110,875 research outputs found

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    Trusted Computing and Secure Virtualization in Cloud Computing

    Get PDF
    Large-scale deployment and use of cloud computing in industry is accompanied and in the same time hampered by concerns regarding protection of data handled by cloud computing providers. One of the consequences of moving data processing and storage off company premises is that organizations have less control over their infrastructure. As a result, cloud service (CS) clients must trust that the CS provider is able to protect their data and infrastructure from both external and internal attacks. Currently however, such trust can only rely on organizational processes declared by the CS provider and can not be remotely verified and validated by an external party. Enabling the CS client to verify the integrity of the host where the virtual machine instance will run, as well as to ensure that the virtual machine image has not been tampered with, are some steps towards building trust in the CS provider. Having the tools to perform such verifications prior to the launch of the VM instance allows the CS clients to decide in runtime whether certain data should be stored- or calculations should be made on the VM instance offered by the CS provider. This thesis combines three components -- trusted computing, virtualization technology and cloud computing platforms -- to address issues of trust and security in public cloud computing environments. Of the three components, virtualization technology has had the longest evolution and is a cornerstone for the realization of cloud computing. Trusted computing is a recent industry initiative that aims to implement the root of trust in a hardware component, the trusted platform module. The initiative has been formalized in a set of specifications and is currently at version 1.2. Cloud computing platforms pool virtualized computing, storage and network resources in order to serve a large number of customers customers that use a multi-tenant multiplexing model to offer on-demand self-service over broad network. Open source cloud computing platforms are, similar to trusted computing, a fairly recent technology in active development. The issue of trust in public cloud environments is addressed by examining the state of the art within cloud computing security and subsequently addressing the issues of establishing trust in the launch of a generic virtual machine in a public cloud environment. As a result, the thesis proposes a trusted launch protocol that allows CS clients to verify and ensure the integrity of the VM instance at launch time, as well as the integrity of the host where the VM instance is launched. The protocol relies on the use of Trusted Platform Module (TPM) for key generation and data protection. The TPM also plays an essential part in the integrity attestation of the VM instance host. Along with a theoretical, platform-agnostic protocol, the thesis also describes a detailed implementation design of the protocol using the OpenStack cloud computing platform. In order the verify the implementability of the proposed protocol, a prototype implementation has built using a distributed deployment of OpenStack. While the protocol covers only the trusted launch procedure using generic virtual machine images, it presents a step aimed to contribute towards the creation of a secure and trusted public cloud computing environment

    Architecture and Implementation of a Trust Model for Pervasive Applications

    Get PDF
    Collaborative effort to share resources is a significant feature of pervasive computing environments. To achieve secure service discovery and sharing, and to distinguish between malevolent and benevolent entities, trust models must be defined. It is critical to estimate a device\u27s initial trust value because of the transient nature of pervasive smart space; however, most of the prior research work on trust models for pervasive applications used the notion of constant initial trust assignment. In this paper, we design and implement a trust model called DIRT. We categorize services in different security levels and depending on the service requester\u27s context information, we calculate the initial trust value. Our trust value is assigned for each device and for each service. Our overall trust estimation for a service depends on the recommendations of the neighbouring devices, inference from other service-trust values for that device, and direct trust experience. We provide an extensive survey of related work, and we demonstrate the distinguishing features of our proposed model with respect to the existing models. We implement a healthcare-monitoring application and a location-based service prototype over DIRT. We also provide a performance analysis of the model with respect to some of its important characteristics tested in various scenarios

    Bringing self assessment home: repository profiling and key lines of enquiry within DRAMBORA

