169
students out of 1736 students participated in the survey in the winter term and we report their responses
in Table 6. Note that the students were exposed to FCFS in other semesters and now participated in BPS,
which allowed them to compare both mechanisms.

Students did not have to participate and we made clear that the feedback was used for research purposes
only. The responses indicate that the majority of the students responding found the system easy to use and
that they could express their preferences well. More than 50% agreed (2) or strongly agreed (1) to questions
1 to 6. A majority also considers the system as fair (question 7), but almost 22% of the respondents also
disagreed to this statement. Note that studentsmight have had an understanding of fairness that is different
from envyfreeness or equal treatment of equals. For example, some students felt that in FCFS they could
improve their assignment bymaking sure that they are among the first to register. This was perceived as fair
as the additional effort would lead to higher chances of getting their best allocation as compared to those
students who do not care about the assignment as much.

62.1% of the respondents were satisfied with the outcome (agreed or strongly agreed), while 28.4% were
not. It is unclear how those students who did not respond perceived the outcome, but there is a tendency
that students, who are unhappy with the outcome, rather respond than students who got a high ranked
bundle. Hence, the sample of students who respond might be biased towards dissatisfaction. The ranking
and profile information reported earlier provides alternative information about satisfaction of students with
the outcome. Also, note that the reason for the introduction of BPS was the large dissatisfaction with FCFS.

85.8% of the respondents reported that they were expressing their preferences truthfully in BPS (agreed or
strongly agreed), while around 10.1% did not (disagreed or strongly disagreed). 10.1% were also indicating
that they were hiding some of their most preferred time slots, while even 28.4% agreed or strongly agreed
to the statement that they were hiding some of their least preferred time slots. This high percentage needs
to be seen in conjunction with the exponentially large set of possible packages. If a student provides many
possible time slots, then the list of packages grows very large. Therefore, there might have been a tendency
to narrow down the selection of acceptable time slots, i.e., not rank the least preferred time slots.
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Question 1 2 3 4 5
1 I had no problems to select my time ranges in the weekly schedule 34.9 34.9 11.8 9.5 8.9
2 The ranking of the generated sets of time slots was easy 26.6 26.6 18.9 14.8 13.0
3 The instructions on the matching system were sufficient 25.4 37.3 18.3 10.1 8.9
4 The generated sets of tutorial groups met my expectations 37.9 27.8 10.1 9.5 14.8
5 I was able to express my preferences on sets of tutor groups well 42.6 24.9 13.6 7.7 11.2
6 I consider the way bundles are allocated through the matching system as fair 32.5 27.2 18.3 5.9 16.0
7 I am satisfied with the matching outcome 45.0 17.0 9.5 6.5 21.9
8 I felt like I had control over my schedule 29.0 18.9 13.0 17.2 21.9
9 I was expressing my preferences truthfully 72.4 13.4 4.2 3.6 6.5
10 I was strategically hiding some of my most preferred time slots 5.3 4.7 8.3 13.6 68.0
11 I was strategically hiding some of my least preferred time slots 16.0 12.4 16.0 12.4 43.2

Table 6. Survey results, values in %

Still, the fact that a significant part of the students indicate that they did not report preferences truthfully is
a tangible difference to FCFS. In FCFS, students only provide their single best package at the point in time,
when they log in. This is simple, intuitive, and obviously strategyproof. This property has to be traded off
against the level of envy in FCFS.

Discussion of Differences

The results from our field experiments and the survey reveal a number of interesting insights. Overall, BPS
dominates BRSD on all metrics from our empirical evaluation in both field studies. It has a better average
rank, a higher average size and a higher probability of matching, and it does not exhibit envy. However, the
differences in average rank, average size, and the profile curve (AUPCR) are small, which is interesting given
the fact that only a small number of preferences per student are considered via FCFS.

There are a number of reasons that help explaining the close performance of BPS and FCFS in thesemetrics.
First, Che andKojima (2010) find that random serial dictatorship and probabilistic serial become equivalent
when the market becomes large, i.e., the random assignments in these mechanisms converge to each other
as the number of copies of each object type grows, and the inefficiency of RSD becomes small. Our empirical
results suggest that differences might also be small in large combinatorial assignment markets with limited
complementarities.

Second, ordinal preferences do not allow to express the intensity of preferences. Suppose there are two
students that both prefer course c1 to c2, each having one course seat only. No matter who gets course c1,
the average rank and size of the matching as well as the profile will be the same even though one student
might desperately want to attend c1, while the second student only has a mild preference for c1. Without
cardinal information about the intensity of a preference the differences in aggregate metrics might be small.

Third, an earlier comparison of FCFS with a deferred acceptance algorithm by Diebold et al. (2014) also
showed that FCFS yielded surprisingly good results. While the average rank of FCFS was worse, the size of
the matching resulting from FCFS was significantly larger compared to that from the deferred acceptance
algorithm. For the combinatorial assignment problem, BPS actually had a larger average size than FCFS in
both studies. For applications of matching in practice it is important to understand these tradeoffs.

Conclusions

We report two large field studies and show that BPS performs well on a number of criteria including average
rank, average size, probability of a matching among the first 100 ranks, and the overall profile of ranks (in
terms of AUPC of a specific rank) assuming a complete, truthful, and strict ranking of all packages. The
matching based on BPS is also more popular than BRSD based on the preferences submitted for BPS. The
level of envy in FCFS is significant, even though the size of the packages that can be submitted is limited to
the number of classes (three to four groups per package) in our course assignment application.
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As in many scheduling applications, student preferences in our course assignment application are about
times of the week. We introduce a way to rank order themany possible schedules based on a few parameters.
The feedback of the students was that this automated ranking met their preferences well and we argue that
this is a good way to address the missing bids problem in similar applications. Of course, other domains
might have different requirements and the way how preferences are elicited needs to reflect the domain
specifics.

Although BPS provides a convincing new alternative to scheduling problems with private preferences, there
are tradeoffs with firstcome, firstserved techniques.

In contrast to FCFS the BPS mechanism is not obviously strategyproof and a part of the students in the
survey actually indicated that they either hid their most preferred or least preferred time slots strategically.
This might partly be due to the fact that students were unexperienced with this new mechanism.

The key difference between BPS and FCFS is the absence of envy. The level of envy in FCFS is significant.
Note that it might be evenmore pronounced if students were allowed to pick larger packages. Envyfreeness
or stability has been raised as one of the arguments why the GaleShapleymechanism for simple assignment
problems where agents have unit demand (i.e., demand for only one course seat) is so successful in practice
(Roth 2002). If the market outcome is unstable, there is an agent or pair of agents who have the incentive to
circumvent thematch. We argue that this property is as important for the assignment of course schedules. If
envyfreeness matters, the elegant BPS mechanism has a number of attractive properties, which otherwise
suffer from computational hardness of the allocation problem and strategic manipulation. Such provable
properties are valuable in a time where algorithmic bias has become such an important concern. Envy
freeness and incentive compatibility are pivotal properties of BPS, which make the overall system design
also an excellent candidate related scheduling applications within and across organizations.
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