14,646 research outputs found

    AccTEE: A WebAssembly-based Two-way Sandbox for Trusted Resource Accounting

    Get PDF
    Remote computation has numerous use cases such as cloud computing, client-side web applications or volunteer computing. Typically, these computations are executed inside a sandboxed environment for two reasons: first, to isolate the execution in order to protect the host environment from unauthorised access, and second to control and restrict resource usage. Often, there is mutual distrust between entities providing the code and the ones executing it, owing to concerns over three potential problems: (i) loss of control over code and data by the providing entity, (ii) uncertainty of the integrity of the execution environment for customers, and (iii) a missing mutually trusted accounting of resource usage. In this paper we present AccTEE, a two-way sandbox that offers remote computation with resource accounting trusted by consumers and providers. AccTEE leverages two recent technologies: hardware-protected trusted execution environments, and Web-Assembly, a novel platform independent byte-code format. We show how AccTEE uses automated code instrumentation for fine-grained resource accounting while maintaining confidentiality and integrity of code and data. Our evaluation of AccTEE in three scenarios – volunteer computing, serverless computing, and pay-by-computation for the web – shows a maximum accounting overhead of 10%

    Towards trusted volunteer grid environments

    Full text link
    Intensive experiences show and confirm that grid environments can be considered as the most promising way to solve several kinds of problems relating either to cooperative work especially where involved collaborators are dispersed geographically or to some very greedy applications which require enough power of computing or/and storage. Such environments can be classified into two categories; first, dedicated grids where the federated computers are solely devoted to a specific work through its end. Second, Volunteer grids where federated computers are not completely devoted to a specific work but instead they can be randomly and intermittently used, at the same time, for any other purpose or they can be connected or disconnected at will by their owners without any prior notification. Each category of grids includes surely several advantages and disadvantages; nevertheless, we think that volunteer grids are very promising and more convenient especially to build a general multipurpose distributed scalable environment. Unfortunately, the big challenge of such environments is, however, security and trust. Indeed, owing to the fact that every federated computer in such an environment can randomly be used at the same time by several users or can be disconnected suddenly, several security problems will automatically arise. In this paper, we propose a novel solution based on identity federation, agent technology and the dynamic enforcement of access control policies that lead to the design and implementation of trusted volunteer grid environments.Comment: 9 Pages, IJCNC Journal 201

    Trusted resource allocation in volunteer edge-cloud computing for scientific applications

    Get PDF
    Data-intensive science applications in fields such as e.g., bioinformatics, health sciences, and material discovery are becoming increasingly dynamic and demanding with resource requirements. Researchers using these applications which are based on advanced scientific workflows frequently require a diverse set of resources that are often not available within private servers or a single Cloud Service Provider (CSP). For example, a user working with Precision Medicine applications would prefer only those CSPs who follow guidelines from HIPAA (Health Insurance Portability and Accountability Act) for implementing their data services and might want services from other CSPs for economic viability. With the generation of more and more data these workflows often require deployment and dynamic scaling of multi-cloud resources in an efficient and high-performance manner (e.g., quick setup, reduced computation time, and increased application throughput). At the same time, users seek to minimize the costs of configuring the related multi-cloud resources. While performance and cost are among the key factors to decide upon CSP resource selection, the scientific workflows often process proprietary/confidential data that introduces additional constraints of security postures. Thus, users have to make an informed decision on the selection of resources that are most suited for their applications while trading off between the key factors of resource selection which are performance, agility, cost, and security (PACS). Furthermore, even with the most efficient resource allocation across multi-cloud, the cost to solution might not be economical for all users which have led to the development of new paradigms of computing such as volunteer computing where users utilize volunteered cyber resources to meet their computing requirements. For economical and readily available resources, it is essential that such volunteered resources can integrate well with cloud resources for providing the most efficient computing infrastructure for users. In this dissertation, individual stages such as user requirement collection, user's resource preferences, resource brokering and task scheduling, in lifecycle of resource brokering for users are tackled. For collection of user requirements, a novel approach through an iterative design interface is proposed. In addition, fuzzy interference-based approach is proposed to capture users' biases and expertise for guiding their resource selection for their applications. The results showed improvement in performance i.e. time to execute in 98 percent of the studied applications. The data collected on user's requirements and preferences is later used by optimizer engine and machine learning algorithms for resource brokering. For resource brokering, a new integer linear programming based solution (OnTimeURB) is proposed which creates multi-cloud template solutions for resource allocation while also optimizing performance, agility, cost, and security. The solution was further improved by the addition of a machine learning model based on naive bayes classifier which captures the true QoS of cloud resources for guiding template solution creation. The proposed solution was able to improve the time to execute for as much as 96 percent of the largest applications. As discussed above, to fulfill necessity of economical computing resources, a new paradigm of computing viz-a-viz Volunteer Edge Computing (VEC) is proposed which reduces cost and improves performance and security by creating edge clusters comprising of volunteered computing resources close to users. The initial results have shown improved time of execution for application workflows against state-of-the-art solutions while utilizing only the most secure VEC resources. Consequently, we have utilized reinforcement learning based solutions to characterize volunteered resources for their availability and flexibility towards implementation of security policies. The characterization of volunteered resources facilitates efficient allocation of resources and scheduling of workflows tasks which improves performance and throughput of workflow executions. VEC architecture is further validated with state-of-the-art bioinformatics workflows and manufacturing workflows.Includes bibliographical references