    Get PDF
    Digital repositories are a manifestation of complex organizational, financial, legal, technological, procedural, and political interrelationships. Accompanying each of these are innate uncertainties, exacerbated by the relative immaturity of understanding prevalent within the digital preservation domain. Recent efforts have sought to identify core characteristics that must be demonstrable by successful digital repositories, expressed in the form of check-list documents, intended to support the processes of repository accreditation and certification. In isolation though, the available guidelines lack practical applicability; confusion over evidential requirements and difficulties associated with the diversity that exists among repositories (in terms of mandate, available resources, supported content and legal context) are particularly problematic. A gap exists between the available criteria and the ways and extent to which conformity can be demonstrated. The Digital Repository Audit Method Based on Risk Assessment (DRAMBORA) is a methodology for undertaking repository self assessment, developed jointly by the Digital Curation Centre (DCC) and DigitalPreservationEurope (DPE). DRAMBORA requires repositories to expose their organization, policies and infrastructures to rigorous scrutiny through a series of highly structured exercises, enabling them to build a comprehensive registry of their most pertinent risks, arranged into a structure that facilitates effective management. It draws on experiences accumulated throughout 18 evaluative pilot assessments undertaken in an internationally diverse selection of repositories, digital libraries and data centres (including institutions and services such as the UK National Digital Archive of Datasets, the National Archives of Scotland, Gallica at the National Library of France and the CERN Document Server). Other organizations, such as the British Library, have been using sections of DRAMBORA within their own risk assessment procedures. Despite the attractive benefits of a bottom up approach, there are implicit challenges posed by neglecting a more objective perspective. Following a sustained period of pilot audits undertaken by DPE, DCC and the DELOS Digital Preservation Cluster aimed at evaluating DRAMBORA, it was stated that had respective project members not been present to facilitate each assessment, and contribute their objective, external perspectives, the results may have been less useful. Consequently, DRAMBORA has developed in a number of ways, to enable knowledge transfer from the responses of comparable repositories, and incorporate more opportunities for structured question sets, or key lines of enquiry, that provoke more comprehensive awareness of the applicability of particular threats and opportunities

    A personal networking solution

    Get PDF
    This paper presents an overview of research being conducted on Personal Networking Solutions within the Mobile VCE Personal Distributed Environment Work Area. In particular it attempts to highlight areas of commonality with the MAGNET initiative. These areas include trust of foreign devices and service providers, dynamic real-time service negotiation to permit context-aware service delivery, an automated controller algorithm for wireless ad hoc networks, and routing protocols for ad hoc networking environments. Where possible references are provided to Mobile VCE publications to enable further reading

    Critique of Architectures for Long-Term Digital Preservation

    Get PDF
    Evolving technology and fading human memory threaten the long-term intelligibility of many kinds of documents. Furthermore, some records are susceptible to improper alterations that make them untrustworthy. Trusted Digital Repositories (TDRs) and Trustworthy Digital Objects (TDOs) seem to be the only broadly applicable digital preservation methodologies proposed. We argue that the TDR approach has shortfalls as a method for long-term digital preservation of sensitive information. Comparison of TDR and TDO methodologies suggests differentiating near-term preservation measures from what is needed for the long term. TDO methodology addresses these needs, providing for making digital documents durably intelligible. It uses EDP standards for a few file formats and XML structures for text documents. For other information formats, intelligibility is assured by using a virtual computer. To protect sensitive information—content whose inappropriate alteration might mislead its readers, the integrity and authenticity of each TDO is made testable by embedded public-key cryptographic message digests and signatures. Key authenticity is protected recursively in a social hierarchy. The proper focus for long-term preservation technology is signed packages that each combine a record collection with its metadata and that also bind context—Trustworthy Digital Objects.

    TCG based approach for secure management of virtualized platforms: state-of-the-art

    Get PDF
    There is a strong trend shift in the favor of adopting virtualization to get business benefits. The provisioning of virtualized enterprise resources is one kind of many possible scenarios. Where virtualization promises clear advantages it also poses new security challenges which need to be addressed to gain stakeholders confidence in the dynamics of new environment. One important facet of these challenges is establishing 'Trust' which is a basic primitive for any viable business model. The Trusted computing group (TCG) offers technologies and mechanisms required to establish this trust in the target platforms. Moreover, TCG technologies enable protecting of sensitive data in rest and transit. This report explores the applicability of relevant TCG concepts to virtualize enterprise resources securely for provisioning, establish trust in the target platforms and securely manage these virtualized Trusted Platforms
    corecore