    Volunteer Computing on Distributed Untrusted Nodes

    Get PDF
    The growth in size and complexity of new software systems has highlighted the need of more efficient and faster building tools. The current research relies on automation and parallelization of tasks dividing and grouping software systems in dependent software packages. Some modern building systems as Open Build Service (OBS) centralize sources commitment and dependencies solving for Linux distributions. After, they distribute these heavy build tasks among several build hosts, to finally deliver the results to the community. The problem with these building services is that as they are usually supported by non-commercial communities, the resources to maintain the build hosts are less. Because of this, the idea of distributing these jobs among new building hosts owned by volunteers is tempting. However, carrying out this idea brings new challenges and problems to be solved, concerning the new pool of untrusted, unreliable workers. This thesis studies how the concept of volunteer computing can be applied to software package building, specifically to OBS. In the first part, the existing platforms of volunteer computing are examined showing the current research and the pros and cons of using them for our purposes. The research of this thesis led to a different solution called Volunteer Worker System (VWS). The main concept is to provide a centralized system that serves OBS reliable trusted workers compiling the results sent by the volunteers. Each worker acts as a proxy between the untrusted volunteers and the OBS server itself, validating by multiple cross-checking the results obtained. The volunteers from the volunteer pool are grouped to serve each surrogate depending on OBS needs. A simple proof-of-concept of the designed system was set-up on a network distributed environment. A host acting as Volunteer System groups and dispatches jobs coming from a host simulating OBS server to several volunteer workers in separate hosts. These volunteers send back their results to the Volunteer System to validate and forward them to OBS Server. Ensuring security on the designed solution is one of the needs to deploy the system on a real-environment. The OBS instance receiving the volunteers work needs to be sure that the Volunteer System offering them is fully trusted. Also, a whole front-end system to attract and maintain volunteers needs to be implemented

    Mechanisms for Outsourcing Computation via a Decentralized Market

    Full text link
    As the number of personal computing and IoT devices grows rapidly, so does the amount of computational power that is available at the edge. Since many of these devices are often idle, there is a vast amount of computational power that is currently untapped, and which could be used for outsourcing computation. Existing solutions for harnessing this power, such as volunteer computing (e.g., BOINC), are centralized platforms in which a single organization or company can control participation and pricing. By contrast, an open market of computational resources, where resource owners and resource users trade directly with each other, could lead to greater participation and more competitive pricing. To provide an open market, we introduce MODiCuM, a decentralized system for outsourcing computation. MODiCuM deters participants from misbehaving-which is a key problem in decentralized systems-by resolving disputes via dedicated mediators and by imposing enforceable fines. However, unlike other decentralized outsourcing solutions, MODiCuM minimizes computational overhead since it does not require global trust in mediation results. We provide analytical results proving that MODiCuM can deter misbehavior, and we evaluate the overhead of MODiCuM using experimental results based on an implementation of our platform

    Investigating grid computing technologies for use with commercial simulation packages

    Get PDF
    As simulation experimentation in industry become more computationally demanding, grid computing can be seen as a promising technology that has the potential to bind together the computational resources needed to quickly execute such simulations. To investigate how this might be possible, this paper reviews the grid technologies that can be used together with commercial-off-the-shelf simulation packages (CSPs) used in industry. The paper identifies two specific forms of grid computing (Public Resource Computing and Enterprise-wide Desktop Grid Computing) and the middleware associated with them (BOINC and Condor) as being suitable for grid-enabling existing CSPs. It further proposes three different CSP-grid integration approaches and identifies one of them to be the most appropriate. It is hoped that this research will encourage simulation practitioners to consider grid computing as a technologically viable means of executing CSP-based experiments faster

    Personal Volunteer Computing

    Full text link
    We propose personal volunteer computing, a novel paradigm to encourage technical solutions that leverage personal devices, such as smartphones and laptops, for personal applications that require significant computations, such as animation rendering and image processing. The paradigm requires no investment in additional hardware, relying instead on devices that are already owned by users and their community, and favours simple tools that can be implemented part-time by a single developer. We show that samples of personal devices of today are competitive with a top-of-the-line laptop from two years ago. We also propose new directions to extend the paradigm
    • …
    corecore